Getting Started Processing Ephemeris Data as Measurements

1 Introduction

ODTK has the capability to process ephemeris position and velocity components as observations. This capability is supported by both ODTK Least Squares and the ODTK Filter/Smoother. A measurement provider plugin is available to read in standard STK ephemeris (*.e) files. You can use ephemeris files using both Earth and non-Earth (Moon, Sun) central bodies. You can use covariance data, if available, to weight the measurements.

2 Processing ephemeris data as measurements

The following are the factors to consider when deciding whether or not to process ephemeris data as measurements.

- You must add the ephemeris file to be processed as a measurement file to the Scenario.Measurements.Files list. The STK *.e file does not include a tracking or satellite number identifier. To get around this, you must name the *.e file in the form *TrkID(nnnn)*.e, where nnnn corresponds to the ODTK.Scenario1.Satellite.MeasurementProcessing.TrackingID. TrkID(nnnn) may be a subdirectory name, as in *\TrkID(nnnn)*.e, or just part of the filename. The letters "TrkID" are not case sensitive.
- 2. Ephemeris files using both Earth and non-Earth (Moon, Sun) central bodies are acceptable. However the central body must match the associated Satellite central body. If they do not match, ODTK will bypass the observations.
- 3. The measurement types associated with ephemeris processing are "Eph Pos" for position components and "Eph Vel" for velocity components. Position components share the same measurement statistical parameters, and the velocity share the same measurement statistical parameters. ODTK can process position and velocity components together, but you may select one without selecting the other. To process these measurement types, you must include them in the ODTK.Scenario1.Satellite.MeasurementProcessing.MeasTypes list as well as ODTK.Scenario1.Satellite.MeasurementStatistics list. You must also include them in the Filter or LeastSquares MeasTypes list.
- 4. You can also use the ephemeris file covariance data to weight the ephemeris component measurements. To use the covariance data, you must set the Scenario.Measurements.EmbeddedWNSigmas.Use flag to true.

- 5. You could write a custom Tracking Data Provider to read in non-STK ephemeris files. Refer to the ODTK Help system for information on writing tracking data providers. You must supply the following CAgODGenericObs properties:
 - a. Time (in the form of Date string or {JulianDay, MinAfterMidnight})
 - b. TrackingIDs (satellite tracking number must be first entry in list)
 - c. MeasureType
 - d. Value
 - e. WNSigma (optional)
 - f. CartesianComponent
 - g. CartesianCoordSys
 - h. EphCentralBody

3 Orbit determination example

Basic knowledge of ODTK and of how to navigate its GUI menus are both assumed for this exercise. For basic ODTK examples, refer to Orbit Determination Process in the Help Training folder...

3.1 Null case A using Earth as central body; the filter produces zero residuals

- 1. Start ODTK.
- 2. Create a new scenario, satellite object, and filter object.
- 3. Rename the satellite "SatTrkID1000".
- 4. Double-click the satellite to display its properties and in the OrbitState section change CoordFrame to "Fixed". Leave the default CentralBody setting, which is "Earth".
- 5. Scroll down to the EphemerisGeneration section and change CoordFrame to "Fixed" and CreateFile to "True".
- 6. Change the STKFileName to "SatTrkID(1000)_EarthFixed_1.e". The parentheses in the filename are required so ODTK can use the file later as an input measurement file. This is a convention that ODTK uses to identify the "tracking ID" of the object that the ephemeris file contains measurements for. See the Ephemeris table entry in the Help documentation on measurement file formats.

- 7. Generate the ephemeris file by selecting the satellite object and clicking the "Run" button.
- 8. Repeat step 4 but change the OrbitState.CoordFrame to "ICRF".
- 9. Repeat step 5 but change EphemerisGeneration.CoordFrame to "ICRF".
- 10. Repeat step 6 but change STKFileName to "SatTrkID(1000)_ICRF_1.e".
- 11. Repeat step 7 to generate the ICRF ephemeris file.
- 12. Add a TrackingInstrument to the Satellite object and rename it to be "T1". Bring up T1's properties page and change its trackingID to be the same as SatTrkID1000's tracking ID. Click to edit the MeasurementStatistics in the TrackingInstrument properties window. Click Remove All to remove all default selections and add "Eph Pos" and "Eph Vel".
- Bring up the Scenario properties. In the Measurements. Files, click to edit. Click Add and select the file name "SatTrkID(1000)_EarthFixed_1.e", which you generated in step 6 above.
- 14. Open the Filter properties. Go to Filter.MeasTypes. Then click "Remove All", click "Add", and add "Eph Pos" and "Eph Vel".
- 15. Run the filter; this should produce an output file Scenario1.filrun.
- 16. Click View and select Static Product Builder. Click the Inputs tab and click the Add button. Under Objects, click to edit and select Filter1; this automatically adds Scenario1.filrun as the input file. Then in the Outputs tab, select and generate the report style "Residuals with Bias By Satellite"; you should get all zeroes for residuals, as shown below. The measurement types are Eph Pos X CBF, Eph Pos Y CBF, Eph Pos Z CBF, Eph Vel X CBF, Eph Vel Y CBF, and Eph Vel Z CBF. In this case, CB (central body) is Earth.

Residuals with Bias

Grouping by ['Satellite Name']

Satellite Name: SatTrkID1000

dit Flag	Residual Ratio	Residual Sigma	Residual Units	Pre Fit Residual	Measurement Type	Tracker Name	Date Time [UTCG]
A	0.00000	88.118574	m	0.00000	Eph Pos X CBF	SatTrkID1000.T1	01 Jul 2020 12:00:00.000000
A	0.00000	51.478445	m	0.000000	Eph Pos Y CBF	SatTrkID1000.T1	01 Jul 2020 12:00:00.000000
А	-0.00000	25.260357	m	-0.000000	Eph Pos Z CBF	SatTrkID1000.T1	01 Jul 2020 12:00:00.000000
A	0.00000	0.038635	m/sec	0.000000	Eph Vel X CBF	SatTrkID1000.T1	01 Jul 2020 12:00:00.000000
А	0.000000	0.059485	m/sec	0.000000	Eph Vel Y CBF	SatTrkID1000.T1	01 Jul 2020 12:00:00.000000
А	0.00000	0.024409	m/sec	0.000000	Eph Vel Z CBF	SatTrkID1000.T1	01 Jul 2020 12:00:00.000000
A	0.000000	13.950991	m	0.000000	Eph Pos X CBF	SatTrkID1000.T1	01 Jul 2020 12:01:00.000000
А	-0.000000	14.046560	m	-0.000000	Eph Pos Y CBF	SatTrkID1000.T1	01 Jul 2020 12:01:00.000000
A	-0.000000	13.560837	m	-0.000000	Eph Pos Z CBF	SatTrkID1000.T1	01 Jul 2020 12:01:00.000000
A	-0.000000	0.013848	m/sec	-0.000000	Eph Vel X CBF	SatTrkID1000.T1	01 Jul 2020 12:01:00.000000
А	-0.000000	0.014152	m/sec	-0.000000	Eph Vel Y CBF	SatTrkID1000.T1	01 Jul 2020 12:01:00.000000
A	0.000000	0.013594	m/sec	0.000000	Eph Vel Z CBF	SatTrkID1000.T1	01 Jul 2020 12:01:00.000000
А	-0.000000	12.182489	m	-0.000000	Eph Pos X CBF	SatTrkID1000.T1	01 Jul 2020 12:02:00.000000
A	0.00000	12.248143	m	0.000000	Eph Pos Y CBF	SatTrkID1000.T1	01 Jul 2020 12:02:00.000000
A	-0.000000	12.061101	m	-0.000000	Eph Pos Z CBF	SatTrkID1000.T1	01 Jul 2020 12:02:00.000000
А	0.00000	0.012184	m/sec	0.000000	Eph Vel X CBF	SatTrkID1000.T1	01 Jul 2020 12:02:00.000000
A	-0.000000	0.012405	m/sec	-0.000000	Eph Vel Y CBF	SatTrkID1000.T1	01 Jul 2020 12:02:00.000000
А	0.00000	0.012150	m/sec	0.000000	Eph Vel Z CBF	SatTrkID1000.T1	01 Jul 2020 12:02:00.000000
A	-0.00000	11.510067	m	-0.000000	Eph Pos X CBF	SatTrkID1000.T1	01 Jul 2020 12:03:00.000000
А	0.000000	11.569451	m	0.000000	Eph Pos Y CBF	SatTrkID1000.T1	01 Jul 2020 12:03:00.000000
А	-0.000000	11.451494	m	-0.000000	Eph Pos Z CBF	SatTrkID1000.T1	01 Jul 2020 12:03:00.000000

- 17. Repeat step 13 and choose SatTrkID(1000)_ICRF_1.e for Measurements.Files.
- 18. Rerun the filter and generate another "Residuals with Bias By Satellite" report. It should look similar to the following table. The measurements are now Eph Pos X/Y/Z CBI (Central Body Inertial) and Eph Vel X/Y/Z CBI. Also, the residuals are zeroe, s as in the previous report.

Residuals with Bias

Grouping by ['Satellite Name']

Satellite	Name:	SatTrkID1000
-----------	-------	--------------

Date Time	[UTCG] Tracker Nam	ne Measurement Type	Pre Fit Residual	Residual Units	Residual Sigma	Residual Ratio	Edit Flag
01 Jul 2020 12:00:00.	000000 SatTrkID1000.1	1 Eph Pos X CBI	0.000000	m	50.990195	0.00000	A
01 Jul 2020 12:00:00.	000000 SatTrkID1000.1	1 Eph Pos Y CBI	0.000000	m	88.962168	0.000000	A
01 Jul 2020 12:00:00.	000000 SatTrkID1000.1	1 Eph Pos Z CBI	0.000000	m	25.260406	0.00000	A
01 Jul 2020 12:00:00.	000000 SatTrkID1000.1	1 Eph Vel X CBI	0.000000	m/sec	0.060828	0.000000	A
01 Jul 2020 12:00:00.	000000 SatTrkID1000.1	1 Eph Vel Y CBI	0.000000	m/sec	0.037773	0.00000	A
01 Jul 2020 12:00:00.	000000 SatTrkID1000.1	1 Eph Vel Z CBI	0.00000	m/sec	0.024408	0.00000	А
01 Jul 2020 12:01:00.	000000 SatTrkID1000.1	1 Eph Pos X CBI	0.000000	m	14.051275	0.00000	A
01 Jul 2020 12:01:00.	000000 SatTrkID1000.1	1 Eph Pos Y CBI	0.000000	m	13.948248	0.000000	A
01 Jul 2020 12:01:00.	000000 SatTrkID1000.1	1 Eph Pos Z CBI	0.00000	m	13.560838	0.00000	A
01 Jul 2020 12:01:00.	000000 SatTrkID1000.1	1 Eph Vel X CBI	0.000000	m/sec	0.014161	0.00000	A
01 Jul 2020 12:01:00.	000000 SatTrkID1000.1	1 Eph Vel Y CBI	0.000000	m/sec	0.013839	0.00000	A
01 Jul 2020 12:01:00.	000000 SatTrkID1000.1	1 Eph Vel Z CBI	0.000000	m/sec	0.013594	0.00000	A
01 Jul 2020 12:02:00.	000000 SatTrkID1000.1	1 Eph Pos X CBI	0.000000	m	12.250084	0.000000	A
01 Jul 2020 12:02:00.	000000 SatTrkID1000.1	1 Eph Pos Y CBI	0.000000	m	12.181076	0.00000	A
01 Jul 2020 12:02:00.	000000 SatTrkID1000.1	1 Eph Pos Z CBI	0.000000	m	12.061096	0.00000	A
01 Jul 2020 12:02:00.	000000 SatTrkID1000.1	1 Eph Vel X CBI	0.000000	m/sec	0.012406	0.000000	A
01 Jul 2020 12:02:00.	000000 SatTrkID1000.1	1 Eph Vel Y CBI	0.000000	m/sec	0.012183	0.00000	A
01 Jul 2020 12:02:00.	000000 SatTrkID1000.1	1 Eph Vel Z CBI	0.000000	m/sec	0.012150	0.00000	A
01 Jul 2020 12:03:00.	000000 SatTrkID1000.1	11 Eph Pos X CBI	0.000000	m	11.570192	0.00000	A
01 Jul 2020 12:03:00.	000000 SatTrkID1000.7	1 Eph Pos Y CBI	0.00000	m	11.509503	0.00000	A
01 Jul 2020 12:03:00.	000000 SatTrkID1000.1	1 Eph Pos Z CBI	0.000000	m	11.451485	0.00000	A

3.2 Null case B using the Moon as central body; the filter produces zero residuals

Repeat all the steps in section 3.1. However, add the following after step 3:

Getting Started Processing Ephemeris Data as Measurements

- 3.a Click the Help menu tab and select ODTK LaunchPad -> Installed Utilities -> ChangeCentralBodyTool.htm.
- 3.b In the list of satellites, set Desired Central Body to "Moon".
- 3.c Click "Execute".
- 3.d Open the satellite properties and change OrbitState.CoordFrame to "Fixed". The satellite OrbitState properties should look similar to the following:

Object Properties: SatTrkID1000	▼ ₽					
Apply Reset << >>						
Name	Value					
Satellite	SatTrkID1000					
Description						
EstimateOrbit	true					
Orbit State	Cartesian					
CentralBody	Moon					
CoordFrame	Fixed 1 Jul 2020 12:00:00.000 UTCG					
Epoch	1 Jul 2020 12:00:00.000 UTCG					
XPosition	372784.243774569 km					
······ YPosition	8894.091664332 km					
ZPosition	-26384.163530957 km					
XVelocity	5.885604851 km*sec^-1					
······ YVelocity	5.025894283 km*sec^-1					
ZVelocity	0.790497215 km*sec^-1					
······ OrbitClass	Selenocentric					
DynamicReports						
····· CentralBody	Moon					
····· OrbitState	Keplerian					
CoordFrame	ICRF					
- PhysicalProperties						
Mass	1000 kg					
<u>с</u> Ана						

Continue with the remaining steps. Change ephemeris file name to reflect Moon as the new central body such as SatTrkID(1000)_MoonFixed_1.e (step 6) or SatTrkID(1000)_MoonICRF_1.e (step 10). After running the filter, you should be able to generate the following "Residuals with Bias By Satellite" reports:

Residuals with Bias

Grouping by ['Satellite Name']

Satellite Name: SatTrkID1000

Date Time [UTCG]	Tracker Name	Measurement Type	Pre Fit Residual	Residual Units	Residual Sigma	Residual Ratio
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Pos X CBF	0.00000	m	50.883657	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Pos Y CBF	0.00000	m	98.540199	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Pos Z CBF	-0.000000	m	22.852863	-0.000000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Vel X CBF	0.000000	m/sec	0.060682	0.000000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Vel Y CBF	0.00000	m/sec	0.040643	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Vel Z CBF	-0.000000	m/sec	0.022739	-0.000000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Pos X CBF	-0.000000	m	14.020165	-0.000000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Pos Y CBF	0.00000	m	14.103319	0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Pos Z CBF	0.000000	m	13.441606	0.000000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Vel X CBF	0.00000	m/sec	0.014064	0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Vel Y CBF	-0.000000	m/sec	0.013936	-0.000000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Vel Z CBF	-0.000000	m/sec	0.013444	-0.000000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Pos X CBF	0.00000	m	12.223720	0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Pos Y CBF	-0.000000	m	12.247356	-0.000000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Pos Z CBF	0.00000	m	12.021861	0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Vel X CBF	0.00000	m/sec	0.012264	0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Vel Y CBF	-0.000000	m/sec	0.012222	-0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Vel Z CBF	-0.000000	m/sec	0.012033	-0.000000

Similarly, the Moon ICRF residuals should look like:

Residuals with Bias

Grouping by ['Satellite Name']

Satellite Name: SatTrkID1000

Date Time [UTCG]	Tracker Name 1	Measurement Type	Pre Fit Residual	Residual Units	Residual Sigma	Residual Ratio
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Pos X CBI	0.00000	m	84.466415	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Pos Y CBI	-0.000000	m	59.475484	-0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Pos Z CBI	0.00000	m	22.809214	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Vel X CBI	0.00000	m/sec	0.048386	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Vel Y CBI	0.00000	m/sec	0.051032	0.00000
01 Jul 2020 12:00:00.000000	SatTrkID1000.T1	Eph Vel Z CBI	0.00000	m/sec	0.022712	0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Pos X CBI	0.000000	m	14.090547	0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Pos Y CBI	0.000000	m	14.035462	0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Pos Z CBI	0.00000	m	13.439129	0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Vel X CBI	-0.000000	m/sec	0.013991	-0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Vel Y CBI	-0.000000	m/sec	0.014010	-0.00000
01 Jul 2020 12:01:00.000000	SatTrkID1000.T1	Eph Vel Z CBI	0.00000	m/sec	0.013442	0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Pos X CBI	0.000000	m	12.260446	0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Pos Y CBI	0.00000	m	12.211510	0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Pos Z CBI	-0.000000	m	12.021046	-0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Vel X CBI	-0.000000	m/sec	0.012271	-0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Vel Y CBI	-0.000000	m/sec	0.012216	-0.00000
01 Jul 2020 12:02:00.000000	SatTrkID1000.T1	Eph Vel Z CBI	0.000000	m/sec	0.012033	0.000000

3.3 Deviated case using Earth as the central body; the filter retrieves the simulated Ballistic coefficient value

Repeat the steps in Null Case A of section 3.1. However, after step 6, insert the following steps:

6.a In the satellite properties, set ForceModel.Drag.BallisticCoeffCorrHalfLife = 1,008,000 minutes, which is 100 times its default value. This setting essentially makes the ballistic coefficient B a constant.

6.b In the scenario properties, set ODTK.Scenario1.Satellite.SatTrkID1000.ForceModel.Drag.EstimateDensity = false.

After step 14, insert this step:

14.a In the satellite properties, set ForceModel.Drag.Model.CD = 2.1. This setting essentially deviates C_D from the "truth" C_D = 2.2. After this change, the calculated ballistic coefficient in the satellite properties is 0.042. When you run the filter in step 15, it will estimate and recover the "truth" C_D of 0.044 that ODTK used when generating the ephemeris file. The ballistic Coefficient B is:

$$\beta = C_D \ \frac{A}{m}$$

where:

C_D = drag coefficient

A = area in m²

m = mass in kg

If all goes well, the filter should accomplish this for you. In the Static Product Builder, change the Output Style to be the "Ballistic Coefficient" graph and generate the graph. It should look like the one below. The initial correction estimate is 0 because the filter has no knowledge of the true ballistic coefficient. As it processes more measurements, it converges to a correction of 0.0476 or 4.76%. This is a correction to the nominal Ballistic Coefficient value it started with of 0.042. We also see the sigma values converging, indicating the filter has good observability of this parameter.

Ballistic Coefficient Correction

Now select the Output Style "Satellite Summary" report and run it. It should look like the one below. This indicates the satellite state at the end of the run. You can see that the filter has found the true B = 0.044 (see the highlighted value below).

Getting Started Processing Ephemeris Data as Measurements

Satellite summary at the end of a run

Satellite: SatTrkID1000 Date: 02 Jul 2020 12:00:00.000000 [UTCG] Mass: 1000.000 [kg] Central Body: Earth

Classical Elements ICRF [km, deg]

	Value	Sigma
Semimajor Axis:	6676.5163906	0.7684669
Eccentricity:	0.0005788	0.000004
Inclination:	28.4837711	0.0000247
RAAN:	352.4761463	0.0000422
Arg of Perigee:	284.7477971	0.0342773
True Arg of Latitude:	348.6189779	0.0000411

Cartesian Elements

	ICRF [km, km/s]	CBF [km, km/s]
Pos X:	6335.6352718	-3148.7478849
Pos Y:	-2004.5590842	-5853.1498378
Pos Z:	-628.1657652	-615.7494468
Vel X:	2.3877945	5.4196955
Vel Y:	6.4013154	-3.3007222
Vel Z:	3,6130232	3.6176470

Sigma-Correlation Matrix [m, m/s]

	Radial	Intrack	Crosstrack	Radial	Intrack	Crosstrack
	Pos	Pos	Pos	Vel	Vel	Vel
Radial Po	s 1.6170	-0.2915	-0.0010	0.6432	-0.9716	-0.0078
Intrack Po	s	2.0869	-0.0038	-0.3318	0.3040	-0.0023
Crosstrack Po	s		2.1483	0.0096	0.0024	0.2792
Radial Ve	1			0.0038	-0.5926	-0.0023
Intrack Ve	1				0.0018	0.0076
Crosstrack Ve	1					0.0035

Force Model Estimates

Parameter	Total	Rel. Corr.	Sigma	Add. Corr.	Sigma
Atmospheric Density (rho):		0.00000	0.00000		
Ballistic Coefficient (B):	<mark>0.04400</mark>	0.04758	0.00343	0.00200	0.00014
Coefficient of Drag (Cd):				0.09992	0.00720
Solar Radiation Pressure (CrAM):	0.00000	0.00000	0.00000	0.00000	0.00000
Coefficient of Reflection (Cr):	0.00000			0.00000	0.00000

Getting Started Processing Ephemeris Data as Measurements

4 Extra credit

- 1. Add a Least-Squares object for SatTrkID1000 and run it for Eph Pos and Eph Vel measurements generated in section 3.3. Use this state for the initial state of the satellite when doing the filter run.
- 2. Run a deviate case using the Sun as the central body; you need to run ChangeCentral-BodyTool.htm first.