
Orbit Determination Tool Kit

Theory & Algorithms1

James R. Wright, et al.

September 24, 2020

1© Analytical Graphics, Inc., 2002 through 2020. All Rights Reserved.



ii



Contents

1 Introduction 1
1.1 Orbit Determination Classes . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 IOD Methods . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 LS Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 SP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 ”Batch Filter” (Sequential LS) Methods . . . . . . . . . . 3
1.1.5 Optimal Orbit Determination . . . . . . . . . . . . . . . . 4

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Spacecraft Vectors and Components . . . . . . . . . . . . 7
1.2.3 Numerical Orbit Propagation . . . . . . . . . . . . . . . . 8

1.3 Mathematical Operators for SP Methods . . . . . . . . . . . . . . 9
1.3.1 Subscript Notation . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Nonlinear Operators . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Document Partition . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Optimal Orbit Determination 13

2 Optimal Orbit Determination (OOD) 15
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 State Estimate Reference for Linearization of SP Methods 15
2.1.2 Local Linearization . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Global Linearization . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Observability . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.6 Optimal Orbit Determination . . . . . . . . . . . . . . . . 16
2.1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Fundamental Theorem of Estimation 19
3.1 Gaussian Probability Density Function . . . . . . . . . . . . . . . 19

3.1.1 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Multidimensional Gaussian Random Variable . . . . . . . 19

iii



iv CONTENTS

3.2 Gaussian Cumulative Distribution Function . . . . . . . . . . . . 20

3.2.1 Central Limit Theorem . . . . . . . . . . . . . . . . . . . 21

3.2.2 Multidimensional Gaussian Random Variable . . . . . . . 22

3.3 Short Version of Fundamental Theorem . . . . . . . . . . . . . . 22

3.4 Complete Version of Fundamental Theorem . . . . . . . . . . . . 22

3.5 Comparison to Least Squares . . . . . . . . . . . . . . . . . . . . 22

4 Kalman’s Approach 23

4.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 State Estimate Error Model . . . . . . . . . . . . . . . . . . . . . 24

4.3 Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Gauss-Markov Sequence . . . . . . . . . . . . . . . . . . . 25

4.4 Time Update Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 State Error Covariance for Filter Time Update . . . . . . 25

4.5 Measurement Update Algorithm . . . . . . . . . . . . . . . . . . 26

5 Optimal Sequential Filter 29

5.1 State Estimate Error Model . . . . . . . . . . . . . . . . . . . . . 29

5.2 Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 State Error Covariance for Filter Time Update . . . . . . . . . . 30

5.4 Approximate Error-Model Solutions . . . . . . . . . . . . . . . . 31

5.4.1 Gravity Solution . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Air-Drag Solution . . . . . . . . . . . . . . . . . . . . . . 31

5.4.3 Solar Pressure Solution . . . . . . . . . . . . . . . . . . . 31

5.5 Filter Time Update Algorithm . . . . . . . . . . . . . . . . . . . 31

5.6 Filter Measurement Update . . . . . . . . . . . . . . . . . . . . . 32

5.6.1 Measurement Editing . . . . . . . . . . . . . . . . . . . . 32

5.6.2 Supplementary Editor . . . . . . . . . . . . . . . . . . . . 33

5.6.3 Filter Initialization . . . . . . . . . . . . . . . . . . . . . . 33

5.6.4 Filter Divergence . . . . . . . . . . . . . . . . . . . . . . . 33

6 Fixed Interval Sequential Smoother 35

6.1 Smoother Initialization . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Notation for Smoother Nonlinear State Transition . . . . . . . . 36

6.3 Smoother Sequential Equations . . . . . . . . . . . . . . . . . . . 36

6.3.1 Transition Smoothed State Estimate Backwards . . . . . 36

6.3.2 Incorporate Filter Estimate and Covariance at Time tk . 36

6.3.3 Prepare to Calculate Smoother Covariance . . . . . . . . 36

6.3.4 Smoother Covariance . . . . . . . . . . . . . . . . . . . . . 36

6.3.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3.6 Example for k = L− 1 . . . . . . . . . . . . . . . . . . . . 37

6.4 Filter-Smoother Consistency Test . . . . . . . . . . . . . . . . . . 37

6.4.1 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Smoother Matrix Inversions . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS v

7 Variable-Lag Sequential Smoother 39
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 General Application . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2.1 ODTK LEO Simulation . . . . . . . . . . . . . . . . . . . 41
7.3 Impulsive Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4 Required Properties . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5 Properties Available . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.5.1 Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5.2 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5.3 Nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.6 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.6.1 Time Update . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.6.2 Measurement Update . . . . . . . . . . . . . . . . . . . . 46

7.7 Carlton-Rauch Fixed-Epoch Smoother . . . . . . . . . . . . . . . 47
7.7.1 FES Initialization . . . . . . . . . . . . . . . . . . . . . . 47
7.7.2 Measurement at tj = tk+1 . . . . . . . . . . . . . . . . . . 48
7.7.3 Measurements at tj = tk+1, tk+2, . . . . . . . . . . . . . . . 49

7.8 Frazer Fixed-Epoch Smoother . . . . . . . . . . . . . . . . . . . . 49
7.8.1 FES Initialization . . . . . . . . . . . . . . . . . . . . . . 49
7.8.2 Measurement at tj = tk+1 . . . . . . . . . . . . . . . . . . 49

8 State-Space Changes 51
8.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.1 Structure of VLS Algorithms . . . . . . . . . . . . . . . . 52
8.2 Handling Discontinuities by the Filter . . . . . . . . . . . . . . . 52

8.2.1 State Contraction . . . . . . . . . . . . . . . . . . . . . . 52
8.2.2 State Expansion . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.3 Simultaneous Contraction and Expansion . . . . . . . . . 54
8.2.4 Stability Properties of the Covariance Contraction . . . . 54

8.3 Smoothing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3.1 Fixed-Interval Smoothing (RTS) . . . . . . . . . . . . . . 56
8.3.2 Fixed-Point Smoothing (Carlton-Rauch) . . . . . . . . . . 57
8.3.3 Fixed-Point Smoother (Meditch, Anderson-Moore) . . . . 57
8.3.4 McReynolds Multi-point Smoother . . . . . . . . . . . . . 60

8.4 Handling Filter Discontinuities with Smoothers . . . . . . . . . . 61
8.4.1 Fixed-Interval Smoothing with Discontinuities . . . . . . 61
8.4.2 Fixed-Point Smoothing (Carlton-Rauch) with Discontinu-

ities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.4.3 Fixed-Point Smoothing (Fraser) with Discontinuities . . . 64
8.4.4 Multi-Point Smoothing with Discontinuities . . . . . . . . 64

9 Relative Orbit Errors 67
9.1 Simultaneous Orbit Determination . . . . . . . . . . . . . . . . . 67
9.2 Orbit Difference Error Covariance . . . . . . . . . . . . . . . . . 68

10 Keplerian Variables 69



vi CONTENTS

11 Equinoctial Variables 71

12 Time Grids 73

II Stochastic Sequences 75

13 Stochastic Sequences for OOD 77
13.1 A Scalar Exponential Gauss-Markov Sequence . . . . . . . . . . . 77

13.1.1 Deterministic Transitivity with Time . . . . . . . . . . . . 78
13.1.2 Stationary Variance . . . . . . . . . . . . . . . . . . . . . 79
13.1.3 Propagation Time Extrema . . . . . . . . . . . . . . . . . 79
13.1.4 Input Control . . . . . . . . . . . . . . . . . . . . . . . . . 80
13.1.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
13.1.6 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . 82

13.2 The Vasicek Stochastic Sequence . . . . . . . . . . . . . . . . . . 82
13.2.1 Transition Matrix Φ̄ . . . . . . . . . . . . . . . . . . . . . 83
13.2.2 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.2.3 Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.2.4 Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.2.5 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.2.6 Second Moments . . . . . . . . . . . . . . . . . . . . . . . 84
13.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
13.2.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
13.2.9 Sequential Estimation . . . . . . . . . . . . . . . . . . . . 87

13.3 Other Stochastic Sequences . . . . . . . . . . . . . . . . . . . . . 90
13.3.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . 90
13.3.2 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 93
13.3.3 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

III Accelerations 97

14 Accelerations 99
14.1 Two Body Acceleration . . . . . . . . . . . . . . . . . . . . . . . 99
14.2 Total Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 99

15 Earth Gravity 101
15.1 Geopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
15.2 Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 102

15.2.1 Legendre Polynomials of First Kind . . . . . . . . . . . . 102
15.2.2 Associated Legendre Functions of First Kind . . . . . . . 102

15.3 Auto-Covariance Function on a Sphere . . . . . . . . . . . . . . . 103
15.3.1 From Angle to Time . . . . . . . . . . . . . . . . . . . . . 105
15.3.2 Covariance Function R (0) . . . . . . . . . . . . . . . . . . 105
15.3.3 Auto-correlation Function . . . . . . . . . . . . . . . . . . 105



CONTENTS vii

15.4 Acceleration Errors on a Sphere . . . . . . . . . . . . . . . . . . . 106
15.4.1 Computational Problem . . . . . . . . . . . . . . . . . . . 107
15.4.2 Solution to Computational Problem . . . . . . . . . . . . 107
15.4.3 The Double Integral . . . . . . . . . . . . . . . . . . . . . 108
15.4.4 Markov Property . . . . . . . . . . . . . . . . . . . . . . . 108
15.4.5 Inertial Frame . . . . . . . . . . . . . . . . . . . . . . . . 109
15.4.6 Stochastic Characterization . . . . . . . . . . . . . . . . . 109
15.4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 109

15.5 Perigee-Apogee Weighting . . . . . . . . . . . . . . . . . . . . . . 110
15.5.1 Weighting Functions . . . . . . . . . . . . . . . . . . . . . 111

15.6 New Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
15.6.1 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
15.6.2 Sample Covariance Validation . . . . . . . . . . . . . . . . 112
15.6.3 EGM96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15.6.4 GRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

15.7 Simulate Gravity Coefficient Errors . . . . . . . . . . . . . . . . . 112
15.7.1 Covariance Matrix Representations . . . . . . . . . . . . . 112
15.7.2 Simulation of x . . . . . . . . . . . . . . . . . . . . . . . . 113
15.7.3 A Useful Example . . . . . . . . . . . . . . . . . . . . . . 114

16 Lunar Gravity 115
16.1 Lunar Prospector . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

17 Atmospheric Drag and Lift 117
17.1 King-Hele Unit Vector K . . . . . . . . . . . . . . . . . . . . . . 117
17.2 Orthonormal Vector Basis [a] . . . . . . . . . . . . . . . . . . . . 118
17.3 Drag-Lift Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 118
17.4 Air-Drag Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 119

17.4.1 Drag Acceleration . . . . . . . . . . . . . . . . . . . . . . 119
17.5 Ballistic Coefficient Errors . . . . . . . . . . . . . . . . . . . . . . 120
17.6 Atmospheric Density Errors . . . . . . . . . . . . . . . . . . . . . 120

17.6.1 Relative Error Base-Line Model on Air-Density . . . . . . 121
17.6.2 Gauss-Markov Sequence on Air-Density Relative Error . . 121
17.6.3 Propagation of State Estimate . . . . . . . . . . . . . . . 122
17.6.4 State Estimate Error . . . . . . . . . . . . . . . . . . . . . 123
17.6.5 Process Noise Covariance . . . . . . . . . . . . . . . . . . 123
17.6.6 Transform From Perigee Height to Current Height . . . . 125
17.6.7 Orbit Error Covariance . . . . . . . . . . . . . . . . . . . 126

18 Solar Photon Pressure 129
18.1 Coordinate Frame for Solar Pressure . . . . . . . . . . . . . . . . 129
18.2 Solar Pressure Acceleration . . . . . . . . . . . . . . . . . . . . . 130

18.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
18.2.2 Conservation of Linear Momentum . . . . . . . . . . . . . 131
18.2.3 Spherical Surface Diffuse Reflection . . . . . . . . . . . . 131
18.2.4 Spherical Surface Perfect Absorption . . . . . . . . . . . . 132



viii CONTENTS

18.3 Eclipse Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
18.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
18.3.2 Baker’s Dual-Cone Eclipse Model . . . . . . . . . . . . . . 133
18.3.3 Earth Radius . . . . . . . . . . . . . . . . . . . . . . . . . 135

18.4 Stochastic Solar Pressure Error Model . . . . . . . . . . . . . . . 135

19 GPS Solar Pressure Models 137
19.1 GSPM.04a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
19.2 GSPM.04ae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
19.3 AeroT20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
19.4 AeroT30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
19.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

20 Spacecraft Thrusting 139
20.1 Impulsive Maneuver Model . . . . . . . . . . . . . . . . . . . . . 139

20.1.1 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
20.1.2 Trajectory Error Covariance . . . . . . . . . . . . . . . . . 140
20.1.3 Time of Centroid tC . . . . . . . . . . . . . . . . . . . . . 141

20.2 Impulsive Maneuver Error Covariance . . . . . . . . . . . . . . . 142
20.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
20.2.2 Time Relations . . . . . . . . . . . . . . . . . . . . . . . . 142
20.2.3 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 142

20.3 Impulsive Maneuver Covariance . . . . . . . . . . . . . . . . . . . 143
20.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

20.4 Finite Maneuver Model . . . . . . . . . . . . . . . . . . . . . . . 145
20.4.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 145
20.4.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
20.4.3 Stochastic Sequences . . . . . . . . . . . . . . . . . . . . . 147
20.4.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 147

IV Spacecraft Attitude 149

21 Attitude Modeling 151
21.1 Antenna Phase Center Estimation . . . . . . . . . . . . . . . . . 151

V State Error Transition 153

22 Transitive Partial Derivatives 155
22.1 State Error Transition Function . . . . . . . . . . . . . . . . . . . 155
22.2 Position & Velocity Partials . . . . . . . . . . . . . . . . . . . . . 155

22.2.1 Two-Body Transition Matrix . . . . . . . . . . . . . . . . 156
22.2.2 Variational Equations Transition Matrix . . . . . . . . . . 156

22.3 Air-Drag Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
22.4 Solar Pressure Partials . . . . . . . . . . . . . . . . . . . . . . . . 160



CONTENTS ix

VI Ground Location Estimation 161

VII Measurements 165

23 Tracking Station Kinematics 167
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
23.2 The Earth-Centered Unit Sphere . . . . . . . . . . . . . . . . . . 168
23.3 Ellipse in Plane of f1 and f3 . . . . . . . . . . . . . . . . . . . . . 170

23.3.1 Normal Vector n
(
pf
)

. . . . . . . . . . . . . . . . . . . . 171
23.3.2 Geodetic Latitude . . . . . . . . . . . . . . . . . . . . . . 171
23.3.3 Normal Vector n (ϕ) . . . . . . . . . . . . . . . . . . . . . 172
23.3.4 Station Height Above Ellipse . . . . . . . . . . . . . . . . 172
23.3.5 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
23.3.6 Geocentric vs Geodetic Latitude . . . . . . . . . . . . . . 173
23.3.7 Topocentric Geodetic Vector Basis [N] . . . . . . . . . . . 176
23.3.8 Topocentric Geocentric Vector Basis [M] . . . . . . . . . 177

23.4 Earth Fixed Vector Basis [e] . . . . . . . . . . . . . . . . . . . . . 179
23.4.1 From [f ] to [e] . . . . . . . . . . . . . . . . . . . . . . . . 179
23.4.2 The Ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . 179
23.4.3 Station Vector . . . . . . . . . . . . . . . . . . . . . . . . 179
23.4.4 Normal Vector n (ϕ) . . . . . . . . . . . . . . . . . . . . . 180
23.4.5 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

24 Angles 181
24.1 Unit Range Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 181
24.2 Azimuth and Elevation . . . . . . . . . . . . . . . . . . . . . . . . 181

24.2.1 Construct L from Azimuth and Elevation . . . . . . . . . 181
24.2.2 Construct Azimuth and Elevation from L . . . . . . . . . 183
24.2.3 Partial Derivatives of Azimuth and Elevation . . . . . . . 183
24.2.4 Construct Le from Azimuth and Elevation . . . . . . . . 185
24.2.5 Construct Azimuth and Elevation from Le . . . . . . . . . 185

24.3 Direction Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
24.3.1 Construct Direction Cosines LF1 and LF2 from L . . . . . 187
24.3.2 Partial Derivatives of Direction Cosines LF1 and LF2 . . . 187

24.4 X/Y Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
24.4.1 X/Y East-West Reference Frame . . . . . . . . . . . . . . 189
24.4.2 X/Y North-South Reference Frame . . . . . . . . . . . . 189
24.4.3 X/Y Z Reference Frame . . . . . . . . . . . . . . . . . . 189
24.4.4 X and Y Angles . . . . . . . . . . . . . . . . . . . . . . . 189
24.4.5 Partial Derivatives of X and Y Angles . . . . . . . . . . . 190

24.5 Ground Based Tracker . . . . . . . . . . . . . . . . . . . . . . . . 190
24.5.1 Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

24.6 Space Based Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 192
24.7 Earth Ellipsoid Values . . . . . . . . . . . . . . . . . . . . . . . . 192

24.7.1 NGA/NASA EGM96 . . . . . . . . . . . . . . . . . . . . . 192



x CONTENTS

24.7.2 On the EGM96 Ellipsoid . . . . . . . . . . . . . . . . . . 193

25 Range 195
25.1 Classical Two-Way Range . . . . . . . . . . . . . . . . . . . . . . 197

25.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
25.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 197
25.1.3 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . 198
25.1.4 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 198
25.1.5 Complete Representation . . . . . . . . . . . . . . . . . . 199

25.2 Satellite to Satellite Two-Way Range . . . . . . . . . . . . . . . . 199
25.3 Bi-Static Range (One-Way) . . . . . . . . . . . . . . . . . . . . . 199

26 Doppler 201
26.1 Classical Two-Way Doppler . . . . . . . . . . . . . . . . . . . . . 202

26.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
26.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 202
26.1.3 Expressions for Uplink Range-Rate . . . . . . . . . . . . . 203
26.1.4 Expressions for Downlink Range-Rate . . . . . . . . . . . 204
26.1.5 Two-Way Range-Rate . . . . . . . . . . . . . . . . . . . . 205
26.1.6 Two-Way Doppler Frequency Equation . . . . . . . . . . 206
26.1.7 Two-Way Phase Count Equation . . . . . . . . . . . . . . 206
26.1.8 Observed Frequency . . . . . . . . . . . . . . . . . . . . . 207
26.1.9 Measurement Names . . . . . . . . . . . . . . . . . . . . . 207

26.2 AFSCN ARTS Doppler . . . . . . . . . . . . . . . . . . . . . . . 208
26.2.1 Complete Representation . . . . . . . . . . . . . . . . . . 208
26.2.2 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 209

26.3 NASA STDN Doppler . . . . . . . . . . . . . . . . . . . . . . . . 210
26.3.1 Observed Range Rate . . . . . . . . . . . . . . . . . . . . 210
26.3.2 Doppler Representation from the Observed Range Rate

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

27 Troposphere 213
27.1 Troposphere Range . . . . . . . . . . . . . . . . . . . . . . . . . . 213

27.1.1 Zenith Component . . . . . . . . . . . . . . . . . . . . . . 213
27.1.2 Mapping Function . . . . . . . . . . . . . . . . . . . . . . 216

27.2 Partial Pressure Measurements . . . . . . . . . . . . . . . . . . . 219
27.3 Atmospheric Thermodynamics . . . . . . . . . . . . . . . . . . . 220

27.3.1 State Variables . . . . . . . . . . . . . . . . . . . . . . . . 220
27.3.2 Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . 220
27.3.3 Relative Humidity and Partial Pressures . . . . . . . . . . 221

27.4 Troposphere Range Error . . . . . . . . . . . . . . . . . . . . . . 222
27.4.1 Propagation Variance for Relative Troposphere Range Error223
27.4.2 Sequential Estimation . . . . . . . . . . . . . . . . . . . . 223

27.5 AFSCN ’RC Model . . . . . . . . . . . . . . . . . . . . . . . . . . 224
27.5.1 Tropospheric Range Model (’RC) . . . . . . . . . . . . . . 224
27.5.2 Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224



CONTENTS xi

28 Ionosphere 227
28.1 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
28.2 Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

28.2.1 AFSCN ARTS Doppler (Range-Rate) . . . . . . . . . . . 228

29 TDOA 229
29.1 Ground-based TDOA (Ground to Spacecraft to Ground) . . . . . 229

29.1.1 Ground-based TDOA light time algorithm . . . . . . . . . 229
29.1.2 Complete Representation . . . . . . . . . . . . . . . . . . 231

29.2 Ground TDOA (Spacecraft to Ground) . . . . . . . . . . . . . . 231
29.2.1 Ground TDOA light time algorithm . . . . . . . . . . . . 231
29.2.2 Complete Representation . . . . . . . . . . . . . . . . . . 232

29.3 Ground-based single differenced TDOA (Ground to Spacecraft to
Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

29.4 Space-based TDOA (Ground to Spacecraft) . . . . . . . . . . . . 232
29.4.1 Space-based TDOA light time algorithm . . . . . . . . . . 233
29.4.2 Complete Representation . . . . . . . . . . . . . . . . . . 233

30 FDOA 235
30.1 Ground-based FDOA (Ground to Spacecraft to Ground) . . . . . 235

30.1.1 Doppler shift . . . . . . . . . . . . . . . . . . . . . . . . . 235
30.1.2 Frequency of arrival . . . . . . . . . . . . . . . . . . . . . 236
30.1.3 Complete Representation . . . . . . . . . . . . . . . . . . 236

30.2 Ground FDOA (Spacecraft to Ground) . . . . . . . . . . . . . . . 236
30.2.1 Frequency of arrival . . . . . . . . . . . . . . . . . . . . . 237
30.2.2 Complete Representation . . . . . . . . . . . . . . . . . . 237

30.3 Ground-based single differenced FDOA (Ground to Spacecraft to
Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

30.4 Space-based FDOA (Ground to Spacecraft) . . . . . . . . . . . . 237
30.4.1 Frequency of arrival . . . . . . . . . . . . . . . . . . . . . 238
30.4.2 Complete Representation . . . . . . . . . . . . . . . . . . 238

31 TDOA Dot 239
31.1 Ground-based TDOA Dot (Ground to Spacecraft to Ground) . . 239

31.1.1 Range rate . . . . . . . . . . . . . . . . . . . . . . . . . . 239
31.1.2 Rate of change of time of arrival . . . . . . . . . . . . . . 240
31.1.3 Complete Representation . . . . . . . . . . . . . . . . . . 240

31.2 Space-based TDOA Dot (Ground to Spacecraft) . . . . . . . . . 240
31.2.1 Rate of change of time of arrival . . . . . . . . . . . . . . 241
31.2.2 Complete Representation . . . . . . . . . . . . . . . . . . 241

32 FDOA Dot 243
32.1 Ground FDOA Dot . . . . . . . . . . . . . . . . . . . . . . . . . . 243

32.1.1 Frequency of arrival rate . . . . . . . . . . . . . . . . . . . 243
32.1.2 Complete Representation . . . . . . . . . . . . . . . . . . 244



xii CONTENTS

33 DSN Range and Total Count Phase 245
33.1 Sequential Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
33.2 Total Count Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 245
33.3 Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
33.4 Antenna Corrections . . . . . . . . . . . . . . . . . . . . . . . . . 246
33.5 Media Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 246
33.6 Solar Corona Model . . . . . . . . . . . . . . . . . . . . . . . . . 246

34 Clock Modeling 247
34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
34.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

34.2.1 Variable t . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
34.2.2 Constant τ . . . . . . . . . . . . . . . . . . . . . . . . . . 248

34.3 ODTK Simulator Clock Time Update . . . . . . . . . . . . . . . 248
34.4 ODTK Filter Clock Time Update . . . . . . . . . . . . . . . . . . 249

34.4.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
34.4.2 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 249

34.5 Allan Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
34.5.1 Covariance on Clock Phase . . . . . . . . . . . . . . . . . 250
34.5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 251
34.5.3 Filter Time Update for Clock . . . . . . . . . . . . . . . . 254
34.5.4 State Estimate Parameters . . . . . . . . . . . . . . . . . 254

34.6 Zucca-Tavella Clock Model . . . . . . . . . . . . . . . . . . . . . 255

VIII Least Squares (LS) 257

35 LS Inputs 259
35.1 Input Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
35.2 Initial Calculated Values . . . . . . . . . . . . . . . . . . . . . . . 260

35.2.1 Measurement Residuals . . . . . . . . . . . . . . . . . . . 260
35.2.2 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 261

36 Least Squares Solutions 263
36.1 LS Normal Equation and Solution . . . . . . . . . . . . . . . . . 263

36.1.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . 263
36.2 Remove the Squaring Operation . . . . . . . . . . . . . . . . . . 264
36.3 Solution by Triangularization of B . . . . . . . . . . . . . . . . . 264

36.3.1 Solution Overview . . . . . . . . . . . . . . . . . . . . . . 265

37 Least Squares Inadequacies 267
37.1 LS Measurement Residuals . . . . . . . . . . . . . . . . . . . . . 267
37.2 Incomplete LS Model . . . . . . . . . . . . . . . . . . . . . . . . . 267
37.3 Least Squares State Error Covariance . . . . . . . . . . . . . . . 267
37.4 Batch Simultaneity . . . . . . . . . . . . . . . . . . . . . . . . . . 268
37.5 Schmidt’s Analysis of Least Squares . . . . . . . . . . . . . . . . 268



CONTENTS xiii

37.5.1 A Practical Experiment . . . . . . . . . . . . . . . . . . . 268

37.6 Gibb’s Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

38 Tracking Data Editing 271

38.1 Tracking Data Editor Identification . . . . . . . . . . . . . . . . . 272

38.2 Minimum Number of Data Sets Editor . . . . . . . . . . . . . . . 273

38.3 Minimum Time Span Editor . . . . . . . . . . . . . . . . . . . . . 273

38.4 Tracking Loop Flag Editor . . . . . . . . . . . . . . . . . . . . . . 273

38.5 Gross Raw Data Editor . . . . . . . . . . . . . . . . . . . . . . . 273

38.6 Minimum Elevation Editor . . . . . . . . . . . . . . . . . . . . . 274

38.7 Sliding Raw Data Polynomial Editor . . . . . . . . . . . . . . . . 274

38.8 Kepler Element Editor . . . . . . . . . . . . . . . . . . . . . . . . 274

38.8.1 Kepler Element Bounds Criterion . . . . . . . . . . . . . . 275

38.8.2 m = M = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 277

38.8.3 m = M = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 277

38.8.4 m = M = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 277

38.8.5 m ≥ 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

38.8.6 Kepler Element Statistics Criterion . . . . . . . . . . . . . 278

38.9 Second Difference Editor Using IOD . . . . . . . . . . . . . . . . 278

38.10Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 279

38.10.1 Residual RMS Convergence Criterion Using IOD . . . . . 279

38.10.2 Residual RMS Convergence Criterion After First Correction280

38.11Residual Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

38.12Least Squares Solution . . . . . . . . . . . . . . . . . . . . . . . . 281

38.12.1 Exceed Maximum Iteration Count Editor . . . . . . . . . 281

38.13Manual Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

38.14Select A New Station Pass . . . . . . . . . . . . . . . . . . . . . . 281

38.15Measurement Biases . . . . . . . . . . . . . . . . . . . . . . . . . 281

IX Initial Orbit Determination 283

39 IOD Methods 285

39.1 Common Modeling Limitations . . . . . . . . . . . . . . . . . . . 285

39.1.1 Two-Body Dynamics . . . . . . . . . . . . . . . . . . . . . 285

39.1.2 Measurement Outliers . . . . . . . . . . . . . . . . . . . . 285

39.2 Common Equations for IOD . . . . . . . . . . . . . . . . . . . . . 286

39.2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . 286

39.2.2 Triangle Geometry . . . . . . . . . . . . . . . . . . . . . . 286

40 Herrick-Gibbs 287

40.1 Position Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

40.1.1 Taylor’s Series . . . . . . . . . . . . . . . . . . . . . . . . 287



xiv CONTENTS

41 Gooding 289
41.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

41.1.1 Guess Range Values . . . . . . . . . . . . . . . . . . . . . 289
41.1.2 Lambert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
41.1.3 Gooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

41.2 A Priori Orbit Information . . . . . . . . . . . . . . . . . . . . . 291
41.2.1 Near-Circular Orbits . . . . . . . . . . . . . . . . . . . . . 291
41.2.2 High Eccentricity Orbits . . . . . . . . . . . . . . . . . . . 292

41.3 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
41.4 Tropospheric Effects . . . . . . . . . . . . . . . . . . . . . . . . . 293
41.5 Inspection of Kepler Orbit Element Values . . . . . . . . . . . . . 293
41.6 Multiple Solutions from Each Set of Distinct Measurement Sets . 293
41.7 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

X Tracking and Data Relay Satellite System (TDRSS)295

42 TDRSS Range and Doppler 297
42.1 TDRSS Range Vectors . . . . . . . . . . . . . . . . . . . . . . . . 297
42.2 Range Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

42.2.1 Range Elements . . . . . . . . . . . . . . . . . . . . . . . 298
42.2.2 Range Sum Definition . . . . . . . . . . . . . . . . . . . . 299
42.2.3 Range Sum Time Tag . . . . . . . . . . . . . . . . . . . . 299
42.2.4 Construction of the Range Sum Representation . . . . . . 299

42.3 Range Sum Partial Derivatives . . . . . . . . . . . . . . . . . . . 300
42.3.1 Eliminate Light-Time . . . . . . . . . . . . . . . . . . . . 300
42.3.2 Simplified Expressions . . . . . . . . . . . . . . . . . . . . 300
42.3.3 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . 301
42.3.4 LEO Satellite Range Sum Partials . . . . . . . . . . . . . 301
42.3.5 TDRS Range Sum Partials . . . . . . . . . . . . . . . . . 302

42.4 Doppler Measurements . . . . . . . . . . . . . . . . . . . . . . . . 303
42.5 Doppler Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

42.5.1 LEO Satellite Doppler Partials . . . . . . . . . . . . . . . 305
42.5.2 TDRS Doppler Partials . . . . . . . . . . . . . . . . . . . 305

43 One-Way Return-Link Doppler 307

XI Global Positioning System (GPS) Low Earth Orbit
(LEO) Receivers 309

44 Pseudo-Range Filtering 311
44.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

44.1.1 Pseudo-Range Option . . . . . . . . . . . . . . . . . . . . 311
44.2 USER GPS Pseudo-Range . . . . . . . . . . . . . . . . . . . . . . 312

44.2.1 Pseudo-Range . . . . . . . . . . . . . . . . . . . . . . . . . 312



CONTENTS xv

44.2.2 Range Measurement Time Notation . . . . . . . . . . . . 312
44.2.3 Time Differences . . . . . . . . . . . . . . . . . . . . . . . 312
44.2.4 Receiver Clock Errors . . . . . . . . . . . . . . . . . . . . 312
44.2.5 Receiver Proper Time less Receiver Coordinate Time (User

Spacecraft) . . . . . . . . . . . . . . . . . . . . . . . . . . 313
44.2.6 Coordinate Time Difference . . . . . . . . . . . . . . . . . 314
44.2.7 Transmitter Coordinate Time less Transmitter Proper Time

(NAVSTAR) . . . . . . . . . . . . . . . . . . . . . . . . . 314
44.2.8 Transmitter Clock Error . . . . . . . . . . . . . . . . . . . 314

44.3 Schwarzschild Metric . . . . . . . . . . . . . . . . . . . . . . . . . 315
44.3.1 Proper Time vs Coordinate Time . . . . . . . . . . . . . . 316
44.3.2 Time Integrals . . . . . . . . . . . . . . . . . . . . . . . . 317
44.3.3 JPL Model . . . . . . . . . . . . . . . . . . . . . . . . . . 319

44.4 Group Delay Differential . . . . . . . . . . . . . . . . . . . . . . . 319
44.5 Remove Ionospheric Range . . . . . . . . . . . . . . . . . . . . . 319

44.5.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
44.5.2 Phase Count . . . . . . . . . . . . . . . . . . . . . . . . . 320

44.6 GPS Range First-Differences . . . . . . . . . . . . . . . . . . . . 320
44.6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
44.6.2 C/A Code Range Representation . . . . . . . . . . . . . . 320
44.6.3 First Difference . . . . . . . . . . . . . . . . . . . . . . . . 321

44.7 Partial Derivatives for HANU . . . . . . . . . . . . . . . . . . . . 322
44.7.1 ICD-GPS-208 18 April 1983 . . . . . . . . . . . . . . . . . 322
44.7.2 Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
44.7.3 Map HANU Covariance P to GPS Measurement Covari-

ance Py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
44.7.4 Initial Differential Equations for Variations in Range and

Range-Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 324
44.7.5 Position and Velocity Variations in Inertial Component

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
44.7.6 Partials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

45 GPS Carrier Phase Count 329
45.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

45.1.1 BlackJack GPS Receiver . . . . . . . . . . . . . . . . . . . 330
45.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

45.2.1 Estimation of Clock Parameters . . . . . . . . . . . . . . 330
45.2.2 L1 Phase Count Measurements . . . . . . . . . . . . . . . 331
45.2.3 L1, L2 Phase Count Measurements . . . . . . . . . . . . . 331
45.2.4 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 331

45.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
45.3.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
45.3.2 Oscillator and Clock . . . . . . . . . . . . . . . . . . . . . 332
45.3.3 Generalized Integral . . . . . . . . . . . . . . . . . . . . . 332
45.3.4 Doppler Phase Count . . . . . . . . . . . . . . . . . . . . 332
45.3.5 Two Types of Phase Count Error . . . . . . . . . . . . . . 333



xvi CONTENTS

45.4 Receiver Doppler Algorithm . . . . . . . . . . . . . . . . . . . . . 334
45.4.1 NAVSTAR Frequencies . . . . . . . . . . . . . . . . . . . 334
45.4.2 Doppler Frequency . . . . . . . . . . . . . . . . . . . . . . 334
45.4.3 Define Phase Count . . . . . . . . . . . . . . . . . . . . . 335
45.4.4 Doppler Shift . . . . . . . . . . . . . . . . . . . . . . . . . 336
45.4.5 Phase Count Representation . . . . . . . . . . . . . . . . 337
45.4.6 Approximations for χij . . . . . . . . . . . . . . . . . . . 338
45.4.7 USER Orbit Partial Derivatives . . . . . . . . . . . . . . . 339

45.5 Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
45.5.1 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
45.5.2 Total Electron Content . . . . . . . . . . . . . . . . . . . 341
45.5.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

45.6 Final Forms for Phase Count . . . . . . . . . . . . . . . . . . . . 343
45.6.1 Alternate Representation . . . . . . . . . . . . . . . . . . 343

45.7 Ionosphere Removal . . . . . . . . . . . . . . . . . . . . . . . . . 344
45.7.1 Ionosphere-Free White Noise Variance for N̄Ei

j (Cycles) . 346
45.7.2 Ionosphere-Free White Noise Variance for ∆ρ (cm) . . . . 348

45.8 First Differences on NEi
j . . . . . . . . . . . . . . . . . . . . . . . 351

45.8.1 Remove USER Clock Phase Perturbations . . . . . . . . . 351
45.8.2 Root-Variance Mappings . . . . . . . . . . . . . . . . . . . 351

45.9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
45.10Partials and Covariance . . . . . . . . . . . . . . . . . . . . . . . 352

45.10.1 Single Frequency . . . . . . . . . . . . . . . . . . . . . . . 352
45.10.2 Two-Frequency Ionosphere Removal . . . . . . . . . . . . 353
45.10.3 First Differences on NEi

j . . . . . . . . . . . . . . . . . . . 354
45.11Receiver Clock Error Model . . . . . . . . . . . . . . . . . . . . . 354

45.11.1 Covariance on Clock Phase . . . . . . . . . . . . . . . . . 355
45.11.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 356
45.11.3 Filter Time Update for Receiver Clock . . . . . . . . . . . 357
45.11.4 State Estimate Parameters . . . . . . . . . . . . . . . . . 358

46 GPS Navigation Solution 359
46.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
46.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

XII Global Positioning System (GPS) Ground Receivers
361

47 GPS Composite Clock 363
47.1 GOMA-E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
47.2 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

47.2.1 Simulation Narrative . . . . . . . . . . . . . . . . . . . . . 363
47.2.2 Similarity in Clock Parameter Variations . . . . . . . . . 364
47.2.3 Optimal Estimation of the UVCC . . . . . . . . . . . . . 365
47.2.4 Real World Application . . . . . . . . . . . . . . . . . . . 365



CONTENTS xvii

XIII Appendices 371

A. The Least Squares Quadratic 373

B. Sequential Least Squares 375

C. Ad-Hoc Batch Filter 379

D. Kalman’s Model Equation 383
.0.5 Measurements at tj = tk+1, tk+2, . . . . . . . . . . . . . . . 383



xviii CONTENTS



List of Figures

3.1 Gaussian Density Function f(x) . . . . . . . . . . . . . . . . . . . 20
3.2 Gaussian Distribution Function F(x) . . . . . . . . . . . . . . . . 21

7.1 Variable Lag Smoother with EKF and FES . . . . . . . . . . . . 40
7.2 Estimation of Velocity at Fixed Epochs with EKF and FES . . . 41

13.1 Exponential Transition-Correlation Function and Half-Life Func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.2 24 Unbiased Vasicek Sequences . . . . . . . . . . . . . . . . . . . 88
13.3 24 Biased Vasicek Sequences . . . . . . . . . . . . . . . . . . . . . 88

17.1 Sigma for Relative Error in Air Density . . . . . . . . . . . . . . 121

18.1 Dual-Cone Eclipse Geometry . . . . . . . . . . . . . . . . . . . . 133
18.2 Baker’s Solar Obscura . . . . . . . . . . . . . . . . . . . . . . . . 134

20.1 Unit Thrust Referred to Maneuver Frame . . . . . . . . . . . . . 146

23.1 Station Longitude Rotation . . . . . . . . . . . . . . . . . . . . . 169
23.2 Geocentric Station Vector Basis . . . . . . . . . . . . . . . . . . . 170
23.3 Station Position Vector . . . . . . . . . . . . . . . . . . . . . . . 172
23.4 Geocentric vs Geodetic . . . . . . . . . . . . . . . . . . . . . . . . 173
23.5 Vector Basis for Angles Measurements . . . . . . . . . . . . . . . 176
23.6 Latitude Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 177
23.7 Latitude Difference Rotation . . . . . . . . . . . . . . . . . . . . 178

24.1 Azimuth-Elevation Description . . . . . . . . . . . . . . . . . . . 182
24.2 Direction Cosines Description . . . . . . . . . . . . . . . . . . . . 186
24.3 Unit Range Vector Right Ascension & Declination . . . . . . . . 191

34.1 Simulated Allan Variance Diagram . . . . . . . . . . . . . . . . . 253

37.1 Position Error vs Least Squares Fit Span . . . . . . . . . . . . . 268

42.1 Four TDRSS Range Vectors . . . . . . . . . . . . . . . . . . . . . 298

xix



xx LIST OF FIGURES

44.1 Earth-USER-NAVSTAR Vector Triangle . . . . . . . . . . . . . . 323

47.1 Sim Phase Dev (units: 1× 10−7s) vs Time (0 - 8) d . . . . . . . 366
47.2 Sim & Est Phase Dev (units: 1× 10−7s) vs Time (0 - 8) d . . . . 367
47.3 4 Similar Phase Var (units: 1× 10−7s) vs Time (0 - 8) d . . . . . 367
47.4 4 Similar Phase Var (units: 1× 10−8s) vs Time (0 - 3) d . . . . . 368
47.5 S1 Phase Var & Cov Bounds (units: 1× 10−6s) vs Time (0 - 8) d 368
47.6 S1 Phase Var Reduced Cov (units: 1× 10−7s) vs Time (0 - 8)d . 369
47.7 S1 Phase Var Reduced Cov (units: 1× 10−9s) vs Time (0 - 8) d . 369
47.8 4 Similar Phase Var no IC (units: 1× 10−8s) vs Time (0 - 8)d . . 370

Preface

Analytical Graphics presents here the mathematical specifications for its al-
gorithms and software used to define new capabilities for orbit determination.
These capabilities are referred to as Orbit Determination Tool Kit (ODTK).

The initial purpose for this document was to enable the author to proceed
with the construction of new prototype software for the AGI ODTK methods
of orbit determination. Recording specific algorithm definitions, and their re-
lations to appropriate hardware dynamics and spacecraft trajectory physics,
enables and supports algorithm development, review, validation, modification,
and communication.

This is a living document. Its secondary purpose is to provide relevant
mathematical specifications for ODTK users as the algorithms and software are
developed.

This document is constructed and modified using the Standard LaTeX Book
shell.

Acknowledgments

I am especially appreciative of the contributions by Dr. James Woodburn to
ODTK, and to this document. I thank Dick Hujsak and William Chuba for
useful suggestions in development of the first differencing algorithm for GPS
Doppler carrier phase count measurements.

US Patents

Patent No. US 6,708,116, Method and Apparatus for Orbit Determination, was
granted 16 March 2004.

Patent No. US 7,050,002, GPS Carrier Phase Measurement Representation
and Method of Use, was granted 23 May 2006.

Patent No. US 8,275,498 Nonlinear Variable Lag Smoother, was granted 30
April 2013.



Chapter 1

Introduction

Orbit determination refers to the estimation of orbits of small objects relative
to primary celestial bodies, given applicable measurements. All useful orbit
determination methods produce orbit estimates that have errors.

1.1 Orbit Determination Classes

Orbit determination methods are partitioned by three classes: Initial orbit deter-
mination (IOD), batch least squares differential corrections (LS), and sequential
processing (SP). An orbit estimate output from IOD can be used as orbit esti-
mate input to initialize LS, and an orbit estimate output from LS can be used
as orbit estimate input to initialize SP:

Initial Orbit Determination (IOD)
⇓

Least Squares (LS)
⇓

Sequential Processing (SP)


When there exists an orbit estimate sufficient to initialize SP, then IOD and LS
are not required.

Prior
Orbit Est

Prior
Error Cov

Size of Est
Errors

Execution
Speed

IOD No No Huge Very Fast
LS Yes No Small Fast
SP Yes Yes Small Fast Enough

Table 1.1: Compare Classes of OD Methods

1
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1.1.1 IOD Methods

IOD methods input tracking measurements with tracking platform locations,
and output spacecraft orbit estimates. No prior orbit estimate is required,
and when used, it is assumed that no prior orbit estimate exists; however, or-
bit estimation errors are usually very large. IOD methods are nonlinear and
six-dimensional. Measurement editing is not possible during IOD calculations
because no prior orbit estimate exists. IOD methods were derived by various au-
thors: LaPlace, Poincaré, Gauss, Lagrange, Lambert, Gibbs, Herrick, Williams,
Stumpp, Lancaster, Blanchard, Gooding, and Smith. The orbit determination
process is frequently begun, or restarted, with IOD.

1.1.2 LS Methods

The LS method requires the input tracking measurements with tracking plat-
form locations and a prior orbit estimate. The LS method outputs a refined
orbit estimate. Estimation errors are small when compared to IOD outputs.
LS methods consist of a sequence of linear LS (differential) corrections where
sequence convergence is defined a minimization of the (weighted) sum of squares
of measurement residuals. The sum of squares is represented by Eqs. 36.1, 36.5,
and 36.7. Minimization is characterized by Eqs. 36.8 and 36.9. LS methods
produce refined orbit estimates in a batch mode, together with error-covariance
matrices that are optimistic; i.e., LS orbit element error variance estimates are
typically too small, relative to truth, by at least an order of magnitude. LS
methods require an inversion of an n × n LS information matrix for each LS
iteration, where n is state estimate size. This inversion is problematic when
the information matrix is ill-conditioned, which is frequently the case in orbit
determination applications of LS. Operationally, LS may be the only method
used, or, it may be used to initialize SP. The existence of a prior orbit estimate
enables operational measurement residual editing, but LS methods frequently
require inspection and manual measurement editing by human intervention. LS
algorithms therefore require elaborate software mechanisms for measurement
editing. Gauss reputedly developed LS as early as 1795 and used it to deter-
mine the orbit of Ceres in 1801, although he did not publish his account of it
until the method had already been independently developed and published by
Legendre. [26].

1.1.3 SP Methods

SP methods require the input of tracking measurements with tracking plat-
form locations, priori state estimates (including an orbit estimate), and a prior
state-error covariance matrix. SP methods output refined state estimates in a
sequential mode. SP filter methods process forward in time, repeating a re-
curring, two-step sequence of filter time-update of the state estimate and filter
measurement-update of the state estimate. The filter time-update propagates
the state estimate forward, and the filter measurement-update incorporates the
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OOD LS
Real-time orbit determination Yes No
Force model error structure Yes No
The more data the better Yes No
Realistic error covariance Yes No
Autonomous data editing Yes No

Realistic performance assessment Yes No
Estimate time-varying meas biases Yes No

Estimate time-varying atmospheric density Yes No
Estimate time-varying solar pressure Yes No

Estimate time-varying transponder bias Yes No
Minimize orbit estimate errors Yes No

Reinitialize for maneuvers No Yes

Table 1.2: OOD vs LS

next measurement.

The recursive sequence requires an important interval of filter initialization.
Often the state-error covariance is unrealistic during the filter-initialization time
interval because the error covariance matrix associated with the a priori orbit
estimate is unknown. A significant number of observations must be processed
to bring the covariance to a realistic scale. Conceptually, the filter has been
initialized once the state covariance becomes realistic; in practice, the filter is
considered initialized after having processed a prescribed number of observa-
tions.

No matrix inversions are performed during filter calculations. SP smoother
methods process backward in time, repeating a pattern of state-estimate re-
finement using filter outputs and backwards transition. Matrix inversions are
required by the smoother algorithm. Computations for both filter and smoother
are dominated most significantly by numerical orbit propagations. The search
for non-stationary sequential processing was begun by Kalman [49], Bucy [10],
Rauch [97], Meditch [77], and others.

1.1.4 ”Batch Filter” (Sequential LS) Methods

The batch filter (Appendix C), BF, is a hybrid algorithm that combines prop-
erties of LS with properties of SP. The BF is suggested by inspection of the
sequential form of batch least squares (Appendix B). This sequential form is
modified ad hoc by inflating the covariance associated with previous data. The
BF can be derived by adding a second term ad hoc to the LS quadratic form.
The first term minimizes the sum of squares of weighted measurement residu-
als, while the second term binds the new state estimate to the previous state
estimate. This two-term quadratic form is referred to as a maximum-likelihood
performance function. Matrix inversion is required by the BF, as in LS. The
BF was proposed by Swerling [104].
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1.1.5 Optimal Orbit Determination

Optimal orbit determination (OOD, defined in the sequel), depends on the use
of an optimal sequential-filter design. For current time and future time, the
sequential filter output is used directly. For past time, the filter execution is
followed by the execution of a fixed interval sequential smoother. The smoothed
trajectory estimates are more accurate than filtered trajectory estimates.

Comparison of OOD with LS

It is useful to compare OOD with LS because many systems use LS to provide
operational end-products. Table 1.2 presents several operational capabilities
that distinguish OOD from LS. In particular, OOD allows for the estimation
of time-varying parameters, compared to the estimation of static parameters
for LS. In defense of LS, a time-dependent sequence of static parameters may
be estimated with LS, thereby approximating a time-variable; however, this is
done at the expense of increasing the LS state-estimate structure for each time-
constant. This puts a burden on the analyst to ensure that each time constant
is observable (otherwise there will be problems with the LS matrix inversion).
OOD handles time-variability autonomously with a single state estimate param-
eter, and the OOD filter performs no matrix inverse. OOD smoother matrix
inverses are invertable .

Consider the estimation of an air drag parameter. The analyst cannot antic-
ipate when atmospheric density will respond to a coronal mass ejection (CME)
during solar maximum, nor the time of first measurement following the time
of CME impact. Thus, there is no convenient way to appropriately partition
sequential time-constants for LS. For OOD, the filter gain on the atmospheric
density parameter estimate will be open due to its associated use of KP and
F10.7 to drive the state-estimate error covariance. When the first measurement
following the time of CME impact is encountered, correction of the atmospheric
density parameter estimate will commence at the time tag of that measurement.

1.2 Notation

1.2.1 Coordinate Frames

In the notation that follows, we shall align each vector basis with one of three
dextral orthogonal coordinate frames: Inertial, Gaussian, and Frenét. That is to
say, each of the three coordinate axes of each coordinate frame shall be colinear
with one of the three unit vectors, for each associated vector basis. The origin of
each vector basis shall also be coincident with its associated coordinate frame.
The positive direction for each coordinate axis is defined by the direction of the
associated unit vector.
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Inertial Vector Basis

Let us denote the Earth centered inertial (ECI) orthonormal vector basis for
the International Celestial Reference Frame (ICRF) by the ”vectrix” [39]:

[i] =

 i1
i2
i3

 (1.1)

where:

[i]
T

= (i1, i2, i3) , (1.2)

where i3 is coincident with the conventional pole (Z-direction) of ICRF, where
i1 and i2 are contained in equatorial plane of the ICRF (where i1 is in the X-
direction), and where i2 = i3 × i1.1 It is convenient to associate the origin of
the inertial vector basis with center of mass of the Earth.

Gaussian Vector Basis

Inertial spacecraft position and velocity vectors are denoted with r and ṙ. The
orthonormal Gaussian vector basis:

[u] =

 u1

u2

u3

 , (1.3)

with origin at the spacecraft center of mass, is anchored to the ECI spacecraft
position vector r:

u1 ≡ U = r/r = [i]
T

 U1

U2

U3

 (1.4)

where:

r =
√

r · r (1.5)

Orbit angular momentum h:

h = r× ṙ (1.6)

enables definition of u3:

u3 ≡W = h/h = [i]
T

 W1

W2

W3

 (1.7)

where:

h =
√

h · h (1.8)

1Prior to ODTK 6, the Earth-centered inertial (ECI) frame was aligned with mean equator
and mean equinox at epoch J2000.
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The triad is completed with:

u2 = u3 × u1 = [i]
T

 V1

V2

V3

 (1.9)

The rotation 3 x 3 matrix Rui from [i] to [u] :

[u] = Rui [i] (1.10)

where:

Rui =

 U1 U2 U3

V1 V2 V3

W1 W2 W3

 (1.11)

Note that:
[u]

T
= [i]

T
RTui (1.12)

It is convenient to associate the origin of the Gaussian vector basis with center
of mass of a space object.

Frenét Vector Basis

The orthonormal Frenét vector basis:

[f ] =

 f1
f2
f3

 , (1.13)

with origin at the spacecraft center of mass, is anchored to the ECI spacecraft
velocity vector ṙ:

f2= ṙ/ṡ = [i]
T

 f21

f22

f23

 (1.14)

where:
ṡ =
√

ṙ · ṙ (1.15)

In common with the Gaussian frame, adopt:

f3 = u3 = [i]
T

 f31

f32

f33

 (1.16)

The triad is completed with:

f1 = f2 × f3 = [i]
T

 f11

f12

f13

 (1.17)

The rotation 3 x 3 matrix Rfi from [i] to [f ] :

[f ] = Rfi [i] (1.18)
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where:

Rfi =

 f11 f12 f13

f21 f22 f23

f31 f32 f33

 (1.19)

Note that:
[f ]
T

= [i]
T
RTfi (1.20)

It is convenient to associate the origin of the Frenét vector basis with center of
mass of a space object.

1.2.2 Spacecraft Vectors and Components

Position, Velocity, and Acceleration

The spacecraft position, velocity, and acceleration vectors are denoted with r,
ṙ, and r̈. Then 3× 1 matrices z, ż, and z̈ for spacecraft position, velocity, and
acceleration components can be represented:

r = [i]
T
z (1.21)

ṙ = [i]
T
ż (1.22)

r̈ = [i]
T
z̈. (1.23)

where:

z =

 z1

z2

z3

 (1.24)

ż =

 ż1

ż2

ż3

 (1.25)

z̈ =

 z̈1

z̈2

z̈3

 (1.26)

Position and Velocity Errors

Spacecraft position, velocity, and acceleration vector errors are denoted with δr,
δṙ, and δr̈. Then 3× 1 matrices for instantaneous spacecraft position, velocity,
and acceleration error components are represented with:

δr = [i]
T
δz = [u]

T
δy (1.27)

δṙ = [i]
T
δż = [u]

T
δẏ (1.28)
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δr̈ = [i]
T
δz̈ = [u]

T
δÿ (1.29)

where:

δz =

 δz1

δz2

δz3

 =

 δr · i1
δr · i2
δr · i3

 (1.30)

δy =

 δy1

δy2

δy3

 =

 δr · u1

δr · u2

δr · u3

 (1.31)

and where the time derivatives follow by putting appropriate dots over δr,δz,
and δy. Insert Eq. 1.12 into Eq. 1.27 to get:

δz = Riuδy (1.32)

δy = Ruiδz (1.33)

where:
Riu = RTui (1.34)

1.2.3 Numerical Orbit Propagation

Notation

Concatenate the 3 x 1 position and velocity component arrays z and ż to form
the orbit substate:

Z =

[
z
ż

]
=


z1

z2

z3

ż1

ż2

ż3

 =


Z1

Z2

Z3

Z4

Z5

Z6

 (1.35)

where Z is dynamic: Z ≡ Z (t).
Let ϕz denote the Variation of Parameters in Universal Variables orbit prop-

agator. Given an initial time t0, a final time tf , and an acceleration model
u (Z (t) , t), then ϕz propagates Z (t0) from t0 to tf using u (Z (τ) , τ) to obtain
Z (tf ). This may be expressed as:

Z (tf ) = ϕz {tf ; Z (t0) , t0, u (Z (τ) , τ) , t0 ≤ τ ≤ tf} (1.36)

If by ϕz we always imply the use of u (Z (t) , t), then we get a very compact
notation for Variation of Parameters in Universal Variables:

ϕz {tf ; Z (t0) , t0} ≡ ϕz {tf ; Z (t0) , t0, u (Z (τ) , τ) , t0 ≤ τ ≤ tf} (1.37)

That is:
Z (tf ) = ϕz {tf ; Z (t0) , t0} (1.38)
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Ideally, ϕz satisfies the nested transitivity property:

Z (tk+2) = ϕz {tk+2; Z (tk) , tk} = ϕz {tk+2; ϕz {tk+1; Z (tk) , tk} , tk+1}
(1.39)

Note that ϕz is a column matrix with 6 elements:

ϕz =


ϕz1
ϕz2
ϕz3
...
ϕz6

 (1.40)

1.3 Mathematical Operators for SP Methods

1.3.1 Subscript Notation

State Matrices

The state estimate X̂ is referenced at two separate times by using the notation
[77]:

X̂j|i ≡ X̂ (tj |ti) (1.41)

where i, j ∈ {0, 1, 2, . . .}. The time tj to the left of the vertical bar denotes

the epoch of X̂ which drives the filter time-update function. The time ti to the
right of the bar denotes the time-tag of the last measurement processed to form
X̂, which drives the filter measurement-update function. For example, X̂7|6
refers to the state estimate at time t7, given the last measurement processed
at time t6, whereas X̂7|7 refers to the state estimate at time t7, given the last

measurement processed at time t7. X̂7|6 was obtained by filter time-update of

X̂6|6 from t6 to t7.
Similar notation is used for the state-estimate correction:

∆X̂j|i ≡ ∆X̂ (tj |ti) (1.42)

and the state-estimate-error covariance matrix:

Pj|i ≡ P (tj |ti) (1.43)

Measurement Matrices

We denote a measurement taken at time tj as yj . We also denote a conditional
measurement estimate (representation) at time tj as ŷj|h.

1.3.2 Nonlinear Operators

Nonlinear operators are required in the state estimate time update and the state
estimate measurement update for SP methods of orbit determination.
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State Propagation

Let ϕ denote a nonlinear operator that propagates the state estimate X̂i|h from
time ti to time tj :

X̂j|h = ϕ
{
tj ; X̂i|h, ti

}
(1.44)

Measurement Representation

Let y (·) denote a nonlinear operator that calculates the measurement represen-
tation ŷj|h, given the state estimate X̂j|h:

ŷj|h = y
(
X̂j|h, tj

)
(1.45)

1.3.3 Linear Operators

State Estimate Error Propagation

Let Φj,i ≡ Φ (tj , ti) denote the linear operator that propagates the state error

estimate ∆X̂i|h from time ti to time tj

∆X̂j|h = Φj,i∆X̂i|h (1.46)

where

Φj,i =

[
∂Xj

∂Xi

]
X̂j|h

(1.47)

and where evaluation derives from X̂j|h.

Measurement Residual

Let ∆yj denote the linear operator that defines the measurement residual at
time tj :

∆yj = yj − ŷj|h (1.48)

which reflects the discrepancy between the predicted measurement and the
actual measurement at time tj . Some authors refer to ∆yj as ”measurement
innovation”.

Measurement/State Partials Jacobian

Let Hj denote the Jacobian of the measurement with respect to the state partial
derivatives at time tj :

Hj =

[
∂yj
∂Xj

]
X̂j|h

(1.49)

where evaluation derives from X̂j|h.
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1.4 Document Partition

This document has the following ordered parts:

1. Optimal Orbit Determination

2. Stochastic Sequences

3. Accelerations

4. Spacecraft Attitude

5. State Error Transition

6. Ground Location Estimation

7. Measurements

8. Deep Space Network (DSN)

9. Least Squares (LS)

10. Initial Orbit Determination (IOD)

11. Tracking and Data Relay Satellite System (TDRSS)

12. Global Positioning System (GPS)

13. Appendices



12 CHAPTER 1. INTRODUCTION



Part I

Optimal Orbit
Determination
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Chapter 2

Optimal Orbit
Determination (OOD)

As previously mentioned, orbit determination refers to the estimation of orbits
of small objects relative to primary celestial bodies, given applicable measure-
ments. But what is optimal orbit determination? The purpose of this chapter
is to answer the question.

The adjective optimal refers to most desirable, most favorable, or most sat-
isfactory [113]. But most satisfactory to whom? There are choices to make from
available orbit determination methods. Should we prefer the fastest methods
or the most accurate? Should we prefer sequential methods or batch methods?
Should we minimize the size of the weighted measurement residuals or the size
of orbit errors? How should we model measurement residuals and orbit errors?

All orbit determination problems are multidimensional and nonlinear,but
should we attempt a multidimensional nonlinear solution directly? Or, should
we use a linearization method? If so, is there a preferred method for lineariza-
tion?

2.1 Definitions

2.1.1 State Estimate Reference for Linearization of SP
Methods

Evaluation of the measurement representation ŷj|h defined by Eq. 1.45 requires

the use of some prior state estimate X̂j|h, where tj ≥ th and where X̂j|h is the
state estimate reference for linearization. A similar requirement is associated
with Eqs. 1.47 and 1.49.

15
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2.1.2 Local Linearization

Let tk and tk+1 ≥ tk be the times of adjacent ordered measurements yk and
yk+1, for k ∈ {0, 1, 2, . . .}. That is, there are no measurements between yk and
yk+1. Then the use of X̂k+1|k as the state estimate reference for all linearizations
at time tk+1 defines local linearization at time tk+1.

The use of any state estimate reference other than X̂k+1|k at time tk+1 for
linearization is a non-local linearization at time tk+1.

2.1.3 Global Linearization

Given the integer variable k ∈ {0, 1, 2, . . .} and given a fixed non-negative integer
j, the use of X̂k|j as the state estimate reference for linearization at time tk for
each k is known as global linearization.

2.1.4 Observability

A particular parameter is observable to a particular measurement if and only
if the sequential processing of that measurement reduces the estimated error
variance on that parameter.

2.1.5 Completeness

The state estimate structure is complete if and only if all parameters with un-
known observable components are included in the state estimate structure.

2.1.6 Optimal Orbit Determination

By optimal orbit determination, the method used to calculate the state estimate
(including the orbit estimate) satisfies the following conditions:

1. Sequential processing (SP) is used to account for force modeling errors and
measurement information in the time order in which they are realized.

2. Sherman’s Theorem is applied [101],[102],[77],[49]. To summarize, the
optimal state estimate correction matrix ∆X̂ is the expectation of the
state error matrix ∆X given the measurement residual matrix ∆y. That
is: ∆X̂ = E {∆X|∆y}.

3. Linearizations of state-estimate time transition and state-to-measurement
representations are local in time, not global.

4. The state estimate structure is complete.

5. All state-estimate models and state-estimate-error model approximations
are derived from the appropriate physics of sensors and force modeling.



2.1. DEFINITIONS 17

6. All measurement models and measurement-error model approximations
are derived from the appropriate sensor hardware definitions and associ-
ated physics, and measurement sensor performance.

7. Necessary conditions for real data include:

� Measurement residuals approximate Gaussian white noise[77][85]

� McReynold’s filter-smoother consistency test is satisfied.

8. For simulated data, the state-estimate errors agree with the state-estimate
error covariance function.

The first six conditions define standards for optimal algorithm design and
for the establishment of a realistic state-estimate error covariance function. The
last two conditions enable validation: they define realizable test criteria for
optimality.

2.1.7 Discussion

Sherman’s Theorem

As a lemma to Sherman’s Theorem [77], one achieves minimum state-estimate
error variance (and thus, minimum orbit-estimate error variance). Of the various
extremalization criteria available, this one most directly addresses errors in the
orbit elements.

Complete State Estimate

Consider any case where the state estimate structure is incomplete. Any com-
ponent of an observable parameter neglected in the state estimate structure will
alias into the estimated orbit elements, significantly degrading them. Thus,
one needs an appropriate place in the state estimate structure to put every
observable effect.

Gaussian White Noise

What is it? In one dimension, one may think of a Gaussian white noise se-
quence as a sequence of ratios from a random walk sequence Rj , j ∈ {0, 1, 2, . . .}.
The numerator in each ratio is the difference (Rj+1 −Rj) in the random walk
functional across a specified time interval [tj , tj+1], and the denominator is the
associated time difference (tj+1 − tj). The ratio limit (tj+1 − tj) −→ 0 does
not exist [19]. Thus, one must always use Gaussian white noise in a granular
manner. The Wiener-Levy (random walk) sequence developed in Papoulis [93]
provides appropriate results for useful application, and is discussed in the sequel.
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Relevance to Observations Gaussian white noise models are appropriate
for thermal noise associated with resistance in electronic circuits [99]. Thus,
Gaussian white noise is used directly for modeling stochastic phenomena in
clocks, transmitters, receivers, and sensors. Range and Doppler measurements
contain Gaussian white noise.

Gauss used a Gaussian white noise model for orbit determination to represent
noise in angles right ascension and declination [26].

Applicability to Linear Systems Gaussian white noise is appropriate, in-
directly, as a linear system input to develop a Gaussian stochastic output func-
tional with particular serial correlation properties. This provides a convenient
method to represent stochastic modeling errors in some cases. But in other
cases, this method is useless; e.g., for acceleration modeling errors that derive
from errors in modeling the geopotential.

”Colored” Spacecraft Acceleration Model Errors Acceleration model-
ing errors that derive from errors in modeling the geopotential, atmospheric
density, and solar photon pressure are random and nonstationary, but they are
not white. Correlation of errors in the time domain are sometimes said to be
”colored” noise.



Chapter 3

Fundamental Theorem of
Estimation

Measurement-error processes and force-model-error processes are modeled as
Gaussian (normal) random functionals for orbit determination. Therefore, all
distributions considered herein are Gaussian. The Fundamental Theorem of Es-
timation requires symmetry and left-hand convexity of the distribution function
used for estimation. Both requirements are satisfied by Gaussian distributions.

3.1 Gaussian Probability Density Function

The Gaussian density function f (x) on scalar random variable x is defined by
[26]:

f (x) =
1

σ
√

2π
exp

(
(x− µ)

2
/
(
2σ2
))

(3.1)

where µ is the mean value of x, and σ is the root-variance of x about µ. Figure
3.1 displays f (x) for µ = 0 and σ = 1.

3.1.1 Sample Data

It can be difficult to see whether a sample is normally distributed - especially
if the sample size is small - unless an objective test is employed. For example,
a histogram of 100 standard normal deviates cannot be expected to precisely
follow Figure 3.1. Statistical hypothesis tests of the normality assumption are
useful in such cases [109].

3.1.2 Multidimensional Gaussian Random Variable

Let δX denote an n × 1 matrix Gaussian random variable, and let δX denote
a particular realization of δX. Let us denote the mean value of δX with µ,

19
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Figure 3.1: Gaussian Density Function f(x)

and the covariance matrix of δX with P . Then the Gaussian density function
f (δX) ≡ fδX (δX) on the multidimensional random variable δX is defined by:

f (δX) =
1

(2π)
n/2 |P |1/2

exp

(
−1

2
(δX − µ)

T
P−1 (δX − µ)

)
(3.2)

Equation 3.2 is also known as the multivariate normal distribution.

3.2 Gaussian Cumulative Distribution Function

The integration of the Gaussian probability density function Eq. 3.1 generates
the Gaussian cumulative (probability) distribution function F (x) ≡ Fx (x):

Fx (x) =

∫ x

−∞
fx (w) dw (3.3)

so that:
Fx (x) = Pr {x < x} (3.4)

where Pr {x < x} is the ”probability that x is less than x.”
Figure 3.2 displays F (x). Note that F (x) is symmetric about its mean

µ = 0:
F (x) = 1− F (−x) (3.5)

and that F (x) is convex for all x ≤ µ (left-hand convexity)1, µ = 0:

F (λx1 + (1− λ)x2) ≤ λF (x1) + (1− λ)F (x2) (3.6)

1The right-hand side of Ineq. 3.6 specifies an ordinate on a straight line, where that
line crosses F (x) at points x1 and x2. Given values for x1, x2 , and λ, then the argument
x = λx1 + (1 − λ)x2 for F (x), on the left-hand side of Ineq. 3.6, provides a value for F that
can be compared to the ordinate on the straight line. Ineq. 3.6 requires that F (x) lie below
the straight line when x ≤ µ. Symmetry specifies an upside-down convexity for the right-hand
side of F (x).
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Figure 3.2: Gaussian Distribution Function F(x)

where 0 ≤ λ ≤ 1.

Symmetry and convexity properties are required for any cumulative distri-
bution function that is a candidate for optimal estimation. The Gaussian distri-
bution function satisfies these requirements, but so do many other cumulative
distribution functions. Thus, even if real distributions for orbit determination
were not quite Gaussian, symmetry and convexity is often satisfied.

3.2.1 Central Limit Theorem

Let random variable x be the bounded sum of many small independent compo-
nents with zero means, but where each component may derive from any distri-
bution. Then x will have the Gaussian distribution Fx (x) defined by Eq. 3.3
[22]. The central limit theorem, together with the Fundamental Theorem of
Estimation, supports the use of Gaussian distributions for orbit determination.

Application: Thermal Noise

Davenport and Root[99] states (p. 185): ”The randomness of the thermally
excited motion of free electrons in a resistor gives rise to a fluctuating voltage
which appears across the terminals of a resistor. This fluctuation is known as
thermal noise. Since the total noise voltage is given by the sum of a very large
number of electronic voltage pulses, one might expect from the central limit
theorem that the total noise voltage would be a Gaussian process. This can
indeed be shown to be true.”
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3.2.2 Multidimensional Gaussian Random Variable

The n-fold integration of the Gaussian probability density function Eq. 3.2
generates the Gaussian cumulative distribution function F (δX) ≡ FδX (δX):

FδX (δX) =

∫ δX

−∞
fδX (w) dw (3.7)

so that for each element FδXj
(δXj) of FδX (δX):

FδXj
(δXj) = Pr {δXj < δXj} , j ε {1, 2, . . . , n} (3.8)

For optimal sequential estimation it is important to note, when |P | = 0, that
FδX (δX) exists even when fδX (δX) does not exist. Since P is a symmetric
matrix, its determinant is the product of its eigenvalues. When one of its eigen-
values is zero FδX (δX) continues to exist, and the optimal sequential filter is
stable. But for this case, least-squares estimators fail due to the least-squares
requirement for existence of P−1.

3.3 Short Version of Fundamental Theorem

Given that the state estimate error column matrix δX is Gaussian and the
measurement residual column matrix ∆y is Gaussian, then the optimal estima-
tor of the state error δX̂ is the expected value of the state error δX given the
measurements of y:

δX̂ = E {δX|y} (3.9)

That is, the optimal estimator is the conditional mean. For proof, see Meditch
[77], Corollary 5.1, page 162.

3.4 Complete Version of Fundamental Theorem

Complete hypotheses for the Fundamental Theorem of Estimation (Sherman’s
Theorem) are satisfied by many cumulative distributions that are not Gaussian
[102]. But since there is little justification for us to consider non-Gaussian
distributions for the orbit determination problem, the Short Version is sufficient.
For the Complete Version of this important theorem, see Meditch [77], Theorem
5.1, page 160. The original proof of this theorem has been attributed by Kalman
to Sherman [101] [102].

3.5 Comparison to Least Squares

For least squares we minimize the sum of squares of weighted measurement
residuals. For optimal estimation we minimize the expected value of the root
sum of squares on state estimate errors.



Chapter 4

Kalman’s Approach

Kalman presented two filtering algorithms, or theorems, for sequential estima-
tion: a filter measurement-update theorem and a filter time-update theorem.

4.1 Linearization

Kalman’s measurement-update theorem requires that the measurement repre-
sentation be linearly related to the state, and his time update theorem requires
linearity in the state transition with time. Unfortunately, orbit determination
is nonlinear in the representation of all real measurements from the state, and
is nonlinear in the time transition of the complete state. However, the orbit
determination problem can be linearized either globally or locally.

Under global linearization, a reference trajectory is propagated from a single
state estimate and fixed as the global time reference for deriving measurement
residuals and state errors. Kalman’s linear measurement-update theorem is
applied to the mapping from state error to measurement residual, and Kalman’s
linear time-update theorem is applied to the time transition of state errors. The
state error is defined to be the superposition of two differences: the difference
between the filter state estimate and the reference-trajectory state estimate,
and the difference between the reference-trajectory state estimate and the true
(unknown) state. The fixed global reference for a filter may be obtained from a
batch least-squares estimate. Global linearization may also be used iteratively
by batch least squares.

Local linearization means that multiple state estimates are referenced for
deriving measurement residuals and state errors.1 A new state estimate and
associated reference trajectory is calculated sequentially at each measurement
time. There are as many state estimates and associated references trajecto-
ries as there are measurements. Kalman’s linear measurement-update theorem
is applied to the mapping from the state error to measurement residual, and

1Applied to the Kalman filter, local linearization is sometimes called an extended Kalman
filter.
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Kalman’s linear time-update theorem is applied to the time transition of state
error. The measurement-update theorem and time-update theorem are both
applied at the time of the new state estimate. The state error is defined to be
the difference between the (unknown) true state and the filter state estimate.

Global linearization erects a formidable barrier not present with local lin-
earization. Namely, the global reference trajectory itself has persistent unknown
errors, whereas the errors in the local reference trajectory may be removed (in
part) by the next measurement update, and are described by a realistic state
error covariance function. The Fundamental Theorem of Estimation is directly
applicable to state estimate errors referred to the true unknown state, whereas
it is not applicable to state estimate errors referred to a global reference whose
errors are unknown and cannot be removed. In the sequel ,we shall therefore
exclusively use and refer to local linearization.

4.2 State Estimate Error Model

Kalman’s state estimate error model is defined by the ”formal” linear stochastic
differential equation:

d

dt
δX (t) = A (t) δX (t) +B (t) δω (t) (4.1)

where δX (t) is an n × 1 matrix, where δω (t) is a p × 1 Gaussian white noise
matrix, where A (t) is an n × n time dependent matrix, and where B (t) is an
n × p time dependent matrix. Comparing Eq. 4.1 to the least squares state
estimate error model

d

dt
δX (t) = A (t) δX (t)

we see that we apparently now have a model to account for acceleration modeling
errors; i.e., let δω (t) denote the resultant of gravity modeling errors, air-drag
modeling errors, and solar pressure modeling errors.

Equation 4.1 appears to have great power, but there is a technical difficulty.
Namely, dδX (t) /dt is undefined because δω (t) is white noise: the calculus
implied by dδX (t) /dt is inadequate to describe white noise. Eq. 4.1 can be
replaced with a well-defined functional form (see Appendix D), but to carry
it through would invoke a rather distracting discussion of stochastic calculus,
measure theory, and Lebesgue integration (see Bucy and Joseph[10], Chapter 2).
Following Kalman [49], we shall refer to Eq. 4.1 as a ”formal” linear stochastic
differential equation. This means that we shall treat δω (t) as integrable white
noise.

4.3 Integral Equation

When δω (t) is integrable, one can write the integral to Eq. 4.1 as:

δX
(
tk+1|k

)
= Φ (tk+1, tk) δX

(
tk|k
)

+

∫ tk+1

tk

Φ (tk+1, τ)B (τ) δω (τ) dτ (4.2)
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Compare Eq. 4.2 to the corresponding least squares integral:

δX
(
tk+1|k

)
= Φ (tk+1, tk) δX

(
tk|k
)

to see that Kalman’s integral equation is distinguished by the integration of
δω (τ). One might use this integral to model position and velocity errors due to
acceleration errors.

4.3.1 Gauss-Markov Sequence

The state error δX is Gaussian because δω is Gaussian: a linear transforma-
tion on a Gaussian sequence is Gaussian [48]. We need calculate only the first
two moments on a Gaussian distribution: its conditional mean (optimal esti-
mate), and its conditional covariance. The entire distribution is thus captured
(Theorem 5.3, [77]).

The state error δX is Markov because the transition from δX (tk) to δX (tk+1)
with tk+1 > tk requires no information prior to tk. This is because δω (t) is white
noise. If δω (t) were serially correlated, δω (tk+1) would depend on δω (tk),
δω (tk−1), δω (tk−2), ..., and δX (tk+1) would depend on δX (tk), δX (tk−1),
δX (tk−2),..., requiring one to remember the complete past to move forward.
The Gauss-Markov property therefore enables a computationally tractable or-
bit determination algorithm.

4.4 Time Update Algorithm

4.4.1 State Error Covariance for Filter Time Update

Form the outer product on δX
(
tk+1|k

)
using Eq. 4.2, and take its expectation

to define:

Pk+1|k = E
{
δX
(
tk+1|k

)
δX
(
tk+1|k

)T}
(4.3)

where:

E
{
δX
(
tk+1|k

)
δX
(
tk+1|k

)T}
= Φ (tk+1, tk)E

{
δX
(
tk|k
)
δX
(
tk|k
)T}

Φ (tk+1, tk)
T

+Qk+1,k + ILk+1,k + IRk+1,k (4.4)

Since δω (t) is white, we have:

ILk+1,k = IRk+1,k = 0 (4.5)

Qk+1,k =

∫ tk+1

tk

Φ (tk+1, τ)B (τ)E
{
δω (τ) δω (τ)

T
}
B (τ)

T
Φ (tk+1, τ)

T
dτ

(4.6)
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That is:
Pk+1|k = Φ (tk+1, tk)Pk|kΦ (tk+1, tk)

T
+Qk+1,k (4.7)

The Kalman filter time-update algorithm is not sufficient for orbit determina-
tion. There is a serious problem associated with modeling δω (τ) as white noise
(Eqs. 4.1, 4.2, and 4.7): gravity modeling errors, air-drag modeling errors, and
solar pressure modeling errors are not white. They are serially correlated.

4.5 Measurement Update Algorithm

The Kalman filter measurement-update theorem, and associated algorithm, is
derived from Sherman’s Theorem. Although its implementation is associated
with minor numerical difficulties (e.g. [10], p. 141, and Chapter 20), its content
has enabled, in part, the realization of optimality. Our presentation employs
local linearization, and includes a measurement editing criterion defined by Eqs.
4.11 and 4.15.

Let tk be the time of the last measurement yk. Given a new scalar measure-
ment yk+1 at time tk+1 ≥ tk, its scalar (non-zero) measurement error variance
Rk+1, the state estimate X̂k+1|k, and the state estimate error covariance matrix
Pk+1|k, calculate:

∆yk+1 = yk+1 − y
(
X̂k+1|k

)
(4.8)

Hk+1 =

[
∂y (X)

∂X

]
X̂k+1|k

(4.9)

R̃k+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1 (4.10)

If |∆yk+1| < C

√
R̃k+1, Continue (4.11)

Kk+1 = Pk+1|kH
T
k+1/R̃k+1 (4.12)

X̂k+1|k+1 = X̂k+1|k +Kk+1∆yk+1 (4.13)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (4.14)

Else discard yk+1, acquire yk+2, k + 1→ k + 2 (4.15)

Multiple measurements yk+1 = yjk+1, jε {1, 2, ...}, may be processed at time
tk+1 by repetition of this sequence. Eqs. 4.11 and 4.15 define the Kalman
measurement editor, where C is a scalar multiplier prescribing some level of
editing (conventionally, C ≈ 3.)

Notice that R̃k+1 is a scalar: Hk+1 is 1 × n, Pk+1|k is n × n and HT
k+1 is

n× 1. And note that R̃k+1 is always non-zero because Rk+1 is always non-zero.
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Thus the Kalman filter measurement-update algorithm requires no calculation
of a matrix inverse. Consequently, when any new subset of measurements is
unobservable to the state estimate, the filter measurement-update algorithm
does not fail.
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Chapter 5

Optimal Sequential Filter

An optimal sequential filter is a sequentially processing algorithm that processes
forward in time, repeating a recurring, two-step sequence of time-update of the
state estimate and state covariance, and measurement-update of the state esti-
mate and state covariance. The time update propagates the state estimate and
its error covariance forward, and the measurement update incorporates the next
measurement. State estimate error magnitudes grow during the time-update
interval, and are reduced by the measurement update. The growth of state-
estimate error magnitudes is due most significantly to errors in force models:
gravity, air-drag, solar photon pressure, spacecraft thrusting and outgassing, and
thermal re-radiation. Sequential processing accounts for the recursive growth
and reduction of state estimate errors according to the time order in which they
are realized, through models based on physical uncertainties.

The measurement update algorithm (Eqs. 4.8 through 4.15), due to Kalman,
satisfies Sherman’s Theorem. The time update algorithm (Eqs. 5.12 through
5.13), due to Wright, also satisfies Sherman’s No matrix inversion is performed
in either the filter time-update or filter measurement-update; thus, if the state
estimate structure contains unobservable parameters, this condition has no effect
on the filter.

5.1 State Estimate Error Model

The model for the state error δX (t) is defined by the linear stochastic differential
equation:

d

dt
δX (t) = A (t) δX (t) +B (t) δu (t) (5.1)

where δX (t) is an n × 1 matrix, where δu (t) is a 3 × 1 matrix-valued, serially
correlated Gaussian random error, where A (t) is an n × n time dependent
matrix, and where B (t) is an n × 3 time dependent matrix. For sequential
orbit determination, δu (t) is always serially correlated (non-white) due to serial
correlation in modeling errors for gravity [119] [120], air-drag, and solar pressure.

29
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5.2 Integral Equation

The solution of Eq. 5.1 has an integral form:

δX (tk+1) = Φ (tk+1, tk) δX (tk) +

∫ tk+1

tk

Φ (tk+1, τ)B (τ) δu (τ) dτ (5.2)

The right-hand side of this equation is the sum of two n× 1 matrices. The first
term propagates initial state-estimate errors δX (tk), and the second term accu-
mulates and propagates acceleration modeling errors δu (t) (state-error process
noise).

5.3 State Error Covariance for Filter Time Up-
date

Form the outer product on δX
(
tk+1|k

)
using Eq. 5.2, and take its expectation

to define:
Pk+1|k = E

{
δX
(
tk+1|k

)
δX
(
tk+1|k

)T}
(5.3)

where:

E
{
δX
(
tk+1|k

)
δX
(
tk+1|k

)T}
= Φ (tk+1, tk)E

{
δX
(
tk|k
)
δX
(
tk|k
)T}

Φ (tk+1, tk)
T

+

ICk+1,k + ILk+1,k + IRk+1,k (5.4)

and where:

ICk+1,k =

∫ ∫ tk+1

tk

H (tk+1, τ)E
{
δu (τ) δuT (t)HT (tk+1, t)

}
dτdt (5.5)

ILk+1,k = Φ (tk+1, tk)

∫ tk+1

tk

E
{
δX (tk+1|t) δuT (t)

}
HT (tk+1, t) dt (5.6)

IRk+1,k =

∫ tk+1

tk

H (tk+1, τ)E
{
δu (τ) δXT (tk+1|τ)

}
dτ ΦT (tk+1, tk) (5.7)

H (t, τ) = Φ (t, τ)B (τ) (5.8)

Then:
Pk+1|k = Φ (tk+1, tk)Pk|kΦ (tk+1, tk)

T
+ P

∫ ∫
k+1,k (5.9)

where:
Pk|k = E

{
δX
(
tk|k
)
δX
(
tk|k
)T}

(5.10)

and:
P

∫ ∫
k+1,k = ICk+1,k + ILk+1,k + IRk+1,k (5.11)
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Eq. 5.9 (formally) specifies the method for moving the state error covariance
Pk|k from time tk to time tk+1, and for the accumulation of acceleration model-
ing errors, to produce Pk+1|k. State error covariance propagation provides the

structure P
∫ ∫
k+1,k to accommodate random force modeling errors. This term is

referred to as process-noise covariance. Notice from Eq. 5.9 that the optimal

filter covariance time update is time sequential. When P
∫ ∫
k+1,k is significant, op-

timal estimation requires a sequential time update so as to incorporate P
∫ ∫
k+1,k

between measurement times tk and tk+1. The least-squares model

Pk+1|k = Φ (tk+1, tk)Pk|kΦ (tk+1, tk)
T

has no such structure.
Per our definition of optimality, all state-estimate modeling and modeling

errors are derived from appropriate force-modeling physics and sensor perfor-

mance. That is, the contents of P
∫ ∫
k+1,k are not arbitrary. We must seek appro-

priate approximations from the physics of the force-model.

5.4 Approximate Error-Model Solutions

External force-modeling errors δu (t) are serially correlated. Formally speaking,
this destroys the Markov property that enables computationally tractable orbit
determination algorithms. Therefore, δu (t) must be identified from appropriate
physics and transformed from a non-Markov process to a Markov process for
each class of external force modeling errors: gravity, air-drag, and solar pressure.

5.4.1 Gravity Solution

An approximate solution to stochastic gravity modeling errors is given by Wright
[119].

5.4.2 Air-Drag Solution

An approximate solution to stochastic air-drag modeling errors is presented in
Chapter 17.6.

5.4.3 Solar Pressure Solution

An approximate solution to stochastic solar-pressure modeling errors is pre-
sented in Chapter 18.

5.5 Filter Time Update Algorithm

Let tk be the time of the last measurement. Given the state estimate X̂k|k, state
estimate error covariance matrix Pk|k, and a new scalar measurement yk+1 at
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time tk+1 ≥ tk, calculate:

X̂k+1|k = ϕ
{
tk+1; X̂k|k, tk, u

(
X̂ (τ |tk) , τ

)
, tk+1 ≤ τ ≤ tk

}
(5.12)

Pk+1|k = Φk+1,kPk|kΦTk+1,k + P
∫ ∫
k+1,k (5.13)

where P
∫ ∫
k+1,k is a sum inclusive of gravity acceleration error covariance, air-drag

acceleration error covariance, and solar pressure acceleration error covariance.

5.6 Filter Measurement Update

The Kalman filter measurement-update algorithm is defined in Eqs. 4.8 through
4.15.

5.6.1 Measurement Editing

The measurement-update algorithm always processes, or rejects completely, a
new measurement; i.e., it does not reconsider a rejected measurement once it
has been rejected.

Kalman Measurement Editor Limitation

Given realistic covariance matrices, and the successful completion of filter initial-
ization, the Kalman measurement editor defined by Eqs. 4.11 and 4.15 may still
fail given the following situation. When the time-update function propagates
the state-error covariance over an extended time interval, the error variances
can grow very significantly due to force modeling errors. Large state-error vari-
ances are mapped into measurement-error variances according to Eq. 4.10, and
this opens widely the editor threshold. If the first observation processed is a
significant outlier1, and if its residual falls within the editor threshold, then
the outlying observation is accepted and incorporated by the measurement up-
date, and state-error variances are immediately reduced and the state estimate
is thereby corrupted. If subsequent observations are otherwise good, it is possi-
ble that the measurement editor will reject these good observations. If so, the
state-error variances will grow to the point where the filter editor will eventually
accept more observations. If these accepted are good observations, then the fil-
ter is autonomously reinitialized. A supplementary editor is therefore required
to hasten the processing of good measurements soon after the first measurement
outlier is mistakenly accepted.

1An outlier is a ”deviate” observation - one so far removed from the majority of data that
the validity of its relationship that population must be questioned. We usually identify an
outlier as a highly improbable observation relative to the operational state and measurement
uncertainties, but often these values have yet to be fully determined during filter initialization.
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Filter Initialization Problem

Typically the state error covariance is unrealistic during the filter-initialization
time interval because the error covariance matrix associated with the a priori
orbit estimate is unknown. Thus, the measurement editing thresholds are usu-
ally too small. In this case, the measurements are thrown out by the Kalman
editor, and no measurements can be processed by the filter measurement-update
function. A supplementary editor is therefore required to facilitate filter initial-
ization.

5.6.2 Supplementary Editor

Considering Eq. 4.11, let NRT denote the number of observations sequentially
rejected in order to trigger an increase in C, and let NAT denote the number of
observations sequentially accepted in order to trigger a decrease in C. Integers
NRT (default 10) and NAT (default 3) are defined by the analyst. Let C =
CσLO (default 3.0) denote the nominal root-variance level for the Kalman editor
threshold, and let C = CσHI (default 100.0) denote the root-variance level for
the supplementary editor. If NRT measurements are sequentially rejected, then
C = CσHI is used if the supplementary editor has been activated by the analyst.
If NσHI is in use, and if NAT measurements are sequentially accepted, then C is
switched back to CσLO. The supplementary editor partly removes the Kalman
editor limitation and solves the filter-initialization problem.

5.6.3 Filter Initialization

The supplementary editor should be used for filter initialization, where NAT
(default 1000) is set to a large integer value. After filter initialization, the filter
restart capability should be used to modify or eliminate the supplementary
editor, and the filter should be restarted.

5.6.4 Filter Divergence

Filter divergence is intimately related to both the Kalman measurement editor
and the supplementary editor. Let ND (default 100) denote the number of
complete measurement sets sequentially rejected by an editor to define filter
divergence, where the ND integer value is set by the user. A complete measure-
ment set refers to all measurements defined at the same time tag.

Kalman Measurement Editor

Assuming that the filter has been completely initialized, and given that the
supplementary editor is not in use, filter divergence is defined after ND complete
measurement sets have been sequentially rejected.
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Supplementary editor

Assuming that the filter has been completely initialized, and given the use of the
supplementary editor, filter divergence is defined after (ND +NRT ) complete
measurement sets have been sequentially rejected.



Chapter 6

Fixed Interval Sequential
Smoother

ODTK uses a fixed interval sequential smoother due to Rauch [97][77]. Inputs
to the smoother are outputs from the sequential filter. These filter outputs
must therefore be stored while running the filter, for use in the smoother. The
last filter output is used to initialize the smoother. The last filter output is the
first smoother input. The filter runs forward with time. The smoother runs
backwards with time.

For this chapter only, we need notation to distinguish state estimates pro-
duced by the filter from state estimates produced by the smoother. Both are
used in the same equations. Then let X̂ and P̂ denote state estimate and covari-
ance output by the filter, and let X̃ and P̃ denote state estimate and covariance
output by the smoother. The hats X̂ and P̂ denote filter, and the tildas X̃
and P̃ denote smoother. Let t0 denote the first filter time in the fixed interval
{t0, tL}, and let tL, where t0 < tL, denote the last filter time in the fixed interval
{t0, tL}.

6.1 Smoother Initialization

At the last time tL in the fixed interval {t0, tL}, set:

X̃L|L = X̂L|L (6.1)

P̃L|L = P̂L|L (6.2)
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6.2 Notation for Smoother Nonlinear State Tran-
sition

The left-hand side of Eq. 6.3 provides shorthand notation for propagation of
the smoothed state estimate X̃k+1|L backwards in time from tk+1 to tk < tk+1

to get ϕk

(
X̃k+1|L

)
:

ϕk

(
X̃k+1|L

)
= ϕ

(
tk; X̃k+1|L, tk+1, u (τ) ; tk ≤ τ ≤ tk+1

)
(6.3)

where k ∈ {L− 1, L− 2, . . . , 1, 0}. Note that:

X̃k|L 6= ϕk

(
X̃k+1|L

)
(6.4)

In order to accommodate the smoother state estimate transition function for
orbit substates, the VOP trajectory propagator will run backwards with time.

6.3 Smoother Sequential Equations

For k ∈ {L− 1, L− 2, . . . , 1, 0}:

6.3.1 Transition Smoothed State Estimate Backwards

ϕk

(
X̃k+1|L

)
= ϕ

(
tk; X̃k+1|L, tk+1, u (τ) ; tk ≤ τ ≤ tk+1

)
(6.5)

6.3.2 Incorporate Filter Estimate and Covariance at Time
tk

X̃k|L = X̂k|k + P̂k|k

[
P̂k|k + Φ̂−1

k+1,kP̂
∫∫
k+1,k

(
Φ̂−1
k+1,k

)T]−1 [
ϕk

(
X̃k+1|L

)
− X̂k|k

]
(6.6)

6.3.3 Prepare to Calculate Smoother Covariance

Ak,k+1 = P̂k|kΦ̂Tk+1,kP̂
−1
k+1|k (6.7)

6.3.4 Smoother Covariance

P̃k|L = P̂k|k +Ak,k+1

[
P̃k+1|L − P̂k+1|k

]
ATk,k+1 (6.8)
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6.3.5 Notes

Inversion of the linear transition matrix is equivalent to reversing the transition
time order:

Φ̂−1
i,j = Φ̂j,i (6.9)

The matrix subtraction in Eq. 6.8 is delicate; i.e., we must guarantee that P̃k|L
has no negative eigenvalues due to numerical round-off.

6.3.6 Example for k = L− 1

ϕL−1

(
X̃L|L

)
= ϕ

(
tL−1; X̃L|L, tL, u (τ) ; tL−1 ≤ τ ≤ tL

)

X̃L−1|L = X̂L−1|L−1+P̂L−1|L−1

[
P̂L−1|L−1 + Φ̂−1

L,L−1P̂
∫∫
L,L−1

(
Φ̂−1
L,L−1

)T]−1 [
ϕL−1

(
X̃L|L

)
− X̂L−1|L−1

]

AL−1,L = P̂L−1|L−1Φ̂TL,L−1P̂
−1
L|L−1

P̃L−1|L = P̂L−1|L−1 +AL−1,L

[
P̃L|L − P̂L|L−1

]
ATL−1,L

6.4 Filter-Smoother Consistency Test

The filter-smoother consistency test theorem was derived by McReynolds [73]
[74] [75]. The filter and smoother state estimate errors are assumed to be
multi-dimensional Normal, but each component of the state estimate error is
considered independently1 of other components.

Calculate the N ×N difference matrix P̄k|L between the filtered covariance

matrix P̂k|k and the smoothed covariance matrix P̃k|L for time tk:

P̄k|L = P̂k|k − P̃k|L (6.10)

for each k ∈ {0, 1, 2, . . . , L}. The difference matrix P̄k|L should have no negative

eigenvalues. Let us denote the square root of the ith main diagonal element of
the N × N difference matrix P̄k|L as σik|L. Also, let us calculate the N × 1

difference matrix X̄k|L between filtered state estimate X̂k|k and smoothed state

estimate X̃k|L for time tk:

X̄k|L = X̂k|k − X̃k|L (6.11)

1When all state estimate error components are considered jointly and simultaneously, cou-
pled state estimate error component test acceptance thresholds would be required. Since large
error cross-correlation magnitudes are observed, this could provide a useful state component
coupled filter-smoother consistency test.
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Let us denote the ith element of the N ×1 difference matrix X̄k|L as X̄i
k|L. Now

let us calculate and graph the ratio :

Rik|L = X̄i
k|L/σ

i
k|L (6.12)

for each i ∈ {1, 2, . . . , N} and for each k ∈ {0, 1, 2, . . . , L}.

6.4.1 Test

If for each i ∈ {1, 2, . . . , N} and for each k ∈ {0, 1, 2, . . . , L} we have:∣∣∣Rik|L∣∣∣ ≤ 3 (6.13)

with probability ˜0.99, then McReynolds’ filter-smoother test is satisfied for all
state components. If for each i ∈ {1, 2, . . . , N} and for each k ∈ {0, 1, 2, . . . , L}
we have: ∣∣∣Rik|L∣∣∣ > 3 (6.14)

then McReynolds’ filter-smoother test is failed for all state components. For
each i for which inequality 6.13 is satisfied McReynolds’ filter-smoother test is
satisfied for that state estimate element, and for each i for which inequality 6.14
holds McReynolds’ filter-smoother test is failed for that state estimate element.

Region of Validity

The filter-smoother consistency test may fail (i.e.
∣∣∣Rik|L∣∣∣ > 3) past the final

measurement. In this case, the smoother covariance is almost equal to the filter
covariance and the test becomes undefined because of the small divisor σik|L in

Eq. 6.12. (Although P̂k|k and P̃k|L would equal in a formal sense during filter
prediction after the last measurement, in practice they can slightly differ due to
the accumulation of rounding errors. They can also differ because transitivity
of the Gauss-Markov state parameters does not hold when propagating the
smoother state and covariance backwards from the end of the prediction interval
versus propagating the filter state forwards. It is these small - yet non-zero -
differences that result in a large test value.)

6.5 Smoother Matrix Inversions

The smoother state estimate error covariance matrix inversions2 of Eqs. 6.6 and
6.7 are required in order to maintain the state estimate size N for the sequential
filter.

2It is possible to avoid matrix inversion in the smoother at the cost of increasing state size
by N for each time increment in the smoothing lag. Example: A lag of one time increment
requires state size by 2N .
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Variable-Lag Sequential
Smoother

7.1 Introduction

We have developed solutions to the estimation problems associated with near-
real-time orbit determination that are defined in sections General Application
and Impulsive Maneuvers. See the section Required Properties for the estimator
we have developed. See the section Properties Available for choices we had.
Our new estimator combines a real-time extended Kalman filter (EKF) with
a fixed epoch smoother1 (FES), where the fixed epoch lags EKF measurement
time-tags with variable time lag. Thus the name variable lag smoother (VLS).

We have implemented two forms of the FES, the Frazer form (FES/F), and
the Carlton-Rauch form (FES/CR). FES/F is free of state-sized matrix inverse
calculation, but FES/CR requires the calculation of a state-sized covariance
matrix inverse for each FES/CR execution.

Orbit Determination Tool Kit (ODTK) previously and currently provides a
forward-running EKF, followed by a backward-running fixed-interval smoother
(FIS). Two separate user operations are required to run the EKF-FIS filter-
smoother. Fortunately the EKF runs in real-time and does not require calcu-
lation of a state-sized covariance matrix inverse. Unfortunately the FIS does
require calculation of a state-sized covariance matrix inverse, and is not appli-
cable to near-real-time operations.

Our new forward running VLS does not require calculation of a state-sized
covariance matrix inverse for FES/F, provides results in near-real-time, and
combines filter and smoothing calculations with one user selected operation.

39
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t

Fixed Epochs tFE1, tFE2, tFE3, …

Smoothing Windows Anchored to Fixed Epochs

FES sends data to tFE3

. . .
tFE1 tFE2 tFE3

forward moving EKF

FES sends data to tFE2

Real Time

Figure 7.1: Variable Lag Smoother with EKF and FES

7.2 General Application

Figure 7.1 illustrates a general application of our VLS with fixed epochs on
a uniform time grid. A smoother window is anchored to each fixed epoch.
Smoother window definition logic is selected by the user at run-time. The most
simple user option is to select fixed constant window length for each smoothing
window. Or the user may select time-varying criteria that require satisfaction of
accuracy thresholds by time-varying covariance matrix elements, together with
maxima of smoother window length. Smoother windows may be overlapping as
in Figure 7.1, or they may be non-overlapping, and possibly on a non-uniform
time grid, as in Figure 7.2.

The EKF moves on a time grid dictated by measurement time-tags, generally
non-uniform. When the EKF reaches a fixed epoch, a new FES is created. The
FES estimate is initialized by the EKF estimate at the fixed epoch after all
measurements have been processes by the EKF at the fixed epoch. As the EKF
epoch moves forward, information derived from the EKF at each measurement
time-tag is sent backwards to the fixed epoch by the FES while the EKF epoch
is in the smoother window. The FES is invoked only for EKF measurement
updates. The FES is not invoked for EKF time updates, unlike FIS operation.
When the EKF epoch exits the smoother window the FES is destroyed, and
associated smoother results are recorded. The lag of fixed epoch relative to the
EKF epoch increases throughout passage of the smoother window by the EKF
due to forward motion of the EKF epoch.

When a VLS computer run would be terminated with the EKF epoch inside
of a smoothing window, the user will have an option to accept results of the VLS
with partial completion of the last smoothing window, or to save results into an
EKF restart file just prior to entry of the EKF epoch into the last smoothing
window.

1Our fixed epoch is the fixed point referred to for the fixed point smoother[77].
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7.2.1 ODTK LEO Simulation

Results

ODTK intrack position results, from processing simulated two-way range mea-
surements from eight AFSCN ground stations and a LEO spacecraft with transpon-
der, were presented in July 2008[131]. We showed consistency of the VLS co-
variance matrix function with estimation errors, and accuracy equivalence of the
VLS with the FIS. We presented contrasting accuracy performance improvement
of the VLS FES relative to the VLS EKF. We showed that the new VLS enables
trading maximum lag time for accuracy performance.

7.3 Impulsive Maneuvers

Consider a single spacecraft that performs impulsive2 maneuvers, and consider
the sequential estimation of the state from tracking measurements. The state
includes the six components of position and velocity, force model parameters,
and time-varying measurement biases.

ODTK does successfully estimate velocity change due to an impulsive ma-
neuver using the FIS, but this is an off-line operation, relative to the ODTK
EKF. The FIS estimation runs backward with time.

t
tk

forward moving EKF

FES1 sends data to tk

Fixed Epoch Maneuver Centroid tk
Maneuver Smoothing Window

tk+L

FES2 sends data to tk

Figure 7.2: Estimation of Velocity at Fixed Epochs with EKF and FES

Our new VLS method eliminates the off-line FIS, uses a forward running
EKF, and uses two FES smoothers that send EKF estimate information back-
wards to a fixed epoch. The fixed epoch is defined by an impulsive maneuver
time centroid, say tk as illustrated in Figure 7.2.

Let tk denote the time centroid of an impulsive spacecraft maneuver. Let

X̂
(−)
k|i and P

(−)
k|i denote the state estimate and covariance derived by the EKF

from processing the last measurement yi with time-tag ti ≤ tk. The estimate

2Impulsive maneuvers are used to model thrust intervals that are short as compared to
orbit period.
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X̂
(−)
k|i does not include addition of the velocity change at tk, and its associated

covariance matrix P
(−)
k|i does not include the addition of EKF maneuver process

noise covariance at tk. The EKF state estimate X̂
(−)
k|i and covariance matrix

P
(−)
k|i are used to initialize FES1 at time tk.

Let X̂
(+)
k|i and P

(+)
k|i denote the state estimate and covariance derived after

application of velocity change to X̂
(−)
k|i , and after addition of maneuver process

noise covariance to P
(−)
k|i . The state estimate X̂

(+)
k|i and covariance matrix P

(+)
k|i

are used to initialize FES2 at time tk. A smoothing window {tk, tk+L} is selected
by the user, explicitly or implicitly. Now we process measurements yj , j =
k + 1, k + 2, . . . , k + L by the EKF, and operate both FES1 and FES2 on
the EKF output across the smoothing window {tk, tk+L}. The VLS with two

FES smoothers produces smoothed estimates X̂
(−)
k|k+L and X̂

(+)
k|k+L, and their

covariance matrices P
(−)
k|k+L and P

(+)
k|k+L. The desired estimate of velocity change

is found in the velocity components of the difference X̂
(+)
k|k+L − X̂

(−)
k|k+L.

7.4 Required Properties

Let A denote the class of linear optimal sequential estimators presented by
Meditch[77] with members

� Kalman filter (KF)

� fixed-interval smoother

� Carlton-Rauch fixed-epoch smoother

� Frazer fixed-epoch smoother

� fixed-lag smoother

� combination of above

Let Ã denote the class of nonlinear optimal sequential estimators that derive
from the linear estimators of class A by extension. And let Ă denote the union
of classes A and Ã. For prototype in Class Ã we have the well-known extended
Kalman filter (EKF). Epoch for the KF and EKF is defined by the time-tag
tk of last measurement processed, or by propagation to tk+1 > tk. But the
epoch for each smoothed state estimate of interest lags the time-tag tk of last
measurement processed by the KF. The state estimate error magnitude is always
smallest, thus accuracy is best, at estimation epoch3 for each member of Class
Ă. But each smoothed state estimate has better accuracy than a filtered state

3In contrast, note that state estimate error magnitude for each iterative batch least squares
(LS) estimate depends on LS data fit span and distribution of data in the fit span. Thus LS
state estimate error magnitude is independent of epoch placement.
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estimate, at the same epoch, when the smoothed state estimate epoch lags
KF measurement time-tags with a significant time-lag. Here the smoother has
processed more measurements than the filter, and the smoother estimate derives
from information forward of the smoother epoch, and from information prior to
the smoother epoch, whereas the filter estimate derives only from information
prior to the same epoch. The latter has special significance.

There exists a class of nonlinear estimation problems that cannot be solved
with a real-time extended Kalman filter (EKF) because all tracking data pre-
cedes the EKF state epoch, and tracking data following the real-time state
epoch are not available. An example is provided by the problem of estimating
the velocity change due to an impulsive maneuver at the time of maneuver im-
pulse. The most accurate state estimate must use tracking data both before
and after the time of maneuver impulse. A second example is provided by the
optimal simultaneous estimation of orbit and atmospheric density with a se-
quential estimator where use is made of tracking data before the state epoch
and tracking data after the state epoch. A third example is provided by the
optimal GPS orbit determination and time-transfer problem using GPS pseudo-
range measurements and GPS carrier-phase measurements, where carrier-phase
range-biases must be estimated at fixed epochs. These examples demonstrate
the need for a smoothing lag that is time-variable. Sequential smoothers are
useful in solving this class of problems.

ODTK uses an EKF that runs forward with time followed by an extended
FIS that runs backward with time. But this filter-smoother of Class Ã cannot
be conveniently used for near-real-time estimation because all measurements
of interest across the fixed-interval must be completely filtered and smoothed
before a smoothed state estimate is available for use. We appear to need a
smoother from Class Ã that runs forward with time to achieve near-real-time
orbit determination. Thus we desire an estimator with properties

1. Class Ã

2. runs forward with time (pause acceptable)

3. near-real-time throughput

4. accuracy performance due to optimal smoothing

5. smoothing lag is time-variable

7.5 Properties Available

7.5.1 Linear

We have studied smoothers of Class A for extension to Class Ã. Choices are
best understood by reviewing particular aspects of Class A estimators for dis-
crete linear systems. The best presentation of Class A estimators was given by
Meditch[77], unified theoretically by use of Sherman’s Theorem[101][102][77][125],
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and unified notationally with adoption of Kalman’s indexing[49][77]. We choose
discrete linear systems in preference to continuous linear systems because the
trajectory measurements for orbit determination of space objects are always
discrete. We refer to these linear algorithms with acronyms identified by Table
7.1. These algorithms have properties summarized in Table 7.2, where FE refers
to the fixed epoch of a fixed epoch smoother.

Class A Acronym
Kalman Filter KF
Fixed Interval Smoother FIS
Fixed Epoch Smoother/Carlton-Rauch FES/CR
Fixed Epoch Smoother/Frazer FES/F
Fixed Lag Smoother FLS

Table 7.1: Acronyms for Linear Sequential Estimators

7.5.2 Extension

State estimates of Class A are always propagated with a linear transition matrix
function Φ. It is important to note that extension from Class A to Class Ã can
be achieved with two very different techniques. First, propagate variations of
the state estimate with a linear transition matrix function Φ. It appears that
this can always be achieved. Or second, propagate the state estimate directly
with a nonlinear transition function ϕ. It appears that this cannot always be
achieved with sequential smoothers.

Class A KF FIS FES/CR FES/F FLS
Initial Conditions user terminal KF KF at FE KF at FE after KF-FIS
Time Direction forward backward forward forward forward

Throughput real-time after KF-FIS near real-time near real-time near real-time
Matrix Inverses 0 1 1 0 3

Extension ϕ yes yes no no no
Extension Φ yes yes yes yes yes

Table 7.2: Available Properties of Linear Estimators

7.5.3 Nonlinear

Extension ϕ of Table 7.2 refers to an acceptable conversion of every linear
propagation of state estimate to nonlinear numerical integration, for extension
from Class A to Class Ã. We have successfully used numerical integration ϕ for
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extension of KF and FIS algorithms for many years. But this does not appear
to be possible for FES/CR, FES/F and FLS algorithms.

Extension Φ of Table 7.2 refers to the acceptable use of a linear transition
matrix function to propagate state estimate variations, rather than state es-
timates, for extension from Class A to Class Ã. The FES/CR algorithm is
our first successful example. The EKF measurement residual is a linear varia-
tion used successfully without propagation in the EKF. The EKF measurement
residual has been successfully propagated linearly in the FES/F algorithm.

The FLS algorithm is rejected for use in our VLS because it does not satisfy
Property 5: smoothing lag is time-variable. Also, the FLS algorithm is undesir-
able because it requires the calculation of three state-sized matrix inverses. The
FES/F is attractive for use in our VLS because no state-sized matrix inverse is
required.

7.6 Kalman Filter

7.6.1 Time Update

Linear

The Kalman filter linear algorithm is derived and presented by Meditch[77] in
Theorem 5.5 page 176. Let tk be the time of last measurement. We are given
the

� n× 1 matrix state estimate X̂k|k

� n× n matrix state estimate error covariance matrix Pk|k

� n× p disturbance transition matrix Γk+1,k

� p× p process noise covariance matrix Qk

� new measurement yk+1 at time tk+1 > tk

Calculate the propagated state estimate X̂k+1|k and covariance Pk+1|k

X̂k+1|k = Φk+1,kX̂k|k (7.1)

Pk+1|k = Φk+1,kPk|kΦTk+1,k + Γk+1,kQkΓTk+1,k (7.2)

Nonlinear

Here we present our particular form for an extended Kalman filter (EKF) Time
Update. State estimate propagation is nonlinear, so the linear propagation
Φk+1,kX̂k|k of Equation 7.1 must be replaced with a numerical integrator ϕ {·}

X̂k+1|k = ϕ
{
tk+1; X̂k|k, tk, u

(
X̂ (τ |tk) , τ

)
, tk+1 ≤ τ ≤ tk

}
(7.3)
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and the propagation Γk+1,kQkΓTk+1,k of white noise covariance Qk must be re-

placed with a physically connected non-white noise covariance P
∫ ∫
k+1,k

Pk+1|k = Φk+1,kPk|kΦTk+1,k + P
∫ ∫
k+1,k (7.4)

where P
∫ ∫
k+1,k is composed of a sum of doubly integrated acceleration error co-

variance functions due to gravity, air-drag, solar pressure, and thrusting.

7.6.2 Measurement Update

Linear

Let tk be the time of last measurement yk. Given a new scalar measurement
yk+1 at time tk+1 > tk, its non-zero measurement error covariance Rk+1, the
propagated state estimate X̂k+1|k, and the propagated state estimate error co-
variance matrix Pk+1|k, and the measurement-state 1 × n row matrix Hk+1,
calculate

∆yk+1|k = yk+1 −Hk+1X̂k+1|k (7.5)

R̃k+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1 (7.6)

Kk+1 = Pk+1|kH
T
k+1R̃

−1
k+1|k (7.7)

X̂k+1|k+1 = X̂k+1|k +Kk+1∆yk+1|k (7.8)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (7.9)

Nonlinear

Class Ã is distinguished with the nonlinear measurement representation y
(
X̂k+1|k

)
and calculations

Hk+1 =

[
∂y (X)

∂X

]
X̂k+1|k

(7.10)

∆yk+1|k = yk+1 − y
(
X̂k+1|k

)
(7.11)

But calculations for R̃k+1, Kk+1, X̂k+1|k+1, and Pk+1|k+1 have the same form
as for Class A

R̃k+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1 (7.12)

Kk+1 = Pk+1|kH
T
k+1R̃

−1
k+1|k (7.13)

X̂k+1|k+1 = X̂k+1|k +Kk+1∆yk+1|k (7.14)
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Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (7.15)

Our ODTK EKF design has been successfully applied to many orbit deter-
mination problems. References [122], [123], [126], [127], and [128] exemplify
what we mean by physically connected state estimate error covariance function.
When processing GPS pseudo-range and carrier phase measurements, an inti-
mate understanding and use of the stochastic GPS composite clock is required,
as demonstrated in References [130] and [129]. In summary, our definition of
EKF is uniquely specialized by the stochastic physics encountered in the orbit
determination problem.

7.7 Carlton-Rauch Fixed-Epoch Smoother

7.7.1 FES Initialization

Let tFE denote a fixed epoch, coincident with time centroid of an impulsive
spacecraft maneuver and known a priori. Let X̂FE and PFE denote filtered state
estimate and covariance at tFE. Meditch’s presentation of the Carlton-Rauch
FES denotes tFE as coincident with time-tag of some measurement processed;
i.e., tFE = tk for X̂FE = X̂k|k and PFE = Pk|k, but this is not necessary4.

It may be necessary that X̂FE = X̂k|k−1 and PFE = Pk|k−1 for propagated

state estimate X̂k|k−1 and covariance Pk|k−1. However, to be consistent with
Meditch’s presentation I shall continue with his notation.

Let X̂k|j−1 denote an FES state estimate with fixed epoch tk where j = k+1,
where the last measurement processed by the filter has time-tag tk or tk−1, and
where tk ≤ tj−1 or tk−1 ≤ tj−1 respectively. With the filter at time tFE = tk,
initialize the FES by storing objects associated with, or calculated by, the filter.
Store tk and

X̂k|j−1 = X̂FE (7.16)

Pk|j−1 = PFE (7.17)

X̂j−1|j−1 = X̂FE (7.18)

Pj−1|j−1 = PFE (7.19)

Bj−1 = I (7.20)

4If one processes a pseudo-measurement with time-tag tFE that has zero measurement-
state partial derivatives, then Meditch’s notation is maintained and no harm is done to the
VLS.
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7.7.2 Measurement at tj = tk+1

For this section j = k+1, where tk is the fixed epoch and tj > tk is the time-tag
for a new measurement yj = yk+1.

Filter

The filter calculates the propagated state estimate X̂k+1|k = X̂j|j−1, propagated

covariance Pk+1|k = Pj|j−1, filtered state estimate X̂k+1|k+1 = X̂j|j , filtered
covariance Pk+1|k+1 = Pj|j , and transition matrix Φk+1,k = Φj,j−1. Store

X̂j|j−1, Pj|j−1, X̂j|j , Pj|j , and Φj,j−1 for use in the FES. For the first value of
Bj , following FES initialization, set

Bj = Bj−1Aj−1 (7.21)

where

Aj−1 = Pj−1|j−1ΦTj,j−1P
−1
j|j−1 (7.22)

FES

FES calculations refer to the fixed epoch tk, and to filter measurement time-tags
tj ≥ tk.

X̂k|j = X̂k|j−1 +Bj

[
X̂j|j − X̂j|j−1

]
(7.23)

Pk|j = Pk|j−1 +Bj
[
Pj|j − Pj|j−1

]
BTj (7.24)

If the column matrix X̂k|j has n elements, then Pk|j , Pk|j−1, Pj|j−1, Pj|j , Bj ,
and ΦTj,j−1 are n × n matrices. Covariance matrices Pk|j , Pk|j−1, Pj|j−1, and
Pj|j are symmetric and are free of negative eigenvalues. Zero eigenvalues in
Pj|j−1 are not acceptable because it must be inverted. The implementation
must guarantee that symmetric matrices are numerically symmetric, that all
covariance matrices are numerically free of negative eigenvalues, and that Pj|j−1

is free of zero eigenvalues.

Filter

After FES execution and recording of FES results, the FES recursion is per-
formed by the filter in preparation for the next measurement.

X̂k|j−1 = X̂k|j (7.25)

Pk|j−1 = Pk|j (7.26)

Bj−1 = Bj (7.27)
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7.7.3 Measurements at tj = tk+1, tk+2, . . .

In the section Measurement at tj = tk+1 above, replace tk+1 with tk+2 for the
measurement yj = yk+2 at time tj = tk+2. When tj = tk+h, replace tk+1 with
tk+h for the measurement yj = yk+h at time tj = tk+h.

7.8 Frazer Fixed-Epoch Smoother

7.8.1 FES Initialization

Let tFE denote a fixed epoch, coincident with time centroid of an impulsive
spacecraft maneuver and known a priori. Let X̂FE and P̂FE denote filtered
state estimate and covariance at tFE. Meditch’s presentation ([77] Corollary 6.1
page 232) of the Frazer FES denotes tFE as coincident with time-tag of some
measurement processed; i.e., tFE = tk for X̂FE = X̂k|k and PFE = Pk|k, but this

is not necessary5. It may be necessary that X̂FE = X̂k|k−1 and PFE = Pk|k−1

for propagated state estimate X̂k|k−1 and covariance Pk|k−1. However, to be
consistent with Meditch’s presentation I shall continue with his notation.

Let X̂k|j−1 denote an FES state estimate with fixed epoch tk where j = k+1,
where the last measurement processed by the filter has time-tag tk or tk−1, and
where tk ≤ tj−1 or tk−1 ≤ tj−1 respectively. With the filter at time tFE = tk,
initialize the FES by storing objects associated with, or calculated by, the filter:
tk, X̂k|j−1 = X̂FE, Pk|j−1 = PFE, and Wj−1 = PFE.

7.8.2 Measurement at tj = tk+1

For this section j = k+1, where tk is the fixed epoch and tj > tk is the time-tag
for a new measurement yj = yk+1.

Filter

The filter calculates the propagated state estimate X̂k+1|k = X̂j|j−1, propagated

covariance Pk+1|k = Pj|j−1, filtered state estimate X̂k+1|k+1 = X̂j|j , filtered
covariance Pk+1|k+1 = Pj|j , transition matrix Φk+1,k = Φj,j−1, measurement-
state Jacobian matrix Hk+1 = Hj , measurement covariance matrix Rk+1 = Rj ,
and measurement residual ∆yk+1,k = ∆yj,j−1 at time-tag tk+1 = tj for the new

measurement yk+1 = yj . Store X̂j|j−1, Pj|j−1, Xj|j , Pj|j , Φj,j−1, Hj , Rj , and
∆yj,j−1 for use in the FES.

FES

The following algorithm was constructed by Frazer ([77] Corollary 6.1 page
232). Fixed epoch smoother calculations refer to the fixed epoch tk, and to

5If one processes a pseudo-measurement with time-tag tFE that has zero measurement-
state partial derivatives, then Meditch’s notation is maintained and no harm is done to the
VLS.
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filter measurement time-tags tj ≥ tk.

Sj = HT
j R
−1
j Hj (7.28)

Wj = Wj−1ΦTj,j−1

[
I − SjPj|j

]
(7.29)

X̂k|j = X̂k|j−1 +WjH
T
j R
−1
j ∆yj,j−1 (7.30)

Pk|j = Pk|j−1 −Wj

[
SjPj|j−1Sj + Sj

]
WT
j (7.31)

If the column matrix X̂k|j has n elements, then Pk|j , Pk|j−1, Pj|j−1, Pj|j , ΦTj,j−1,
Sj , and Wj are n × n matrices. Covariance matrices Pk|j , Pk|j−1, Pj|j−1, and
Pj|j are symmetric matrices with positive or zero eigenvalues. Zero covariance
matrix eigenvalues are acceptable because no state-sized covariance matrix in-
verse is required for Frazer form of the FES. Sj is seen to be symmetric by
inspection of it’s defining Equation 7.28. The implementation must guaran-
tee that symmetric matrices are numerically symmetric, and that covariance
matrices are numerically free of negative eigenvalues. Wj−1 is initialized as a
symmetric covariance matrix, but Wj and subsequent Wj−1 matrices are not
symmetric due to the factor ΦTj,j−1 in the recursive Equation 7.29.

FES calculations require products of matrices with extreme differences in
order of magnitude. For example, the calculation of Wj according to Equation
7.29 requires evaluation of the product SjPj|j that is subtracted from a matrix
of order unity. The eigenvalues of Sj are very large due to the small values of Rj ,
and the eigenvalues of Pj|j are very small, all non-negative. The product SjPj|j
is of order unity, but some significance is lost in double precision calculations.
It may thus be advisable to premultiply Sj by a small positive scalar ε and
premultiply Pj|j by it’s inverse ε−1 for calculation of the product SjPj|j =

(Sjε)
(
ε−1Pj|j

)
, where (Sjε) and

(
ε−1Pj|j

)
are both of order unity.

Filter

After FES execution and recording of FES results, the FES recursion is per-
formed by the filter in preparation for the next measurement.

X̂k|j−1 = X̂k|j (7.32)

Pk|j−1 = Pk|j (7.33)

Wj−1 = Wj (7.34)



Chapter 8

State-Space Changes

8.1 Problem Definition

Let us consider a real-time Variable Lag Smoother(VLS) [131] that produces
simultaneously both filtered and smoothed estimates and covariances. The VLS
provides smoothed estimates on a set of fixed epochs in the past (relative to the
current filter epoch) within a moving window, not to exceed a specified lag (the
maximum lag). Heretofore, the VLS algorithms assume that the dimension of
the state of the system is fixed and there is no state-space discontinuity. It is
now shown how VLS algorithms can handle these state space discontinuities,
including adding and subtracting states and handling discontinuities in states.

The epoch of a filter will increase with time along with the time tags associ-
ated with the data. The filter epochs may also include other times that do not
necessarily coincide with data tags. At each point, the filter will produce an es-
timate and covariance ordered in increasing time. These quantities, along with
possibly other calculated quantities, are stored for the standard fixed-interval
smoothers that process this data backwards. The smoother will usually op-
erate on the same time grid as the filter. (An exception to this is the fixed
point smoother, where the smoother only corrects the state estimate at a single
epoch.) The VLS will only correct the state estimate on a specified grid, which
is a subset of the filter grid.

A process that may be imposed upon real-time filters and smoothers is a
monitoring. In monitoring, the user wants to know what the solution (state
estimate and covariance) looks like on a regular real-time grid that is chosen to
be different than the filter grid. For example, points on the filter grid may differ
by 1 minute. However, the user wants to examine the changes of the smooth
points every 2 minutes. The monitoring grid may add points to the grids of
both filters and smoothers, if the monitoring grid does not coincide with the
filter grid. Monitoring may also force the smoothing algorithms to repeatedly
generate smoothed solutions for the same monitoring epochs more than once,
driving up the CPU requirements. The number of smoothing operations is

51
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discussed below as a function of matrix dimensions and grid points per second.

8.1.1 Structure of VLS Algorithms

Based upon the above problem description, the algorithm for solution has the
following structure:

1. A filter processes data and VLS algorithm updates smoothed estimates
and covariances on an output grid. As the filter progresses, a point will be
added to smoother grid when it enters the smoothing window, and smoother
grid point will be dropped when it leaves the smoother window.

3. When an epoch of the output monitoring grid is reached, all points on the
output grid whose estimates are being updated will have up-to-date estimates
and covariances produced using all the data up to the epoch time of the filter.

Various smoothing algorithms, as mentioned above, can be used to address
this problem. We wish to address the case where the dimension of the filter
varies, i.e. the dynamic state space can expand or contract. An epoch at which
the state size changes shall be referred to as a filter discontinuity. Discontinuity
can also occur if the dimension does not change but the states are discontinuous,
such as when the new states represent a different object than the old state.
This latter case is equivalent to first contracting, then expanding, the state at
a specific epoch.

8.2 Handling Discontinuities by the Filter

Discontinuities are naturally introduced in many of applications, such as when
more than one object is being tracked. For example, tracking data for a space-
craft may be suspended, such that the filter would do well to drop this space-
craft’s state from the filter. Conversely, one may desire to add the state of a
newly tracked spacecraft to the filter. Other cases of discontinuities can occur
within the state of a single spacecraft, e.g. an orbit maneuver or a clock reset
or change, an applied acceleration, etc. In this case new states must replace the
old ones in the filter, such that the filter must first contract and then expand,
leaving the dimension of the filter state unchanged.

8.2.1 State Contraction

Deletions and contractions are performed from the state vector estimate and
the covariance, i.e. deleting rows and columns of the covariance of the deleted
state variables. Expressed mathematically, let X̂ be the dynamic state vector
estimate, which can be decomposed into two components:

X̂ =

[
Ŷ

Ẑ

]
(8.1)
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The state-error covariance of X̂ is partitioned as follows:

PXX =

[
Pyy Pyz
Pzy Pzz

]
(8.2)

Here, Pzy = PTyz.For state contraction, let us delete Ẑ from the state, so that
the filter state vector and covariance becomes:

X̂ = Ŷ (8.3)

PXX = Pyy (8.4)

In practice, the deleted states may not be at the end of the state vector.
When this is the case, it is necessary to modify the state vector by deleting
the eliminated elements and collapsing the state vector to having only those
variables that are being estimated. Similar operations must be done to the
covariance: rows and columns of the covariance corresponding to the deleted
states are also deleted to maintain a square matrix whose collapsed dimension
is compatible with the contracted state vector. Mathematically, this can be
expressed by the operator Q, an example of which given below.

Let us delete the second variable of a 5-state vector and reverse the order of
the 3rd and 4th vector. A Q operator that does this is given by

Q =


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 (8.5)

Multiply the state by this Q operator to the column state vector X to generated
a four-dimensional state vector X ′:

X ′ = Q X (8.6)

Define the n×n reorder operator (n being the dimension of the state) such that:

Q(i, j) = 1 if the jth parameter becomes the ith (0 otherwise) (8.7)

In general, the p×n operator Q will delete n−p states and reorder the remaining
states. For every variable that is to be retained, a 1 in the row corresponds to
the new location, with the column corresponding to its original position; all
other terms in this row are 0. This operator not only selects the states but can
also generate a specific ordering of the selected states.

The covariance also needs to be collapsed and reordered. Here the same
operator is applied to both the rows and columns; mathematically, this can be
expressed by the equation:

P ′ = Q P QT (8.8)

Applying the operator Q to the left selects and orders the rows of the covariance;
applying Q to the right of P selects the same column and gives the same order
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so that the final matrix P ′ is the covariance of the errors in X ′. Using the above
definition, the 5× 5 covariance P is compressed to the 4× 4 covariance P ′:

P ′ =


P11 P14 P13 P15

P41 P44 P43 P35

P41 P34 P44 P45

P51 P54 P53 P55

 (8.9)

In this example, terms in the second row and column are deleted and the re-
maining terms are compressed to form a 4 × 4 matrix. Terms involving 3 are
changed to 4 and vice versa, corresponding to reordering the third and fourth
variables.

8.2.2 State Expansion

To expand the state space, the contraction process is reversed by adding new
variables to the end of the state array before the new ordering is selected. The
expansion equations are given by Eqs.(8.1) and (8.2). Usually, the new states are
uncorrelated with the older states so that Pyz = 0. The mean Ẑ and covariance
Pzz of the new states are based upon a priori knowledge.

If the added states are not maintained at the end of the state vector, the
above state estimate and covariance are reordered to reflect the new order.
Here the Q operator simply retains and reorders all the original states, so that
reordering the state vector from X to X ′ is expressed by Eq. (8.6). The state-
error covariance is reordered to according to Eq. (8.8).

8.2.3 Simultaneous Contraction and Expansion

Situations that involve state discontinuities with no change of state dimension
can be handled by combining these operations into a single step. An example of
this would be a maneuver that is modeled as a discontinuity in velocity. Here Z
represents the velocity components of the spacecraft. An example of changing
subsystems would be a change of clock. Certain systems have multiple clocks,
and one clock be substituted for another. To combine these operations into one,
first add the new variables at the end, as indicated above to expand both the
state estimate and covariance. Now define the operator Q as in the Eq. (8.7)
and apply the operations of Eq. (8.6) and Eq. (8.8).

8.2.4 Stability Properties of the Covariance Contraction

Several properties of a contracted covariance are now proved related to nu-
merical stability. These properties address the issue of whether the contracted
covariance may be less numerically stable, i.e. contain a negative eigenvalue.
The proofs show that the contracted covariance has equal or better numerical
stability. These theorems hold for any finite precision arithmetic.

First, it is proved that if PXX is positive definite (see 8.2), then the m×m
submatrix Pyy is also positive definite. The n×n matrix PXX is positive definite
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if and only if XT PXX X > 0 for all arbitrary n× 1 vectors X. Now setting the

vector Z to zero, one has changed X → X́ =

[
Y
0

]
. Here Y is an arbitrary

m× 1 vector.
0 < X́T PXX X́ = Y T Pyy Y (8.10)

The first inequality is implied since PXX is positive definite. Since Y is
arbitrary, this proves that Pyy is positive definite. Thus, the following theorem
is proved:

Theorem 1 A contracted matrix obtained from a positive definite matrix is also
positive definite.

Although (filtered or smoothed) covariances should be positive definite, very
small eigenvalues may become negative due to numerical round-off. In such
cases, the spread of eigenvalues magnitudes exceeds the precision of the arith-
metic. A metric that expresses the amount of precision needed to capture the
range of eigenvalues of a matrix is the condition number. The condition number
of a matrix is obtained by rescaling the variables such that the diagonal terms of
the covariance are unity. Then the condition number is computed by taking the
ratio of the largest eigenvalue to smallest eigenvalue of this normalized matrix.
The greater the condition number, the greater precision is needed to preserve
the positive definiteness of the matrix.

Next it is proved that the condition number of a contracted matrix is no
greater than the original matrix. Let the largest eigenvalue for the matrix PXX
be defined as

λxmax = max
{(
XT PXX X

)
/
(
XT X

)}
(8.11)

and the smallest be defined as

λxmin = min
{(
XT PXX X

)
/
(
XT X

)}
(8.12)

The condition number of the matrix PXX is defined by

C(PXX) = λxmax/λ
x
min (8.13)

Now let us zero out Z. Then
(
X́T PXX X́

)
/
(
X́T X́

)
=
(
Y T Pyy Y

)
/
(
Y T Y

)
≤

λxmax. Now, since the left side is no greater than λymax, it has been proven that

λymax ≤ λxmax (8.14)

A similar proof can show that

λymin ≥ λ
x
min (8.15)

This implies
1/λymin ≤ 1/λxmin (8.16)

Multiply Eq. (8.14) by Eq. (8.16) to get

C(Pyy) = λymax/λ
y
min ≤ C(PXX) = λxmax/λ

x
min (8.17)
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Theorem 2 The condition number of a contracted matrix is no larger than the
condition number of the original matrix.

These two theorems show that contracting a covariance matrix will not cause
numerical stability problems.

8.3 Smoothing Algorithms

The object of this section is to review approaches to smoothing. The extension
of these methods to problems with state discontinuities will be addressed in the
sequel.

Earliest smoothers consisted of fixed-interval smoothers, fixed-point smoothers,
and fixed-lag smoothers ([77]). The fixed-lag smoother is not treated here; a
more general multi-point smoother is formulated by McReynolds ([76]). The
goal of the multi-point smoother is to produce smoothed points on an output
grid that is sparse compared to the filter grid, thus reducing the amount of
computations required by conventional fixed-interval smoothers.

8.3.1 Fixed-Interval Smoothing (RTS)

One of the first smoothers that gained fame is the Rauch-Tung-Striebel (RTS)
[98] fixed-interval smoother. The RTS fixed-interval smoother calculates the
smoothed state estimates and covariances via backward sequential operations
on the input grid. By forcing the filter to operate on the output grid and
sampling grid monitoring grid, the RTS fixed-interval smoother can provide a
solution to the VLS problem with fixed dimension size.

Extending the Meditch notation, the RTS fixed-interval smoother, given by
Eqs 6.18, 6.47, and 6.56 in reference [77] is repeated here:

AX(k, k + 1) = PX(k|k) ΦTX (k + 1, k) P−1
X (k + 1|k) (8.18)

X̂(k|N) = X̂(k|k) +AX(k, k + 1)
[
X̂(k + 1|N)− X̂(k + 1|k)

]
(8.19)

PX(k|N) = PX(k|k) +AX(k, k+ 1) [PX(k + 1|N)− PX(k + 1|k)] ATX(k, k+ 1)
(8.20)

The n×n matrix AX(k, k+1) defined by Eq. 8.18 is referred to as the ”smoother
gain.” Originally written as A(k) by Meditch, here a subscript X is added to it
to denote the associated variable name. An additional argument k + 1 is also
added to emphasize that it maps smoother corrections backward in time from
epoch k + 1 to k. AX(k, k + 1) can be thought of as the ”smoother transition
matrix.” as indicated in Eq.8.19. Eq. 8.20 shows how to calculate smoothed
covariances using a backward propagator.

The RTS fixed-interval smoother equations can be derived by applying the
Extended Gauss-Markov Theorem [76] to the pair of vectors {Xk, Xk+1}. Con-
sidering the joint distribution of the errors between two vectors{X̂k|k, X̂k+1|k},



8.3. SMOOTHING ALGORITHMS 57

the errors have zero mean with the covariance given by[
PX(k|k) PX(k, k + 1|k)

PTX(k, k + 1|k) PX(k + 1|k)

]
(8.21)

where PX(k, k+ 1) = PX(k, k) ΦT (k + 1, k) is the cross covariance between the
two vectors {Xk, Xk+1}. With this information, the Extended Gauss-Markov
Theorem can be used to obtain the RTS fixed-interval smoother.

8.3.2 Fixed-Point Smoothing (Carlton-Rauch)

Let us define the generalized smoother gain or a multi-stage smoother transition
matrix AX(j, k), j < k:

AX(j, k) =
∏

j<k−1

AX(j, j + 1) ·AX(j + 1, j + 2) · · ·AX(k − 1, k) (8.22)

The multi-stage smoother transition matrix is obtained by multiplying together
a succession of smoother transition matrices. In the fixed-point smoother this
expression is sequentially determined by multiplying by the last matrix on the
right.

Meditch uses B ([77], Eq. 6.61) and C ( [77], Eq. 6.85) to denote this
expression in different situations. Using this expression, the smoothed estimate
and covariance at epoch j is given by

X̂(j|k) = X̂(j|k − 1) +AX(j, k)
[
X̂(k|k)− X̂(k|k − 1)

]
(8.23)

PX(j|k) = PX(j|k − 1) +AX(j, k) [PX(k|k)− PX(k|k − 1)] ATX(j, k) (8.24)

From the definition, the smoother gains must satisfy the sequential relationship
(see Eq. 8.18)

AX(j, k) = AX(j, k − 1) AX(k − 1, k); k = j + 1, j + 2, ... (8.25)

The second term on the right being the RTS smoother gain,(see Eq. 8.18).

8.3.3 Fixed-Point Smoother (Meditch, Anderson-Moore)

Another form of the fixed-point smoother was developed by Meditch ([77] , p.
232) He credits Fraser for this, but a literature search does not seem to support
this (Fraser was more concerned with fixed-interval smoothing). Meditch [77]
states that his form can be developed as a corollary to the Carlton-Rauch form,
but does not contain a proof. Another fixed-point smoother was developed
by Anderson and Moore and is contained in reference [85], p. 170. The same
equations, using the same approach, was derived later by McReynolds [76]. This
development is repeated here, whereby inspection shows that this form is more
numerically efficient than Meditch’s presentation.
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A straightforward approach to smoothers development is to formulate the
fixed-pointed smoothing problem as a filtering problem where Y is the dynamic
state; W is the initial conditions at epoch 0. In this application, W has a fixed
epoch; however, it is treated as a quantity with a dynamic epoch like Y to avoid
complexity of notation. The algorithm starts by expanding the filter at epoch
0, adding the values of Y at epoch 0 as parameters to the filter. The initial
conditions of this expanded filtering problem are given by

P =

[
Py0 Pyw0

PTyw0 Pw0

]
(8.26)

X̂ =

[
ŷ0

ŵ0

]
(8.27)

Here we set
ŵ0 = ŷ0 (8.28)

Pz0 = Py0 (8.29)

Pyz0 = Py0 (8.30)

The transition matrix is given by

ΦX =

[
Φy 0
0 I

]
(8.31)

Where I is the identify matrix. Now assuming the mean

X̂(k|k) =

[
Ŷ (k|k)

Ŵ (k|k)

]
(8.32)

and covariance matrix

P (k|k) =

[
Pyy(k|k) Pyw(k|k)
PTyw(k|k) Pww (k|k)

]
(8.33)

are calculated at tk, the predicted mean and covariance are given by

X̂(k + 1|k) =

[
Ŷ (k + 1|k)

Ŵ (k + 1|k)

]
=

[
Φy (k + 1, k) Ŷ (k|k)

Ŵ (k|k)

]
(8.34)

and

P (k + 1|k) =

[
Pyy(k + 1|k) Pyw(k + 1|k)
PTyw(k + 1|k) Pww (k + 1|k)

]
(8.35)

where

Pyy(k + 1|k) = Φy (k + 1, k) Pyy(k|k) ΦTy (k + 1, k) +Qy(k + 1, k) (8.36)

Pyw(k + 1|k) = Φy (k + 1, k) Pyw(k|k) (8.37)

Pww(k + 1|k) = Pww(k|k) (8.38)
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Here the matrix Qy(k+ 1, k) represents the process noise over the time interval
(k + 1, k) for the dynamic variable Y .

Next assume the following measurement is given by

M(k + 1) = HX(k + 1) X(k + 1) + V (k + 1) (8.39)

where

HX(k + 1) =
[
Hy(k + 1) 0

]
(8.40)

V (k + 1) is zero-mean white noise with covariance given by R(k + 1). Now we
apply the conventional Kalman filter equations. First note,

HX(k+1) PXX(k+1|k) =
[
Hy(k + 1) Pyy(k + 1|k) Hy(k + 1) Pyw(k + 1|k)

]
(8.41)

HX(k+1) PXX(k+1|k) HT
X(k+1) = Hy(k+1) Pyy(k+1|k) HT

y (k+1) (8.42)

These quantities will be needed in the following equations. The covariance of
the predicted residuals at k + 1 is given by

Pmm(k + 1|k) = Hy(k + 1) Pyy(k + 1|k) HT
y (k + 1) +R(k + 1) (8.43)

The Kalman gain ([77], Eq. 5.49) is given by

KX(k + 1) = PXX(k + 1) HT
X(k + 1) Pmm(k + 1|k)−1 (8.44)

where the product of the first two terms is given by Eq. 8.41 transposed.
Partitioning this equation for the Kalman gain gives

KX(k + 1) =

[
Ky(k + 1)
Kw(k + 1)

]
(8.45)

Ky(k + 1) = Pyy(k + 1|k) HT
y (k + 1) P−1

mm(k + 1|k) (8.46)

Kw(k + 1) = Pwy(k + 1|k) HT
y (k + 1) P−1

mm(k + 1|k) (8.47)

Note that the gain Kw(k + 1) does not depend on the covariance Pww(k + 1|k)
because the measurements do not depend upon W . The updated means are
given by ([77], Eq. 5.48)

ŷ(k+1|k+1) = ŷ(k+1|k)+Ky(k+1) [M(k+1)−Hy(k+1) ŷ(k+1|k)] (8.48)

ŵ(k+1|k+1) = ŵ(k+1|k)+Kw(k+1) [M(k+1)−Hy(k+1) ŷ(k+1|k)] (8.49)

The updated covariances ([77], Eq. 5.51) are given by

Pyy(k + 1|k + 1) = [I −Ky(k + 1) ·Hy(k + 1)] Pyy(k + 1|k) (8.50)

Pww(k + 1|k + 1) = Pww(k + 1|k)−Kw(k + 1) Hy(k + 1) Pyw(k + 1|k) (8.51)

Pyw(k + 1|k + 1) = [I −Ky(k + 1) Hy(k + 1)] Pyw(k + 1|k) (8.52)
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To obtain the Meditch equations, the following alternative for the Kalman gain
is used ([77], Eq. 5.78):

K(k + 1) = P (k + 1|k + 1) HT (k + 1) ·R−1(k + 1) (8.53)

This results in the following equations for the gains

Ky(k + 1) = Pyy(k + 1|k + 1) HT
y (k + 1) R−1(k + 1) (8.54)

Kw(k + 1) = Pzy(k + 1|k + 1) HT
y (k + 1) R−1(k + 1) (8.55)

The Fraser form is not as efficient as the first form, since these last two equations
need not be calculated (one already has the gains as intermediate computations
to update the covariance; see Eqs 8.46 and 8.47).

In comparing these equations to those by Meditch, it should be noted that
the following matrix relationship holds between the matrix W used by Meditch
([77], p. 232) and the matrices calculated here:

W (0, k) = Pwy(k) (8.56)

The filter equations for Y are same as the Kalman filter, with or without the
presence of the states W. Thus, the solution for W does not impact Y ; note
that, on the other hand, the solution for Y impacts the solution W.

If the smoothed solutions for more than one epoch, the algorithm can han-
dling this by growing vector W by adding new states. To enforce the maximum
lag constraint components of the vector W can be dropped from the filter.

The computation of the matrix Pww is not usually needed in the algorithm
to compute the mean. Not all components of matrix may be desired. If only
the covariances of the states at the same epoch, are desired, Eq. 8.51 can be
arranged so that only the computations of these components are performed.

The advantage of the Fraser fixed-point smoother over other forms (the RTS
fixed-interval smoother and the Carlton-Rauch multi-stage smoother) is that the
inverse of the of n× n covariance is not required, n being the dimension of the
dynamic state.

8.3.4 McReynolds Multi-point Smoother

Although the Fraser form of the smoother is more efficient than other forms
discussed so far, it has a problem in that the number of output epochs grow.
Increasing computations tend to be proportional to the number of epochs that
are within the maximum lag window and the density of data points. A strategy
to reduce the number of needed solutions for filter updates is to create a parallel
structure by concatenating a set of fixed-point filters.

Let k and k + p be two successive epochs for which smoothed outputs are
wanted. In the multi-point formulation, a fixed-point filter produces a joint
solution on those grid points, namely

X̂(k|k + p− 1 ), X̂(p+ k|k + p− 1) (8.57)
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Here, p is the number of measurement epochs between smoothed outputs. The
fixed-point filter also produces the joint covariance of these variables, namely

S(k, k + p) =

[
P (k|k + p− 1) P (k, k + p|k + p− 1)

PT (k, k + p|k + p− 1) P (k + p|k + p− 1)

]
(8.58)

This sequence of solutions is tied together by applying the Extended Gauss-
Markov Theorem backwards in time. Assuming the smoother has performed
the following updates by tying together S(k + p, k + 2p ), S(k + 2p, k + 3p), ...

X̂(p+ k|k + p− 1)→ X̂(p+ k|N) (8.59)

P (k + p|k + p− 1)→ P (k + p|N) (8.60)

The Extended Gauss-Markov Theorem can now be used with the previous equa-
tions to obtain the ”smoother gain”:

K(k, k + p) = P (k, k + p|k + p− 1) P−1 (k + p|k + p− 1) (8.61)

Applying this gain, the following formula updates the estimate of that state at
k:

X̂(k|N ) = X̂(k|k + p− 1 ) +K(k, k + p)
[
X̂(p+ k|N)− X̂(p+ k|k + p− 1)

]
(8.62)

Next the cross-covariance between these states at different epochs (k and k+p)
is updated:

P (k, k + p|N) = K(k, k + p) P (k + p|N) (8.63)

Finally, it updates the covariance at epoch k:

P (k|N) = P (k|k + p− 1) +K(k, k + p) [P (k + p|N)− P (k + p|k + p− 1)]
T

(8.64)

8.4 Handling Filter Discontinuities with Smoothers

8.4.1 Fixed-Interval Smoothing with Discontinuities

If a discontinuity occurs in the filter, then the smoother must make an adjust-
ment in the opposite sense because the filter and smoother operate in reverse
time with each other. If the filter expands its state, the smoother must contract
the state; if the filter expands its state, then the smoother contracts its state.

Consider the case where the filter expands its state at epoch k. When
the backward smoother reaches the epoch k, then the smoother produces the
following quantities (see Eqs. 8.1 and 8.2)

X̂ (k|N) =

[
Ŷ (k|N)

Ẑ(k|N)

]
(8.65)



62 CHAPTER 8. STATE-SPACE CHANGES

PX(k|N) =

[
Pyy(k|N) Pyz(k|N)
Pzy(k|N) Pzz(k|N)

]
(8.66)

The transition matrix can also be partitioned as follows:

ΦX =

[
Φyy Φyz
Φzy Φzz

]
(8.67)

To proceed backwards, only smoothed values of Y need to be produced, such
that the dimension of the smoother gain is reduced. Thus one can propagate
the smoother equations for the mean and covariance of Y backwards from the
discontinuity using the smoother equations for the reduced state. The smoothed
values of the mean and covariance has been generated at the epoch k. Then the
smoother transition matrix for the reduced state is given by

Ay(j, j + 1) = Pyy(j|j) ΦTyy (j + 1, j) P−1
yy (j + 1|j) (8.68)

Next we consider the case when the filter reduces the dimension of the state.
Let us assume Z is eliminated from the filter state at epoch k such that the
smoother starts with the filtered state of Y at N . The backward smoother
produces only the smoothed estimate and covariance of Y until it reaches the
epoch k. Next we expand the smoother expands to update the joint estimate
of Y and Z, according the following equations, based upon application of the
Extended Gauss-Markov Theorem:

Lzy(k) = Pzy(k|k) P−1
yy (k|k) (8.69)

Ẑ(k|N) = Ẑ(k|k) + Lzy(k)
(
Ŷ (k|N)− Ŷ (k|k)

)
(8.70)

Pzy(k|N) = Lzy(k) Pyy(k|N) (8.71)

Pzz(k|N) = Pzz(k|k) + Lzy(k) (Pyz(k|N)− Pyz(k|k)) (8.72)

These smoother equations parallel that of the RTS smoother, using the operator

AEZ (k) =

[
I

Lzy(k)

]
(8.73)

This operator applies at the time of the discontinuity, tk the smoother adds the
state vector Z to Y . The superscript E is used to emphasize that the state is
being expanded by the smoother. One can also define a smoother compaction
operator that deletes Z from the solution:

ACZ (k) =
[
I 0

]
(8.74)

These can be combined with the operator

AECZ =

[
I 0

Lzy(k) 0

]
(8.75)
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This operator will delete Z from the previous solution and add a new solution
for Z.

If the new states are contracted or reordered by the operator Q, then this
operator must be modified by multiplication on the right by QT , e.g.

AEZ (k) =

[
QT

Lzy(k) QT

]
(8.76)

ACZ (k) =
[
QT 0

]
(8.77)

AECZ =

[
QT 0

Lzy(k) QT 0

]
(8.78)

8.4.2 Fixed-Point Smoothing (Carlton-Rauch) with Dis-
continuities

Consider the case where the filter state must be expanded. If the fixed-point is at
or after the discontinuity, then the current fixed-point smoother applies without
modification. Let us consider the case where the fixed-point occurs before the
discontinuity. Now if the epoch of the filter is before the discontinuity, then the
existing fixed-point equations apply for the contracted state Y . Now once Z is
added, the fixed-point equation equations must be expanded. The fixed-point
gain is obtained by a product of gains: the gain for the contracted set between
the discontinuity and fixed-point epoch and the gain from the expanded set
between the discontinuity and the current epoch. Let k be the epoch of the
discontinuity, and j be the fixed epoch. Then when the epoch k is reached, the
step in the fixed-point smoother is given by [77]:

Ŷ (j|k) = Ŷ (j|k − 1) +Ay(j, k)
(
Ŷ (k|k)− Ŷ (k|k − 1)

)
(8.79)

Py(j|k) = Py(j|k − 1) +Ay(j, k) (Py(k|k)− Py(k|k − 1)) ATy (j, k) (8.80)

Ay(j, k) = Ay(j, k − 1) Ay(k − 1, k) (8.81)

where Ay(k − 1, k) is given in Eq. 8.18. This is the last smoother step before
the filter state is expanded.

Now to continue the fixed-point smoother, the filter state must be expanded
to include corrections involving the state parameters Z. Thus one initiates a
fixed-point smoother that updates the augmented state and covariance to cal-
culate: X̂(k|q) and PX(k|q), with q > k. This will produce Ŷ (k|q) and Py(k|q),
which, when substituted in the equations above, will update the estimate for Yj
and its covariance, i.e.

Ŷ (j|q) = Ŷ (j|q − 1) +Ay(j, k)
(
Ŷ (k|q)− Ŷ (k|q − 1)

)
(8.82)

Py(j|q) = Py(j|q − 1) +Ay(j, k) (Py(k|q)− Py(k|q − 1)) ATy (j, k) (8.83)
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Thus, it can seen that the smoother is accomplished in two steps: mapping to
the discontinuity and then to the fixed-point epoch.

Next we consider when the state space must be decreased by the filter. Again
the only problem that cannot be handled by the standard fixed-point smoother
is where the smoother epoch occurs prior to the discontinuity epoch. Again the
fixed-point smoother must be accomplished in 3 steps:

1. Apply the standard fixed-point-smoother to obtain to map the current
epoch to the smoothed state at the discontinuity epoch

2. Expand the state estimate and covariance at the discontinuity epoch using
the Extended Gauss-Markov Theorem Eqs.8.69-8.72.

3. Use the previously calculated smoother transition matrix, state, and co-
variance information to provide an updated smoothed estimate at the
desired epochs for the expanded state.

Both cases – state contraction and state expansion – have been handled
in two steps. These can be combined into one step (in spirit of the original
fixed-point algorithm) by inserting a combined smoother contraction/expansion
operator at k. Defined the instantaneous smoother transition as follows:

A+
X(j, k) =


A−X(j, k)

A−X(j, k) AEZ (k)
A−X(j, k) AEZ (k)
A−X(j, k) AECZ (k)

No discontinuity at k
Filter subtracts Z from X

Filter adds Z to Y
Combined operations

 (8.84)

Here a discontinuity is inserted into the smoother gain where the super-
scripted signs + and − refer to before and after the epoch tk.

8.4.3 Fixed-Point Smoothing (Fraser) with Discontinuities

The Fraser form of the fixed-point smoother can be handled as the Rauch-
Carlton smoother. However, in lieu of contracting and expanding the smoother
gain, the cross covariance between the dynamic state and smoothed parameters
must be expanded or contracted at the epoch of discontinuity k. At the same
time, the state vector might be reordered. Expressed using the McReynolds
algorithm formulation:

P+
X (j, k|k) =

 P−X (j, k|k)
P−X (j, k|k) QT (k)

P−X (j, k|k) ACZ (k) QT (k)

No discontinuity or reordering at k
Filter subtracts, reorders per Q

Filter adds, subtracts, reorders per Q


(8.85)

8.4.4 Multi-Point Smoothing with Discontinuities

Let us assume that the filter discontinuity is located at an output epoch of the
multi-point filter. Only two cases that need to be considered: filter expansion
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and filter contraction. In both cases, the problem is to join two successive fixed-
point filters at a common epoch: the ”earlier solution” and the ”later solution.”
In the filter expansion case, the algorithm generates a smoothed solution for
larger state,and then the algorithm simply extracts the solution of the states
in common with the earlier solution. The Extended Gauss-Markov Theorem
updates the earlier solution. In the filter contraction case, the same approach
can be applied. The states in common to both solutions will be contained in
the later solution. The smoother uses the Extended Gauss-Markov Theorem to
expand the smoothed solution to include all states in the previous solution.

Here we focus on the Carlson-Rauch (CR) and Fraser (F) implementation
aspect associated with discontinuities. For each algorithm, filter expansion and
filter contraction are considered. Rather than be concerned with the entire VLS
implementation, we shall only be concerned with specific operations required by
the discontinuity. In each case, the filter needs to be expanded (states added)
or contracted (states deleted), modifying the state estimate and covariance as
previously discussed. Let us denote these states by Z. If states are deleted
the remaining states are designed by Y . The state vector is denoted by X. If
states are to be added, an a priori mean and covariance need to be available
for the new states. If they are correlated with the old states (which is usually
not the case), the cross covariance must be supplied and added to the expanded
covariance in the correct position.

Carlton-Rauch Algorithm

Note that in both cases, a discontinuity operator is applied to the gains, changing
the dimensions of the gain to become a non-square matrix.

Filter Expansion The smoother contraction operator must be applied to the
smoother gain:

A+
X(j, k) = A−X(j, k) ACZ (k) (8.86)

where

ACZ (k) =
[
I 0

]
(8.87)

The next update of the gain is applied to A+
X(j, k).

Filter Contraction The smoother expansion operator must be applied to the
smoother gain:

A+
X(j, k) = A−X(j, k) AEZ (k) (8.88)

where

AEZ (k) =

[
I

Lzy(k)

]
(8.89)

The next update of the gain is applied to A+
X(j, k).
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Fraser-McReynolds Smoother

These operations parallel those for the Carlton-Rauch smoother, where the dis-
continuous operations are applied to the cross covariance matrix between the
states at the smoothed epochs and the filter epoch.

Filter Expansion The smoother contraction operator must be applied to the
cross covariance. The equations for the McReynolds and Fraser algorithms are:

P+
X (j, k|k) = P−X (j, k|k) ACZ (k) QT (8.90)

W+(k) = W−(k) ACZ (k) QT (8.91)

where
ACZ (k) =

[
I 0

]
(8.92)

The next update of the cross-covariance is applied to P+
X (j, k|k) or W+(k).

Filter Contraction The smoother expansion operator must be applied to the
smoother gain (McReynolds followed by Fraser):

P+
X (j, k|k) = P−X (j, k|k) QT (8.93)

W+(k) = W−(k) QT (8.94)

The next update of the gain is applied to P+
X (j, k|k) or W+(k).



Chapter 9

Relative Orbit Errors

Herein we derive the covariance on the estimate error of the orbit difference for
any two spacecraft, say i and j. Eq. 1.35 defines the true 6 × 1 position and
velocity matrix Z (also referred to as the orbit):

Z =

[
z
ż

]
=


z1

z2

z3

ż1

ż2

ż3

 =


Z1

Z2

Z3

Z4

Z5

Z6


where z is a 3 × 1 matrix of position components and ż is a 3 × 1 matrix of
velocity components. Any estimate of Z is denoted with Ẑ, and the error in Ẑ
is defined with:

δZ = Z − Ẑ

9.1 Simultaneous Orbit Determination

Distinguish each orbit estimated simultaneously with a superscript Zα, α ∈
{i, j, k, . . .}. For two simultaneous orbits define:

X =

[
Zi

Zj

]

X̂ =

[
Ẑi

Ẑj

]

δX =

[
δZi

δZj

]
67
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The simultaneous state estimate error covariance provides:

E
{

(δX) (δX)
T
}

=

 E
{(
δZi
) (
δZi
)T}

E
{(
δZi
) (
δZj

)T}
E
{(
δZj

) (
δZi
)T}

E
{(
δZj

) (
δZj

)T}
 (9.1)

9.2 Orbit Difference Error Covariance

Define the difference of orbits, orbit estimates, and orbit estimate errors:

Dij = Zi − Zj

D̂ij = Ẑi − Ẑj

δDij = δZi − δZj

Then the associated unbiased covariance on δDij is found:

E
{

(δDij) (δDij)
T
}

= E
{(
δZi
) (
δZi
)T}

+ E
{(
δZj

) (
δZj

)T}
−
[
E
{(
δZi
) (
δZj

)T}
+ E

{(
δZj

) (
δZi
)T}]

(9.2)

where the terms of Eq. 9.2 are derived as 6× 6 elements of Eq. 9.1.
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Keplerian Variables

Herein we derive the covariance on the estimated error of the orbit for Keplerian
orbital elements. Eq. 1.35 defines the true 6 × 1 position and velocity matrix
Z (also referred to as the orbit):

Z (ti) =

[
z
ż

]
=


z1

z2

z3

ż1

ż2

ż3

 =


Z1

Z2

Z3

Z4

Z5

Z6


where z is a 3 × 1 matrix of position components and ż is a 3 × 1 matrix of
velocity components. Let us describe the Keplerian orbital element vector:

K (ti) =


a
e
u
i
Ω
ω

 =


K1

K2

K3

K4

K5

K6

 (10.1)

Effectively, the covariance amounts to defining the 6× 6 matrix of partials

ΦK (ti) =
∂K (t)

∂Z (t)
ΦZ (ti)

[
∂K (t)

∂Z (t)

]T
(10.2)

where ΦK (ti) is the 6×6 Keplerian orbit-error covariance matrix and ΦZ (ti)
is the Cartesian orbit-error covariance matrix. The technique herein is to com-
pute

∂a

∂z
=
∂K1

∂z
=
[

2a2

r3 z1
2a2

r3 z2
2a2

r3 z3

]T
(10.3)

∂e

∂z
=
[

2a2

r3 z1
2a2

r3 z2
2a2

r3 z3

]T
(10.4)
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Chapter 11

Equinoctial Variables

Eq. 1.35 defines the 6× 1 position and velocity matrix Z:

Z (ti) =

[
z
ż

]
=


z1

z2

z3

ż1

ż2

ż3

 =


Z1

Z2

Z3

Z4

Z5

Z6


where z is a 3 × 1 matrix of position components and ż is a 3 × 1 matrix
of velocity components. Let us describe the equinoctial orbital element vector
([56]):

α (ti) =


k
h
n
L
p
q

 =


α1

α2

α3

α4

α5

α6

 (11.1)

Effectively, the covariance amounts to defining the 6× 6 matrix of partials

Φα (ti) =
∂α (t)

∂Z (t)
ΦZ (ti)

[
∂α (t)

∂Z (t)

]T
(11.2)

where Φα (ti) is the 6× 6 equinoctial orbit-error covariance matrix and ΦZ (ti)
is the Cartesian orbit-error covariance matrix.

Coordinate selection can affect the behavior of estimators in the orbit deter-
mination problem ([118]). Relative to Cartesian coordinates, orbital elements
provide a better representation of the distribution of a set of trajectories which
represent perturbations drawn from an initial Gaussian distribution about a
nominal trajectory. Furthermore, in two-body dynamics, which dominates the
overall dynamics in most cases, the representation of orbital energy through the
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mean motion n, and the representation of orbital angle given by the mean lon-
gitude L, results in equations of motion that are linear rather than non-linear.
Specifically, the time derivative of the equinoctial elements under two-body mo-
tion is:

α̇ (ti) =


0
0
0
n
0
0

 (11.3)

The time derivative of the linearized dynamics is given as:

α̇ (ti) + ∆α̇ (ti) =


0
0
0
n+ ∆n
0
0

 (11.4)

which leads to:

α̇ (ti) + ∆α̇ (ti) =
d

dt
(α (ti) + ∆α (ti)) (11.5)

Because the two-body dynamics are linear when expressed in equinoctial co-
ordinates, the linearization of the dynamics becomes an exact representation of
motion about the nominal trajectory and a Gaussian distribution will therefore
propagate exactly as a Gaussian distribution for all time. In contrast, the lin-
earized two-body dynamics in Cartesian coordinates are an approximation valid
only in a local region about the nominal.

The connection to orbit estimation comes in the update of the non-linear
state (e.g., Eqs. 4.8 through 4.15). The state correction is computed under the
assumption that the updated non-linear state will behave in a manner predicted
by the linearized dynamics. This assumption is most valid for cases where the
linearized dynamics better represent the non-linear dynamics. The significance
of the improvement will be determined by size of the update. When updates are
small, as is the case for the majority of orbit determination, either representation
seems adequate. In cases more representative of low resolution tracking with
low data density, equinoctial variables are to be preferred over Cartesian coor-
dinates. Mathematical developments, discussion, and examples may be found
in ([118]).



Chapter 12

Time Grids

All time grid times are defined in units of TDT (Terrestrial Dynamical Time).
The collection of measurement time tags defines the Measurement Time Grid

(MTG). In general, the MTG is non-uniform with time. The user should have
little or no control over the MTG for real data. The general rule for optimal OD:
The more data the better. Although data thinning may be useful if real data
is so time-dense as to slow throughput to below real-time, there is no accuracy
penalty for non-uniform data density – as is the case for least squares OD. Also,
data thinning must observe the dynamic threshold for information content. The
dynamic threshold value is derived by testing, both with simulated data and real
data. For LEO, one does not want to thin data to below a one-half minute in
time step. The Filter Measurement Update is executed on the MTG only. The
Filter Time Update is also executed on the MTG.

The Display Time Grid (DTG) is a uniform time grid whose density is
specified by the user (with constraints). The real-time display of filter output
data, as well as display data sent to disk files, is calculated and presented on
the DTG. The Filter Time Update is executed on the DTG.

The Process-noise Time Grid (PTG) is an intimate dynamical mechanism
used to aid in the integration of acceleration modeling errors into velocity and
position errors in the sequential filter. Air-drag acceleration errors and solar
pressure acceleration errors are integrated with a time lag of one unit. This
unit is defined by the time density for the PTG: The time step needs to be
sufficiently small to render the time lag negligible. The Filter Time Update is
executed on the PTG.

The filter Restart-file Time Grid (RTG) is a uniform time grid whose time-
points are a subset of the DTG. The subset density is specified by the user.

The Union Time Grid (UTG) is the union of the MTG, DTG, and PTG. It
necessarily contains the RTG. The sequential filter runs discretely on the UTG.

The filter logic design, and CPU expense, for so many time grids is a nui-
sance. In the past it has proved convenient to require: PTG = DTG. This works
well as long as we remember that the PTG time step must be sufficiently small.
Accordingly, in the sequel, we shall discard reference to the PTG, but we shall

73



74 CHAPTER 12. TIME GRIDS

remember that DTG = PTG.



Part II

Stochastic Sequences
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Chapter 13

Stochastic Sequences for
OOD

Optimal orbit determination must address at least five classes of physical mod-
eling errors:

� Errors due to electronic noise from resistance in the circuits of clocks,
receivers, transmitters, and transponders

� Radio signal phase delay due to unmodeled cable lengths, antenna elec-
tromagnetic phase centers, Faraday rotation

� Tropospheric and ionospheric effects on the propagation of radio signals

� Errors due to our inability to perfectly model natural external physical
forces on the spacecraft (gravity, air-drag, solar photon pressure, Earth
IR albedo)

� Errors due to our inability to model forces with internal spacecraft sources
(thrust, outgassing, thermal radiation)

Physical modeling errors are stochastic processes, and we sample these pro-
cesses with stochastic sequences.

13.1 A Scalar Exponential Gauss-Markov Sequence

Let x = x (tk) denote a dynamic scalar random variable that satisfies the equa-
tion:

x (tk+1) = Φ (tk+1, tk)x (tk) +
√

1− Φ2 (tk+1, tk)w (tk) , k ε {0, 1, 2, . . .}
(13.1)

where w (t) is a Gaussian white random variable with mean zero and constant
variance σ2

w, and where:
x (t0) = w (t0) (13.2)

77
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Φ (tk+1, tk) = eα|tk+1−tk| (13.3)

constant α < 0 (13.4)

Let E {·} denote the linear expectation operator, and define:

σ2
w = E

{
w2 (t0)

}
(13.5)

Then with Eq. 13.2:

E
{
x2 (t0)

}
= σ2

w (13.6)

It is demonstrated below that:

E
{
x2 (tk)

}
= σ2

w, for each k, (13.7)

that x (tk) has a Gaussian distribution, and that x (tk) is Markov; i.e., that
the value of x (tk) is completely specified without looking backwards in time –
without referring to x (tb) where tb < tk. Since the variance E

{
x2 (tk)

}
has the

same value for any tk, then x (tk) is said to be a stationary sequence [49]. But
note that x (tk) is not constant with time (Eq. 13.1).

13.1.1 Deterministic Transitivity with Time

Consider the change from x (tk) to x (tk+1) for:

x (tk+1) = Φ (tk+1, tk)x (tk) , k ε {0, 1, 2, . . .} (13.8)

Forward Motion is Transitive

If tk−1 ≤ tk ≤ tk+1, then forward linear transitivity:

Φ (tk+1, tk) Φ (tk, tk−1) = Φ (tk+1, tk−1) (13.9)

is easily demonstrated with:

eα|tk+1−tk|eα|tk−tk−1| = eα(tk+1−tk)eα(tk−tk−1) = eα|tk+1−tk−1| (13.10)

Backward Motion is Transitive

If tk−1 ≥ tk ≥ tk+1, then backward linear transitivity:

Φ (tk−1, tk) Φ (tk, tk+1) = Φ (tk−1, tk+1) (13.11)

is easily demonstrated with:

eα|tk−1−tk|eα|tk−tk+1| = eα(tk−1−tk)eα(tk−tk+1) = eα|tk−1−tk+1| (13.12)
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Mixed Motion is Non-Transitive

Begin with tk−1, go forward to tk, then go back to tk+1, where tk+1 = tk−1 ≤ tk.
Then:

Φ (tk+1, tk) Φ (tk, tk−1) 6= Φ (tk+1, tk−1) (13.13)

because:

eα|tk+1−tk|eα|tk−tk−1| = e2α(tk−tk−1) (13.14)

Generally

Generally, Φ (tk+1, tk) is non-transitive because:

Φ (tk, tk+1) 6= [Φ (tk+1, tk)]
−1

(13.15)

that is, because:

eα|tk+1−tk| 6= e−α|tk−tk+1| (13.16)

All Motion with Time

All motion with time, whether forward or backward, drives the deterministic
variable x (t) toward zero according to Eqs. 13.8 and 13.3, and the value of α.

13.1.2 Stationary Variance

For k = 0, Eq. 13.1 becomes:

x (t1) = Φ (t1, t0)x (t0) +
√

1− Φ2 (t1, t0)w (t0) (13.17)

Then use this and Eq. 13.6 to get:

E
{
x2 (t1)

}
= (Φ (t1, t0))

2
E
{
x2 (t0)

}
+
(
1− Φ2 (t1, t0)

)
E
{
w2 (t0)

}
= σ2

w

(13.18)
because:

E {x (t0)w (t0)} = 0 (13.19)

Eq. 13.7 follows by induction on the integers k ∈ {0, 1, 2, . . .}.

13.1.3 Propagation Time Extrema

The stochastic sequence defined by Eq. 13.1 depends on |tk+1 − tk| as follows.

Identity

(|tk+1 − tk| = 0) =⇒ (Φ (tk+1, tk) = 1) , and (x (tk+1) = x (tk)) (13.20)

As |tk+1 − tk| is decreased to zero, the random variable x (t) is driven to perfect
serial correlation according to Eqs. 13.1 and 13.20.
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White Noise

(|tk+1 − tk| =∞) =⇒ (Φ (tk+1, tk) = 0) , and (x (tk+1) = w (tk)) (13.21)

As |tk+1 − tk| is increased to infinity, the random variable x (t) is driven toward
white noise w (t) according to Eqs. 13.1 and 13.21.

13.1.4 Input Control

It is convenient to set the value for α by choosing a constant value of τ =
|tj+1 − tj | associated with exponential half-life on the transition function Φ:

(eατ = 0.5) =⇒ (α = (ln 0.5) /τ) (13.22)

Force Serial Correlation

(τ =∞) =⇒ (α = 0) =⇒ (Φ (tk+1, tk) = 1) , and (x (tk+1) = x (tk))
(13.23)

The user forces the sequence in x to be more correlated by setting τ larger.

Force White Noise

(τ = 0) =⇒ (α = −∞) =⇒ (Φ (tk+1, tk) = 0) , and (x (tk+1) = w (tk))
(13.24)

The user forces the sequence in x to be less correlated by setting τ smaller.

Specify σw

The user specifies the sigma σw on w (t0). From Eq. 13.21 one sees that σw con-
trols the variance on x (t) for long propagation times. Practically, one matches
σw to the physical sigma on x (t), in the absence of measurement information.

13.1.5 Estimation

Eq. 13.1 defines a truth model for the unknown variable x (tk). Measurements
of x (tk) are required in order to estimate x (tk). Given measurement values yk
of x (tk) at times tk, and given the linear measurement model:

yk = Hkxk + νk, k ε {1, 2, . . .} (13.25)

where:

Hk = H (tk) (13.26)

xk = x (tk) (13.27)

νk = ν (tk) (13.28)
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and where νk is a white Gaussian sequence, the fundamental theorem of esti-
mation can be applied. Then at time tk:

x̂k|k = E {xk|yy} (13.29)

according to Sherman’s Theorem. Define the error δx̂k|k in x̂k|k with:

δxk|k = xk − x̂k|k (13.30)

and define the error variance Pk|k on x̂k|k with:

Pk|k = E
{(
δxk|k

)2}
(13.31)

Propagation of the Estimate x̂k|k

Given the next measurement at time tk+1, apply the conditional expectation
operator to Eq. 13.1 to get:

E {xk+1|yk} = Φk+1,kE {xk|yk}+
√

1− Φ2
k+1,kE {wk+1|yk} (13.32)

But white noise is unobservable:

E {wk+1|yk} = E {wk+1} = 0 (13.33)

Then Eq. 13.32 becomes:

x̂k+1|k = Φk+1,kx̂k|k (13.34)

again using Sherman’s Theorem.

Propagation of the Estimate Error δxk|k

Define the error δxk+1|k in the propagated estimate x̂k+1|k with:

δxk+1|k = xk+1 − x̂k+1|k (13.35)

Invoke Sherman’s Theorem to derive the optimal estimate δx̂k+1|k of the un-
known propagated error δxk+1|k:

δx̂k+1|k = E {δxk+1|yk} (13.36)

and defne the propagated error variance Pk+1|k with:

Pk+1|k = E
{(
δxk+1|k

)2}
(13.37)

Insert Eqs. 13.1 and 13.34 into Eq. 13.35 to get:

δxk+1|k = Φk+1,kδxk|k +
√

1− Φ2
k+1,kwk (13.38)

Insert Eq. 13.38 into Eq. 13.37 to get:

Pk+1|k = Φ2
k+1,kPk|k +

(
1− Φ2

k+1,k

)
σ2
w (13.39)

Invoke Eq. 13.36 to apply the conditional expectation operator to Eq. 13.38:

δx̂k+1|k = Φk+1,kδx̂k|k (13.40)
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13.1.6 Stationarity

The scalar parameter sequence defined by Eq. 13.1 is only a parameter propaga-
tion sequence. It is independent of filter measurement-updates, and is shown to
be stationary, according to Eq. 13.18. But the scalar parameter error sequence
defined by Eq. 13.38 is non-stationary, according to Eq. 13.39. Stationar-
ity is destroyed by the filter measurement-update that reduces the variance at
measurement times.

13.2 The Vasicek Stochastic Sequence

The Vasicek (Wah-SI-check) stochastic sequence - an exponential Gauss-Markov
sequence - enables both short-run and long-run time-varying bias estimation
with a single stochastic sequence. The Vasicek sequence can be viewed as a
significant extension to the Gauss-Markov sequence; it cannot be reduced to
that sequence exactly, but it can produce an equivalent model numerically.
The Vasicek sequences has the same transition-correlation function and the
same square-root factor in the process noise term as the Gauss-Markov sequence
presented previously.

The Vasicek sequence was designed by Vasicek for use in finance to simul-
taneously model the short-run interest rate level and the long-run interest rate
level, and to simultaneously model the short-run price of a bond and the long-
run price of a bond ([28] page 110 Equation 3.46). For k ∈ {0, 1, 2, . . . , n}, let
Vk = V (tk) denote the Vasicek random variable at time tk:

Vk+1 = Φk+1,kVk + [1− Φk+1,k] b+
√

1− Φ2
k+1,k

[
σZk+1√

2a

]
(13.41)

where a and σ are positive constants, where b is a constant (positive, zero, or
negative), where Z1, Z2, . . . Zn are independent draws from the unitless Standard
Normal Distribution N (0, 1), and where the exponential transition-correlation
function Φk+1,k is defined by

Φk+1,k = exp (−a [tk+1 − tk]) (13.42)

tk ≤ tk+1

For (tk+1 − tk) −→ 0
lim

(tk+1−tk)−→0
Φk+1,k = 1 (13.43)

For (tk+1 − tk) −→∞

lim
(tk+1−tk)−→∞

Φk+1,k = lim
(tk+1−tk)−→∞

exp (−a [tk+1 − tk]) = 0 (13.44)

Otherwise
0 < Φk+1,k < 1
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The exponential half-life, denoted τ1/2, specifies a value for a. Insert Φk+1,k =
0.5 and [tk+1 − tk] = τ1/2 into Equation 13.42:

exp
(
−aτ1/2

)
= 0.5

or

a = − ln 0.5

τ1/2
(13.45)

where ln 0.5 ∼= −0.693147181. A state-space form of Equation 13.41 is

Xk+1 = Φ̄k+1|kXk + Γk+1,kUk+1 (13.46)

where

Xk+1 ,

[
Vk+1

b

]
(13.47)

Xk ,

[
Vk
b

]
(13.48)

Φ̄k+1|k ,

[
Φk+1,k 1− Φk+1,k

0 1

]
(13.49)

Γk+1,k ,

[ √
1− Φ2

k+1,k 0

0 0

]
(13.50)

Uk+1 ,

[
σZk+1/

√
2a

0

]
(13.51)

13.2.1 Transition Matrix Φ̄

Identity

Φ̄i,i =

[
Φi,i 1− Φi,i
0 1

]

=

[
exp (−a [ti − ti]) 1− exp (−a [ti − ti])

0 1

]
=

[
1 1− 1
0 1

]
Transitivity

Since
exp (−a [tk − tj ]) exp (−a [tj − ti]) = exp (−a [tk − ti])

then
Φk,jΦj,i = Φk,i

and[
Φk,j 1− Φk,j

0 1

] [
Φj,i 1− Φj,i

0 1

]
=

[
Φk,jΦj,i Φk,j [1− Φj,i] + [1− Φk,j ]

0 1

]
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=

[
Φk,jΦj,i 1− Φk,jΦj,i

0 1

]
=

[
Φk,i 1− Φk,i

0 1

]
That is

Φ̄k,jΦ̄j,i = Φ̄k,i

13.2.2 Units

The positive constant a has units inverse time (time−1). Objects Vk, Vk+1,
b, and

(
σ/
√

2a
)

have the same units, defined by the one who defines V (tk).
The positive constant σ is called the diffusion coefficient, and has units of Vk+1

divided by units of time1/2.

13.2.3 Volatility

The volatility of Vk+1 is driven by the constant value for σ, the volatility coef-
ficient. Increasing the σ value implies more volatility.

13.2.4 Drift

The term b [1− Φk+1,k] of Equation 13.41 generates a drift in Vk+1 toward b
with rate Φk+1,k, where for our applications the constant b may be positive,
negative, or zero.

13.2.5 Mean

E {Vk+1} = Φk+1,kE {Vk}+ b [1− Φk+1,k] (13.52)

because

E {Zk+1} = 0

Take limit (tk+1 − tk) −→∞

lim
(tk+1−tk)−→∞

E {Vk+1} = b (13.53)

Thus the expectation of Vk+1 always reverts to b on the infinite time horizon
with rate Φk+1,k.

13.2.6 Second Moments

About Origin

The second moment about the origin is:

E
{
V 2
k+1

}
= E

{[
Φk+1,kVk + b [1− Φk+1,k] +

σ√
2a

√
1− Φ2

k+1,k Zk+1

]2
}
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E
{
V 2
k+1

}
= E

{
[Φk+1,kVk]

2
}

+ E
{

[b [1− Φk+1,k]]
2
}

+

E

{[
σ√
2a

√
1− Φ2

k+1,k Zk+1

]2
}

+

E

{
[Φk+1,kVk]

[
σ√
2a

√
1− Φ2

k+1,k Zk+1

]}
+

E {[Φk+1,kVk] [b [1− Φk+1,k]]}+

E

{
[b [1− Φk+1,k]]

[
σ√
2a

√
1− Φ2

k+1,k Zk+1

]}
So

E
{
V 2
k+1

}
= Φ2

k+1,kE
{
V 2
k

}
+ [b [1− Φk+1,k]]

2
+
σ2

2a

[
1− Φ2

k+1,k

]2
E
{
Z2
k+1

}
+ Φk+1,k [b [1− Φk+1,k]]E {Vk}

E
{
V 2
k+1

}
= Φ2

k+1,kE
{
V 2
k

}
+
σ2

2a

[
1− Φ2

k+1,k

]2
+ Φk+1,k [b [1− Φk+1,k]]E {Vk}+ [b [1− Φk+1,k]]

2

E
{
V 2
k+1

}
= Φ2

k+1,kE
{
V 2
k

}
+
σ2

2a

[
1− Φ2

k+1,k

]2
+ [b [1− Φk+1,k]] [Φk+1,kE {Vk}+ [b [1− Φk+1,k]]]

because
E {VkZk+1} = 0

E {Zk+1} = 0

E
{
Z2
k+1

}
= 1

Thus for second moment about the origin

E
{
V 2
k+1

}
= Φ2

k+1,kE
{
V 2
k

}
+
σ2

2a

[
1− Φ2

k+1,k

]2
(13.54)

+ [b [1− Φk+1,k]] [Φk+1,kE {Vk}+ [b [1− Φk+1,k]]]

Take limit (tk+1 − tk) −→∞

lim
(tk+1−tk)−→∞

E
{
V 2
k+1

}
=
σ2

2a
+ b2 (13.55)
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About Mean

For the second moment about the mean (variance), define

VAR = E
{

(Vk+1 − E {Vk+1})2
}

(13.56)

Then

E
{

(Vk+1 − E {Vk+1})2
}

=
[
E
{
V 2
k+1

}
+ (E {Vk+1})2 − 2 [E {E {Vk+1}Vk+1}]

]
=
[
E
{
V 2
k+1

}
+ (E {Vk+1})2 − 2 (E {Vk+1})2

]
= E

{
V 2
k+1

}
− (E {Vk+1})2

That is

E
{

(Vk+1 − E {Vk+1})2
}

= E
{
V 2
k+1

}
− (E {Vk+1})2

(13.57)

Insert 13.54 into 13.57

E
{

(Vk+1 − E {Vk+1})2
}

= Φ2
k+1,kE

{
V 2
k

}
+
σ2

2a

[
1− Φ2

k+1,k

]2
(13.58)

+ [b [1− Φk+1,k]] [Φk+1,kE {Vk}+ [b [1− Φk+1,k]]]− (E {Vk+1})2

Take limit (tk+1 − tk) −→∞

lim
(tk+1−tk)−→∞

E
{

(Vk+1 − E {Vk+1})2
}

=
σ2

2a
(13.59)

because b2 subtracts out.

13.2.7 Summary

The mean E {Vk+1} −→ b, and VAR(V (tk)) −→ σ2/ (2a) as tk+1 − tk −→ ∞.
Equation 13.41 has a short-term behavior characterized by Vk, and a long-term
behavior characterized by b.

13.2.8 Example

If τ1/2 = 110 min, then a = 0.006301338 min−1. Figure 13.1 graphs func-

tions f1 (t) , Φ (t, 0) = exp (−0.006301338 t) and f2 (t) , 0.5, with the point(
τ1/2, f

(
τ1/2

))
= (110 minutes, 0.5) defined by intersection of functions f1 (t)

and f2 (t).
Figures 13.2 and 13.3 employ half-life τ1/2 = 110 minutes, and present Va-

sicek sequence results on the interval [0, 220] minutes, twice the half-life τ1/2.
Figures 13.2 and 13.3 present results using Equation 13.41. Here Vk is a

one-dimensional velocity with units of meters per minute (m/min) with Vasicek
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Figure 13.1: Exponential Transition-Correlation Function and Half-Life Func-
tion

bias b = 0 m/min for Figure 13.2, and b = 15 m/min for Figure 13.3. For the
horizontal lines ±2σ on each figure, σ =

√
VAR, where VAR is the variance

about the mean according to Equation 13.56. Each Vasicek trajectory has half-
life 110 minutes and length 220 minutes; i.e., length is twice half-life.

For Figure 13.3, note that at t = 220 minutes the visual ensemble mean has
not reached the bias b = 15 m/min. This is explained graphically by Figure
13.1. The bias b = 15 m/min cannot be reached exactly on any finite time
horizon.

13.2.9 Sequential Estimation

Let V (t) denote a true unknown Vasicek function, let b denote a true unknown

Vasicek parameter, and let V̂k = V̂ (tk) and b̂k = b̂ (tk) denote known optimal
estimates of Vk and b at time tk due to processing measurements yk sequen-
tially, for k ∈ {0, 1, 2, . . .}. I assume that Vk and b are observable to yk+1. That
is, partial derivatives ∂yk+1/∂Vk and ∂b/∂Vk are non-zero for some non-empty
subset of measurements yk+1. Inspection of Equation 13.41 reveals that corre-
lation between errors in the estimates of Vk and b is reduced by existence of the
factor Φk+1,k in the term Φk+1,kVk. Thus estimates of Vk and b are separable.

Let V̂k|j and b̂k|j denote estimates of Vk and b at epoch tk due to processing
the last measurement yj with time-tag tj . Define unknown estimation errors
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Figure 13.2: 24 Unbiased Vasicek Sequences
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Figure 13.3: 24 Biased Vasicek Sequences



13.2. THE VASICEK STOCHASTIC SEQUENCE 89

δV̂k|j and δb̂k|j in estimates V̂k|j and b̂k|j with

δV̂k|j = Vk − V̂k|j (13.60)

δb̂k|j = b− b̂k|j (13.61)

If tj < tk, then δV̂k|j and δb̂k|j are propagated errors (from tj to tk), where yj was

the last measurement processed. If tj = tk, then δV̂k|j = δV̂k|k and δb̂k|j = δb̂k|k
are errors in estimates V̂k|k and b̂k|k due to having processed measurement yk.

δV̂k|k = Vk − V̂k|k (13.62)

δb̂k|k = b− b̂k|k (13.63)

From Sherman’s Theorem the optimal estimate of Vk+1 given yk, denoted V̂k+1|k
is

V̂k+1|k = E {Vk+1|yk} (13.64)

Insert Equation 13.41 into Equation 13.64 to get the filter propagation equation

V̂k+1|k = Φk+1,kV̂k|k + [1− Φk+1,k] b̂k|k (13.65)

because E {Zk+1|yk} = E {Zk+1} = 0. Note that

X̂k+1|k =

[
V̂k+1|k
b̂k+1|k

]
(13.66)

State estimates V̂k|k and b̂k|k are propagated according to Equation 13.65, or

X̂k+1|k = Φ̄k+1|kX̂k|k (13.67)

where

Φ̄k+1|k ,

[
Φk+1,k 1− Φk+1,k

0 1

]
(13.68)

Propagation errors
δb̂k+1|k = b− b̂k+1|k

δV̂k+1|k = Vk+1 − V̂k+1|k

=

[
Φk+1,kVk + [1− Φk+1,k] b+

σ√
2a

√
1− Φ2

k+1,k Zk+1

]
−
[
Φk+1,kV̂k|k + [1− Φk+1,k] b̂k|k

]
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= Φk+1,k

[
Vk − V̂k|k

]
+ [1− Φk+1,k]

[
b− b̂k|k

]
+

σ√
2a

√
1− Φ2

k+1,k Zk+1

So propagation error δV̂k+1|k in V̂k+1|k is found to be

δV̂k+1|k = Φk+1,kδV̂k|k + [1− Φk+1,k] δb̂k|k +
σ√
2a

√
1− Φ2

k+1,k Zk+1 (13.69)

or in state space form

δX̂k+1|k = Φ̄k+1|kδX̂k|k + Γk+1,kUk+1 (13.70)

where

δX̂k+1|k ,

[
δV̂k+1|k
δb̂k+1|k

]
(13.71)

δX̂k|k ,

[
δV̂k|k
δb̂k|k

]
(13.72)

Γk+1,k ,

[ √
1− Φ2

k+1,k 0

0 0

]
(13.73)

Uk+1 ,

[
σZk+1/

√
2a

0

]
(13.74)

State estimate error covariance propagation is defined by

Pk+1|k = E
{
δX̂k+1|kδX̂

T
k+1|k

}
(13.75)

Insert Equation 13.70 into Equation 13.75 to get the Kalman covariance prop-
agation equation

Pk+1|k = Φ̄k+1|kPk|kΦ̄Tk+1|k + Γk+1,kQk+1ΓTk+1,k (13.76)

where Φ̄k+1|k and Γk+1,k are calculated according to Equations 13.68 and 13.73,
and

Qk+1 = E
{
Uk+1U

T
k+1

}
=

[
σ2/ (2a) 0

0 0

]
(13.77)

because E
{
Z2
k+1

}
= 1.

13.3 Other Stochastic Sequences

13.3.1 Brownian Motion

Random Walk Sequence

Random walk in one-dimension can be conveniently defined, and simulated,
using a Wiener-Levy sequence (see Papoulis[93]). Let τ0 > 0 denote a fixed



13.3. OTHER STOCHASTIC SEQUENCES 91

sample time, let r0 > 0 denote a fixed constant, and let ri, i ε {1, 2, 3, · · · , n},
denote a random sequence defined by:

P {ri = r0} = P {ri = −r0} = 0.5 (13.78)

where P {ri = r0} = 0.5 is read: The probability that ri = r0 is equal to 0.5.

Intuitively, the random variable ri could be described as the ith toss of a fair
coin: If heads, set ri = r0; if tails set ri = −r0, where r0 is a fixed constant. By
fair, we mean that the probability for heads is equal to 0.5, and the probability
for tails is equal to 0.5. If we toss the coin a great number of times n, we expect:
mean ' 1

n

∑n
i=1 ri = 0, and variance ' 1

n

∑n
i=1 r2

i = r2
0.

To simulate sequence ri, draw a uniformly distributed pseudo random num-
ber xi repeatedly from the open interval (0, 1). When 0 < xi < 0.5, set ri = r0.
When 0.5 ≤ xi < 1, set ri = −r0. From Eq. 13.78:

E {ri} = 0 (13.79)

E
{
r2
i

}
= r2

0 (13.80)

Define a new random sequence r̄ (t) at n trials with:

r̄ (t) =

n∑
i=1

ri =

t/τ0∑
i=1

ri (13.81)

where:

t = nτ0 (13.82)

Take the expectation of Eq. 13.81 and its square, and use Eqs. 13.79 and 13.80
to get:

E {r̄ (t)} = 0 (13.83)

E
{
r̄2 (t)

}
= nr2

0 (13.84)

because the ri are independent. Insert Eq. 13.82 into Eq. 13.84 to show:

σ2
r̄ (t) ≡ E

{
r̄2 (t)

}
=

(
r2
0

τ0

)
t. (13.85)

The random function r̄ (t) = r̄ (nτ0) is called a random walk sequence, is easily
simulated from the equations given, and is useful as it stands. However, there
are two annoying properties: σ2

r̄ (t) depends on the particular values selected
for r0 and τ0, and r̄ (t) = r̄ (nτ0) is discontinuous at each step t = nτ0.
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Wiener-Levy Process

We wish to take limits sending r0 → 0 and τ0 → 0 simultaneously, so that σ2
r̄ (t)

will become independent of r0 and τ0, and r̄ (t) = r̄ (nτ0) will become continuous
with time t. But r2

0 goes to zero faster than τ0 so that:

lim
r0→0
τ0→0
t fixed

(
r2
0

τ0

)
t = 0 (13.86)

a result that would contradict Eq. 13.85. This problem is solved by introducing
constant α > 0 and setting:

r0 =
√
ατ0 (13.87)

to control the relative rate at which r0 → 0. Define the Wiener-Levy process:

r (t) = lim
τ0→0

r̄ (t) (13.88)

Then:

lim
τ0→0

r2
0

τ0
= lim
τ0→0

ατ0
τ0

= α (13.89)

and the variance σ2
r (t) on r (t):

σ2
r (t) ≡ E

{
r2 (t)

}
= αt (13.90)

For Proofs of the following results see Papoulis [93], Chapter 9. The Wiener-
Levy process r (t) has zero mean:

E {r (t)} = 0 (13.91)

and has a Gaussian density function:

fr (r; t) =
1√

2παt
exp

(
−r2/ (2αt)

)
(13.92)

The covariance Rr (tj , tk) on r (t) is given by:

Rr (tj , tk) ≡ E {r (tj) r (tk)} = α ·min (tj , tk) (13.93)

The Wiener-Levy process r (t) is continuous with time (except for negligible
cases), and yet has independent increments:

[r (tk+2)− r (tk+1)] is independent of [r (tk+1)− r (tk)] for all k ε {0, 1, 2, · · · }
(13.94)

The Wiener-Levy process r (t) is also called Brownian motion.
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13.3.2 White Noise

Definition

Brownian motion r (t) has independent increments according to 13.94. White
noise wk+1,k is defined here in terms of these independent increments:

wk+1,k=
r (tk+1)− r (tk)

tk+1 − tk
, k ε {0, 1, 2, · · · } (13.95)

tk < tk+1 (13.96)

Taking the Limit

According to Doob [19]:

lim
tk+1→tk

sup {wk+1,k} =∞ (13.97)

where sup {wk+1,k} denotes the least upper bound of wk+1,k over the set of all
realizations. The associated variance is also infinite. Thus Brownian motion
r (t) is not differentiable. The limit tk+1 → tk on wk+1,k is not realizable and is
thereby useless for any physical representation. The difference |tk+1 − tk| may
be small, but not arbitrarily small.

It is useful to attempt to simulate the limiting process. One easily finds that
as tk+1 → tk, the magnitude of wk+1,k gets large without bound. Simulation
provides an easy method to understand Doob’s theorem.

Mean

Run the expectation operator through Eq. 13.95 and use Eq. 13.91 to get:

E {wk+1,k} = 0, k ε {0, 1, 2, · · · } (13.98)

Variance

Define the white noise variance:

σ2
wk+1,k

≡ E
{
w2
k+1,k

}
(13.99)

Insert Eq. 13.95 into Eq. 13.99:

σ2
wk+1,k

=
1

(tk+1 − tk)
2

[
E
{
r2
k

}
− 2E {rkrk+1}+ E

{
r2
k+1

}]
(13.100)

and use Eqs. 13.90 and 13.93:

σ2
wk+1,k

=
1

(tk+1 − tk)
2 [αtk − 2αtk + αtk+1] (13.101)
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to get:

σ2
wk+1,k

=
α

tk+1 − tk
(13.102)

Compare Eq. 13.102 to Eq. 13.90 to see the rigorous relation between white
noise variance and Brownian motion variance with the common positive param-
eter α.

Covariance

Let us denote the white noise covariance Rw ≡ Rw (tj , tj+1, tk, tk+1), and define
it with:

Rw = E {wj+1,jwk+1,k} (13.103)

Then:
Rw =

α

tk+1 − tk
δjkδ(j+1)(k+1) (13.104)

where δmn is the Kronecker delta. When tj = tk and tj+1 = tk+1:

Rw = σ2
wk+1,k

=
α

tk+1 − tk
Otherwise:

Rw = 0.

Physical Sources

From a physical perspective, white noise is derived from one known source: Re-
sistivity in an electronic circuit. Thus electronic clocks, transmitters, receivers,
and transponders accompany their signals with white noise. This physical pro-
cess is called thermal noise, and is Gaussian as well as white. See Davenport
and Root[99], page 185.

Filter Validation

One of the rigorous necessary conditions that derives from optimality of a se-
quential filter is that its measurement residuals are zero mean and white (An-
derson and Moore [85], page 102). This is the basis for an important filter
validation test, and is easily checked.

13.3.3 Clocks

Brownian Motion in Clock Phase

Recall Eq. 13.90 for the variance σ2
r (t) on Brownian motion r (t):

σ2
r (t) = αt

Associate a clock phase component with Brownian motion r (t), and use seconds
for clock phase units. Then the variance σ2

r (t) on Brownian motion has units
seconds2, t has units seconds, and α has units seconds.
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White Noise in Clock Frequency

The frequency of this clock possesses a white noise component wk+1,k= (r (tk+1)− r (tk)) / (tk+1 − tk)
associated with its Brownian motion r (t) in phase. Recall Eq. 13.102:

σ2
wk+1,k

=
α

tk+1 − tk

Thus the variance σ2
wk+1,k

on clock frequency is unitless, as expected.

Allan Variance

Clock vendors provide an Allan Variance [1] diagram associated with each clock
that quantifies white noise in fractional frequency.
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Part III

Accelerations
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Chapter 14

Accelerations

Recall Eqs. 1.21, 1.22, 1.23, 1.24, 1.25, and 1.26 for definitions relating to the
discussion in this chapter. Then r̈ denotes the total acceleration vector.

14.1 Two Body Acceleration

The equation for two-body acceleration r̈K is well known:

r̈K =
(
−µ/r3

)
r = [i]

T (−µ/r3
)
z (14.1)

The 3×1 matrix
(
−µ/r3

)
z defines the two-body inertial acceleration matrix of

cartesian components. Perturbative accelerations are defined as non-two-body
accelerations, and are denoted herein with subscripts.

14.2 Total Acceleration

The total acceleration r̈ has the additive decomposition:

r̈ = r̈K+r̈G+r̈LS+r̈DL+r̈P = [i]
T [(−µ/r3

)
z + z̈G + z̈LS + z̈DL + z̈P

]
(14.2)

where:

r̈K = [i]
T (−µ/r3

)
z two body

r̈G = [i]
T
z̈G Earth gravity

r̈LS = [i]
T
z̈LS luni-solar gravity

r̈DL = [i]
T
z̈DL air drag-lift

r̈P = [i]
T
z̈P solar photon pressure

Table 14.1: Accelerations
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Chapter 15

Earth Gravity

15.1 Geopotential

Let U denote the geopotential function, defined by:

U = k2m2

∫
Earth

dm

R

whereR is the length of the position vector R with vector origin on spacecraft
mass point m2 and vector head on Earth mass differential dm, and where k2 is
the Gaussian gravitational constant. LaPlace’s partial differential equation is
satisfied in the inertial component matrix X, and in the Earth-fixed component
matrix Y :

3∑
i=1

∂2U

∂X2
i

=

3∑
i=1

∂2U

∂Y 2
i

= 0

where:

R = [i]
T
X = [e]

T
Y

The transformation of LaPlace’s equation to orthogonal spherical coordinates
was performed elegantly by Lass[60]:

∂

∂r

[
r2 ∂U

∂r

]
+

1

cosϕ

∂

∂ϕ

[
cosϕ

∂U

∂ϕ

]
+

1

cos2 ϕ

∂2U

∂λ2
= 0

where r is the length of the position vector r with vector origin on Earth center
of mass and vector head on spacecraft mass point m2, where ϕ is the geocentric
latitude, and λ is the Earth-fixed longitude. A solution to LaPlace’s equation
in spherical coordinates was given by Kaula[51]:

U =
µ

r

∞∑
n=0

(ae
r

)n n∑
m=0

Pnm (sinϕ) [Cnm cosmλ+ Snm sinmλ] (15.1)
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where Pn0 (sinϕ) = Pn (sinϕ) are Legendre polynomials, Pnm (sinϕ) are as-
sociated Legendre functions, ae is the equatorial radius of the reference Earth
oblate ellipsoid, µ is the two-body gravitational constant with units distance-
cubed per time-squared, and Cnm and Snm are constants (integrals over mass
dm) of degree n and order m. In practice, n ≤ N is truncated. Examples: LEO
and HEO: N = 50. GEO: N = 6.

15.2 Legendre Functions

The purpose of this section is to aid in the development of geopotential accel-
eration error covariance functions. Let ϕ denote geocentric latitude, and let θ
denote geocentric colatitude. In the definitions that follow, x = sinϕ = cos θ.

See Jahnke and Emde[47] for an excellent presentation of Legendre functions.

15.2.1 Legendre Polynomials of First Kind

Definition

Pn (x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
, x = cos θ, n ∈ {0, 1, 2, . . .}

P0 (cos θ) = 1
P1 (cos θ) = cos θ
P2 (cos θ) = (3 cos 2θ + 1) /4
P3 (cos θ) = (5 cos 3θ + 3 cos θ) /8
P4 (cos θ) = (35 cos 4θ + 20 cos 2θ + 9) /64
P5 (cos θ) = (63 cos 5θ + 35 cos 3θ + 30 cos θ) /128

Table 15.1: Legendre Polynomials, Low Degree

Recursion

nPn (x) = (2n− 1)xPn−1 (x)− (n− 1)Pn−2 (x) , n ∈ {2, 3, . . .}

Theorem 3 All Legendre Polynomials Pn (cos θ) are even functions of θ

15.2.2 Associated Legendre Functions of First Kind

Definition

Pnm (x) =
(
1− x2

)m/2 dmPn (x)

dxm
, x = cos θ

m ∈ {0, 1, 2, . . . , n} , n ∈ {0, 1, 2, . . .}
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P22 (cos θ) = 3 (1− cos 2θ) /2
P32 (cos θ) = 15 (cos θ − cos 3θ) /4
P42 (cos θ) = 15 (3 + 4 cos 2θ − 7 cos 4θ) /16

Table 15.2: Associated Legendre Functions, Degree 2,3,4, Order 2

Recursion

(n−m)Pnm (x) = (2n− 1)xP(n−1)m (x)− (n+m− 1)P(n−2)m

m ∈ {0, 1, 2, . . . , n} , n ∈ {0, 1, 2, . . .}

Theorem 4 All Associated Legendre Functions Pn2 (cos θ) of order 2 are even
functions of θ

15.3 Auto-Covariance Function on a Sphere

Let Cnm and Snm denote geopotential coefficients of degree n and order m.
Gravity acceleration errors of omission are incurred when any truncation of Eq.
15.1 is used. William Kaula defined[52] the degree n variance σ2

T (n), for each
degree of truncation of Eq. 15.1, for his work in geodesy:

σ2
T (n) =

n∑
m=0

(
C2
nm + S2

nm

)
(15.2)

A similar function was defined by Wright[119] to account for gravity acceleration
errors of commission:

σ2
C (n) =

n∑
m=0

(
E
{

(δCnm)
2
}

+ E
{

(δSnm)
2
})

(15.3)

where δCnm and δSnm are estimation errors for estimates of Cnm and Snm.
Combine these functions to define:

σ2
n =

{
σ2
T (n) , n > N
σ2
C (n) , n ≤ N (15.4)

Kaula also constructed gravity acceleration error auto-covariance functions on
a sphere with constant radius r that encloses the Earth’s surface. Let us denote
a 3× 1 gravity acceleration error matrix δg in RIC components with:

δg =

 δgR
δgI
δgC

 (15.5)

Assume δg to be unbiased and Gaussian distributed. For a fixed point P0

on the sphere, and associated 3 × 1 gravity acceleration error matrix δg0 in
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RIC components, and for each point P on the sphere and its associated 3 × 1
gravity error matrix δg, Kaula derived three auto-covariance expressions for P0

by averaging E
{
δg (P0) δgT (P )

}
over the sphere:

σ2
RR (ψ) =

∑
n

[
n+ 1

n− 1

]2 [ae
r

]2n+4

Pn0 (cosψ)σ2
n (15.6)

σ2
II (ψ) =

1

2

∑
n

[
n (n+ 1)

(n− 1)
2

] [ae
r

]2n+4
[
Pn0 (cosψ)− Pn2 (cosψ)

n (n+ 1)

]
σ2
n (15.7)

σ2
CC (ψ) =

1

2

∑
n

[
n (n+ 1)

(n− 1)
2

] [ae
r

]2n+4
[
P(n−1)0 (cosψ) +

P(n−1)2 (cosψ)

n (n+ 1)

]
σ2
n

(15.8)
for the sphere, where ψ is the central angle between P0 and each P . This
result was extended by Kay Pechenick[96] to include the symmetric off-diagonal
covariance expressions:

ΓRI (ψ) = −1

2

∑
n

[
n (n+ 1)

2

(n− 1)
2

] [ae
r

]2n+4
[
P(n−1)0 (cosψ) +

P(n−1)2 (cosψ)

n (n+ 1)

]
(sinψ)σ2

n

(15.9)

ΓIR (ψ) = ΓRI (ψ) (15.10)

ΓCR (ψ) = ΓRC (ψ) = 0 (15.11)

ΓCI (ψ) = ΓIC (ψ) = 0 (15.12)

The complete auto-covariance 3× 3 matrix function has the representation:

R (ψ) =

 σ2
RR (ψ) ΓRI (ψ) ΓRC (ψ)

ΓIR (ψ) σ2
II (ψ) ΓIC (ψ)

ΓCR (ψ) ΓCI (ψ) σ2
CC (ψ)

 (15.13)

Theorem 5 R11 (ψ) = σ2
RR (ψ), R22 (ψ) = σ2

II (ψ), and R33 (ψ) = σ2
CC (ψ) are

even functions of ψ, because they are linear combinations of Legendre Polynomi-
als and Associated Legendre Functions of order 2. That is: Rjj (−ψ) = Rjj (ψ),
j ∈ {1, 2, 3}. This is a necessary condition for any stationary auto-covariance
function Rjj (ψ).
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15.3.1 From Angle to Time

Let n denote mean orbit motion, a two-body constant. Let t and τ denote
arbitrary times, and set:

[t− τ ]n = ψ (15.14)

Then:

R (ψ) = R ([t− τ ]n) (15.15)

Notice that:

R ([t− τ ]n) = R ([(t+ T )− (τ + T )]n) (15.16)

Auto-covariance R ([t− τ ]n) may be translated by any time increment T . It is
therefore called stationary.

15.3.2 Covariance Function R (0)

The components of R (0) are required:

σ2
RR (0) =

∑
n

[
n+ 1

n− 1

]2 [ae
r

]2n+4

σ2
n (15.17)

σ2
II (0) =

1

2

∑
n

[
n (n+ 1)

(n− 1)
2

] [ae
r

]2n+4

σ2
n (15.18)

σ2
CC (0) =

1

2

∑
n

[
n (n+ 1)

(n− 1)
2

] [ae
r

]2n+4

σ2
n (15.19)

ΓRI (0) = 0 (15.20)

15.3.3 Auto-correlation Function

When ψ = 0, the Legendre polynomials are unity, the associated Legendre
functions are zero, the instantaneous matrix R (0) is diagonal and has non-zero
diagonal elements. This enables the definition of a diagonal 3× 3 matrix auto-
correlation function:

ρ (ψ) = [R (0)]
−1/2

R (ψ) [R (0)]
−1/2

(15.21)

and it enables the multiplicative decomposition of R (ψ):

R (ψ) = [R (0)]
1/2

ρ (ψ) [R (0)]
1/2

(15.22)

It is important here to notice that the effect of r on ρ (ψ) is divided out, so that

significant dynamics due to variations in r are represented in R (ψ) by [R (0)]
1/2

.
This is important for implementation.
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15.4 Acceleration Errors on a Sphere

For each fixed point P0 on a sphere of radius r > ae, Eqs. 15.6 through 15.13
provide a geopotential covariance function R (ψ), derived by averaging the prod-
uct of acceleration error δg0 at P0 with every other acceleration error δg (point
P ) on the sphere. Consider now the intersection of this sphere with a plane that
contains the origin of the sphere. This intersection is a circle with fixed radius r.
Refer to this circle as a reference circular spacecraft orbit with semi-major axis
a = r, eccentricity e = 0, spacecraft speed ṡ =

√
µ/a, and two plane orientation

parameters; e.g., inclination i and node Ω. Consider a sequence of P0 points,
call them Pk, k ∈ {0, 1, 2, . . .}, where each point lies on the circular orbit, is as-
sociated with a time tk, and has a covariance matrix function Rk (ψ) at tk. Our
task in this section is to integrate the 3×3 gravity acceleration error covariance
matrices Rk (ψ) with time so as to form 6 × 6 orbit error covariance matrices

P
∫ ∫
1,k+1,k, and to accumulate these into a running sequential sum of orbit error

covariance matrices Pk+1|k.
The linear integral error model, particularized to the gravity acceleration

error 3× 1 matrix δg and the orbit error 6× 1 matrix δZ, is given by:

δZ (tk+1) = Φ (tk+1, tk) δZ (tk) +

∫ tk+1

tk

Φ (tk+1, τ)G (τ) δg (τ) dτ (15.23)

k ∈ {0, 1, 2, . . .}

where matrix Φ (tk+1, τ) is a 6 × 6 orbit transition matrix, and matrix G (τ)
is a 6 × 3 VOP (Variation Of Parameters) matrix of partial derivatives that
transforms acceleration variations to orbit variations. If tk+1 = tk, then there
is no contribution to δZ (tk+1) from any δg (τ); i.e., it takes time (integration
with time) to move acceleration errors to orbit errors. Each gravity acceleration
error δg (τ) is random, therefore each orbit error δZ (tk+1) is also random. The
orbit error covariance filter time-update matrix, using the expectation operator
E {·}, is defined by:

Pk+1|k = E
{
δZ (tk+1) δZ (tk+1)

T
}

(15.24)

Then:
Pk+1|k = Φ (tk+1, tk)Pk|kΦ (tk+1, tk)

T
+ P

∫ ∫
k+1,k (15.25)

where:
P

∫ ∫
k+1,k =

∑
j

P
∫ ∫
j,k+1,k (15.26)

P
∫ ∫
1,k+1,k = ICk+1,k + ILk+1,k + IRk+1,k (15.27)

ICk+1,k =

∫ ∫ tk+1

tk

H (tk+1, τ)E
{
δg (τ) δgT (t)

}
HT (tk+1, t) dτdt (15.28)
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ILk+1,k = Φ (tk+1, tk)

∫ tk+1

tk

E
{
δZ (tk) δgT (t)

}
HT (tk+1, t) dt (15.29)

IRk+1,k =

∫ tk+1

tk

H (tk+1, τ)E
{
δg (τ) δZT (tk)

}
dτ ΦT (tk+1, tk) (15.30)

H (tk+1, η) = Φ (tk+1, η)G (η) (15.31)

If a measurement is processed at time tk by the sequential filter, then Eq. 15.23
should be written:

δZ (tk+1|tk) = Φ (tk+1, tk) δZ (tk|tk) +

∫ tk+1

tk

Φ (tk+1, τ)G (τ) δg (τ) dτ (15.32)

k ∈ {0, 1, 2, . . .}
to explicitly indicate the use of new information at time tk. This reduces the
Markov problem by partially decoupling δZ (tk|tk) and δg (τ), because τ ≥ tk.

15.4.1 Computational Problem

Computer experiments were performed in 1979 at the General Electric Company
in King of Prussia to evaluate ICk+1,k numerically in double precision for tk+1 −
tk = 5 min on a sphere with iterated integrals, using Eq. 15.15 for evaluation
of R (ψ) = R ([t− τ ]n) = E

{
δg (τ) δgT (t)

}
. This 5 minute accumulation took

3 days to complete on an IBM 360, unacceptable for operational use. The
numerically evaluated 6× 6 matrix result was approximately symmetric in the
upper left-hand corner, but was very significantly unsymmetric in the lower
right-hand corner.

15.4.2 Solution to Computational Problem

The computational problem just identified led to development of the following
approximation[119] of Eq. 15.27:

P
∫ ∫
1,k+1,k ≈ II =

∫ tk+1

tk

J (tk+1, τ) ĪGJ
T (tk+1, τ) dτ (15.33)

k ∈ {0, 1, 2, . . .}
where:

J (tk+1, τ) = Φ (tk+1, τ)G (τ) [R (0)]
1/2

(15.34)

IG (ψ) =
2

n

{
GRAPH(0≤ψ≤π)

∫ ψ

0

ρ (β) dβ

}
(15.35)

ĪG: select an appropriate 3× 3 matrix value from graph IG (ψ) (15.36)
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15.4.3 The Double Integral

The left-hand side of Eq. 15.33 is a double integral according to Eqs. 15.26
through 15.31. The right-hand side of Eq. 15.33 is also a double integral as
seen in Eq. 15.35, where:

2

∫ ψ

0

ρ (β) dβ =

∫ ψ

−ψ
ρ (β) dβ

The latter equality derives from the fact that the diagonal elements of ρ (ψ)
are symmetric about the origin ψ = 0. The diagonal elements of ρ (ψ) also are
maximum and positive at the origin, required by definition of any stationary
auto-correlation function. The inner integral ĪG, defined by Eq. 15.36, is an
analytic time constant, enabled by the property that the effect of r (t) on ρ (ψ)
has been divided out, so that sensitivity of R (ψ) to r (t) is captured by [R (0)] in
the outer integral of Eq. 15.33. The calculation of II generates a symmetric and
positive definite orbit error covariance matrix when the three diagonal values of
ĪG are positive.

15.4.4 Markov Property

Optimal Orbit Determination

Given the state estimate and error covariance at time tk, we require computation
of the state estimate and its error covariance at any later time tk+1 without
referring to information at times prior to tk. This is the essence of the Markov
property. It enables computational tractability for sequential filtering. More
important, it enables optimal orbit determination when tracking measurements
are acquired sequentially with time.

Application of Feller’s Definition to Orbit Errors

Recall Eq. 15.23. To paraphrase Feller[21]: δZ (tj), j, k ∈ {0, 1, 2, . . .}, is a
Markov sequence if, given the orbit error δZ (tk) at time tk, no additional data
concerning orbit errors at previous times (say δg (τ) , for τ < tk) can alter the
conditional probability for the orbit error δZ (tk+1) at any future time tk+1.
Then Eq. 15.23 is a Gauss-Markov sequence.

Orbit Error Problem

Eq. 15.23, for k → k − 1, can be written:

δZ (tk) = Φ (tk, tk−1) δZ (tk−1) +

∫ tk

tk−1

Φ (tk, τ)G (τ) δg (τ) dτ (15.37)

The covariance ILk+1,k of Eq. 15.29 is required formally to estimate the prop-

agation δZ (tk+1). Notice that δZ (tk) is required in ILk+1,k of Eq. 15.29, so
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that gravity acceleration errors δg (τ) for tk−1 < τ < tk are required to evalu-
ate δZ (tk+1), given δZ (tk) at time tk. And so δZ (tk) is non-Markov because
δg (τ), [tk−1 < τ < tk], is required from times previous to tk, and this does alter
the conditional probability for the orbit error δZ (tk+1) at future time tk+1.

Solution to Orbit Error Problem

The inner integral IG (ψ) of Eq. 15.35 is defined with respect to Earth-fixed
central angle ψ, and is thus independent of any time. The outer integral II
depends on data from the time interval [tk, tk+1], and not on any data prior to
time tk. The covariance approximation given by Eq. 15.33 is therefore Markov.
It is also Gaussian because it approximates the second moment to the Gaussian
sequence Eq. 15.23.

15.4.5 Inertial Frame

William Kaula has given the gravity acceleration error covariance in the Gaus-
sian RIC trajectory frame, and this frame rotates at orbit angular speed, mean
motion n. It is non-inertial. Eq. 15.33 presents an orbit error covariance, inte-
grated to generate position and velocity components in the ICRF inertial frame.
How do we get from the Gaussian non-inertial frame to the ICRF inertial frame?

The answer is given by the integrand Φ (tk+1, τ)G (τ) δg (τ) of Eq. 15.23.
The acceleration error 3×1 gravity error matrix δg (τ) is defined on the Gaussian
non-inertial frame. The 6× 3 matrix G (τ) transforms δg (τ) to a 6× 1 matrix
G (τ) δg (τ) in the ICRF inertial frame. The 6× 6 transition matrix Φ (tk+1, τ)
integrates G (τ) δg (τ) from time τ to time tk+1. So the integration with time is
performed in the ICRF inertial frame.

15.4.6 Stochastic Characterization

For random gravity modeling errors, we have demonstrated that both our orbit
stochastic model Eq. 15.23 and our orbit covariance function implementation
Eq. 15.33 are Gauss-Markov. But thermal white-noise sequences are Gauss-
Markov, random walk sequences are Gauss-Markov, summed (generalized inte-
gral) random walk sequences are Gauss-Markov, and we have used exponentially
correlated Gauss-Markov sequences. How can we characterize our orbit Gauss-
Markov sequence for random gravity modeling errors?

Our orbit Gauss-Markov sequence for random gravity modeling errors is
similar to a six-dimensional cross-correlated random walk, but it is shaped and
scaled by the physics of the geopotential function.

15.4.7 Implementation

Calculations A Priori

� A value of orbit period P is selected to represent the LEO class of interest
at perigee.



110 CHAPTER 15. EARTH GRAVITY

� Calculate n = 2π/P and r = a =
(
µ/n2

)1/3
, with constraint e = 0

� Calculate IG (ψ) using Eqs. 15.35 and 15.21

� Generate three graphs for the diagonal scalar functions of the 3×3 matrix
function IG (ψ)

� Derive a 3× 3 diagonal matrix of numbers ĪG (units minutes), by appro-
priate selection from IG (ψ)

Calculations During Each Sequential Filter Run

Given the time interval [tk, tk+1] for filter time-update, and given current oscu-
lating values for r:

� Calculate P
∫ ∫
1,k+1,k according to Eq. 15.33 using ĪG to approximate IG (ψ),

and using the current r for R (0)

� Add the gravity term P
∫ ∫
1,k+1,k to those for solar pressure, atmospheric

density, and thrusting to form the sum P
∫ ∫
k+1,k

� Calculate Pk+1|k according to Eq. 15.25 for each filter time-update

15.5 Perigee-Apogee Weighting

Define the class of Low Earth Orbits (LEO) as those with radial distances r
such that 1.04 er < r ≤ 1.2 er. The lower bound relates to keeping a spacecraft
in free-fall without thrusting for a few orbits, and the upper bound is associated
with TOPEX/JASON high-LEOs. The orbit eccentricity is then bounded: 0 <
e ≤ 0.071 · · · . This captures the majority of physical low Earth orbits. LEOs
are then necessarily near-circular orbits.

Let us denote the orbit true anomaly with v. Since there are no physical
LEOs with zero mean eccentricity1, we shall not worry about existence of the
associated true anomaly v in that which follows. Let C = C (v) denote the
gravity acceleration error covariance 3× 3 matrix function at the true anomaly
v. Unfortunately, our method to calculate C (v) is rigorously valid only for
circular LEO orbits2, and for this case C (v) = C is independent of v. So right
away we have a disconnect between physical orbits and our method. Here we
live in a world of approximations.

It is suspected that sources of geopotential-modeling error covariance repre-
sentations are not yet able to provide representations that are physically accu-
rate to better than two significant digits. Under this assumption, we are justified

1Use the sample mean eccentricity for any LEO, averaged over all osculating eccentricities
for one orbit period.

2I have an approach for building a theory and model for HEOs, but have not taken the
time to accomplish this.
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in making any approximation that preserves two decimals in covariance trans-
formations derived therefrom. More important, it seems we only require two
significant digits to construct an effective sequential filter orbit gain from the
acceleration covariance.

Gravity acceleration modeling errors are sensitive to the radial component
of orbit position. In an attempt to use a zero-eccentricity theory with physical
non-zero eccentricity orbits, I have represented the LEO with increasing true
anomaly as passing through an infinite number of circular orbits, each with a
distinct radial component of position, during each orbit period3.

Let CP denote the gravity acceleration error covariance 3×3 matrix function
on a sphere with perigee radius, and let CA denote the gravity acceleration
error covariance 3 × 3 matrix function on a sphere with apogee radius. It is
computationally convenient to calculate CP = C (0) and CA = C (π), and store
them equivalently as 3× 3 diagonal matrix constants to be used with weighting
functions to approximate C (v).

15.5.1 Weighting Functions

Let us denote the perigee weighting function with P (v), denote the apogee
weighting function with A(v), and require:

P (v) +A(v) = 1 (15.38)

Given the current value of true anomaly v, calculate the approximation Ĉ (v)
to C (v):

Ĉ (v) = P (v)CP +A(v)CA (15.39)

if the osculating orbit eccentricity e satisfies:

e > εe

Otherwise, use:
C (v) = CP

For perigee define P (v):
P (v) = (1 + cos v)/2 (15.40)

For apogee define A(v):
A(v) = (1− cos v)/2 (15.41)

15.6 New Method

15.6.1 Splines

An option has been implemented and validated that enables the user to re-
place the perigee-apogee inner integral calculation of Section 15.5 with general

3The application of this method to HEOs fails the McReynolds filter-smoother consistency
test.



112 CHAPTER 15. EARTH GRAVITY

polynomial splines4. The class of LEO near circular orbits approximated with
the perigee-apogee inner integral is small compared to the class of LEO near
circular orbits approximated with the new polynomial splines. The arbitrary
potential function truncation by the user at (deg,ord) = (N,N) invokes errors of
truncation (omission) and errors of commission. The inner integral splines are
designed to accommodate both types of errors.

15.6.2 Sample Covariance Validation

A new sample covariance technique was created to quantify comparisons of the
filter gravity error process noise covariance function to a propagated sample
covariance derived from numerical trajectory integration simulations5. Pertur-
bative accelerations for the trajectory integration simulations are created as in
Eq. 15.58 of Section 15.7.

15.6.3 EGM96

An option has been implemented to apply a filter gravity error process noise
covariance function developed from the EGM96 geopotential error covariance
matrix. This option uses the new polynomial splines. Validation of the EGM96
geopotential error covariance matrix, using McReynolds’ filter-smoother consis-
tency test without filter scaling, was successful6.

15.6.4 GRACE

An option has been implemented to apply a filter gravity error process noise
covariance function developed from the GRACE geopotential error covariance
matrix. This option uses the new polynomial splines. Validation of the GRACE
geopotential error covariance matrix, using McReynolds’ filter-smoother consis-
tency test without filter scaling, failed7 for the crosstrack position component.
An acceptable validation was performed by scaling the crosstrack component in
the ODTK filter.

15.7 Simulate Gravity Coefficient Errors

15.7.1 Covariance Matrix Representations

Let x denote an n × 1 column matrix random variable of Gaussian numbers,
let I denote the identity matrix, and let E {·} denote the linear expectation

4See the paper[130] entitled Orbit Covariance Inner Integrals With Splines.
5See the paper[129] entitled Consistency of Sample Orbit Covariance Function with Ac-

quired Potential Covariance Matrix.
6See the paper[128] entitled Orbit Gravity Error Covariance Functions - GRACE, EGM96,

& Lunar Prospector.
7See the paper[129] entitled Consistency of Sample Orbit Covariance Function with Ac-

quired Potential Covariance Matrix, 18th AAS/AIAA Space Flight Mechanics Meeting, Jan-
uary 2008.
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operator. Assume that:
E {x} = 0 (15.42)

Define the covariance n× n matrix P of x with:

P = E
{
xxT

}
(15.43)

Each covariance matrix P has a decomposition:

P = MΛMT (15.44)

where the n× n modal matrix M is orthogonal:

MMT = MTM = I (15.45)

where the n× 1 column matrices of M are unit eigenvectors:

M =

[
M1

...M2

...M3

... · · ·
...Mn

]
(15.46)

and where Λ is an n × n matrix of off-diagonal zeros and diagonal eigenvalues
λj ≥ 0, j ∈ {1, 2, 3, . . . n}:

Λ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3

...
...

. . .

0 0 λn

 (15.47)

Each covariance matrix P has a spectral representation:

P =

n∑
j=1

λjMjM
T
j (15.48)

15.7.2 Simulation of x

Theory

Let g denote an n×1 column matrix random variable of white Gaussian elements
with zero mean and unit variance. Then:

E {g} = 0 (15.49)

E
{
ggT

}
= I (15.50)

Define Λ1/2 and random variable y:

Λ1/2 =


λ

1/2
1 0 0 · · · 0

0 λ
1/2
2 0 · · · 0

0 0 λ
1/2
3

...
...

. . .

0 0 λ
1/2
n

 (15.51)
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y = MΛ1/2g (15.52)

Then:
E {y} = MΛ1/2E {g} = 0 (15.53)

E
{
yyT

}
= MΛ1/2E

{
ggT

}
Λ1/2MT = MΛMT = P (15.54)

There is no way to distinguish random variable y from random variable x.
Therefore set:

x = MΛ1/2g (15.55)

Practice

Let gk and xk denote the kth realizations of random variables g and x. Then
from Eq. 15.55:

xk = MΛ1/2gk, k ∈ {1, 2, 3, . . . , N} (15.56)

Use Eq. 15.56 to simulate xk. Validate with Eq. 15.43:

P = E
{
xxT

}
= lim
N→∞

1

N

N∑
k=1

xkx
T
k (15.57)

15.7.3 A Useful Example

Given a column matrix X̂ of estimated geopotential coefficients, and given an
associated geopotential coefficient error covariance matrix P , calculate an en-
semble of simulated column matrices Xk, k ∈ {1, 2, 3, . . . , N}, of geopotential
coefficients.

Use Eq. 15.56 to simulate xk, a column matrix of simulated errors of geopo-
tential coefficients. Then:

Xk = X̂ + xk, k ∈ {1, 2, 3, . . . , N} (15.58)



Chapter 16

Lunar Gravity

With the exception of Section 15.5, the technical modeling content of Chapter
15 on Earth Gravity is applicable to this chapter on Lunar Gravity, with cor-
responding references to the lunar gravity field in place of that of the Earth.
Therefore this material will not be repeated.

16.1 Lunar Prospector

A new lunar orbit gravity process noise covariance function has been developed
from the Lunar Prospector potential covariance matrix[55] to enable sequential
filtering and smoothing of lunar tracking data[128]. This option uses the new
polynomial spline technique referred to in Section 15.6.1. Validation of the
lunar orbit gravity process noise covariance function for errors of commission
was performed using the new sample covariance comparison technique[129]. The
lunar orbit gravity process noise covariance function was shown to generate a
stable filter for lunar sequential orbit determination.

115



116 CHAPTER 16. LUNAR GRAVITY



Chapter 17

Atmospheric Drag and Lift

17.1 King-Hele Unit Vector K

King-Hele[53] asserts, on average1, that the atmosphere co-rotates with the
Earth. Define the Earth angular velocity with:

ω = [i]
T

 0
0
ω

 (17.1)

where ω is Earth angular speed. Let us denote spacecraft velocity with respect
to the atmosphere with r̊. Then from mechanics:

r̊ = ṙ− ω × r (17.2)

Define the velocity magnitude with:

s̊ =
√

r̊ · r̊ (17.3)

Now define the King-Hele unit vector:

K =
r̊

s̊
= [i]

T
K (17.4)

with inertial components contained by:

K =

 K1

K2

K3

 (17.5)

1I asked Luigi Jacchia (in the mid 70s) how to define/construct an atmospheric density error
model and covariance for LEO orbit determination. In his initial irritated response, Jacchia
referred to random longitude dependent winds at LEO heights, blowing from the Earth’s poles
to its equator at speeds greater than Mach 1. But finally he referred to King-Hele for a place
to begin: Assume the atmosphere co-rotates with the Earth.

117
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17.2 Orthonormal Vector Basis [a]

An appropriate orthonormal vector basis, call it [a], is required for representa-
tion of atmospheric drag and lift accelerations:

[a] =

 a1

a2

a3

 (17.6)

Unit vector K defines the direction of the spacecraft velocity vector relative to
the mean rotating atmosphere. Therefore it is appropriate to anchor [a] to K:

a2 = K = [i]
T
K = (a21, a22, a23) [i] (17.7)

Use:
U = r/r

to construct:
Λ = U×K (17.8)

Define:
a3 = Λ/λ = (a31, a32, a33) [i] (17.9)

where:
λ =
√

Λ ·Λ (17.10)

Complete the orthonormal basis with:

a1 = a2 × a3 = (a11, a12, a13) [i] (17.11)

Then:  a1

a2

a3

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 i1
i2
i3

 (17.12)

That is:
[a] = Rai [i] (17.13)

where:

Rai =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (17.14)

17.3 Drag-Lift Acceleration

The air drag-lift acceleration r̈DL is defined by:

r̈DL = [a]
T
z̈aDL (17.15)

Insert Eq. 17.13 into Eq. 17.15 to get:

r̈DL = [i]
T
RTaiz̈

a
DL = [i]

T
Riaz̈

a
DL (17.16)
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and compare this to:

r̈DL = [i]
T
z̈DL (17.17)

to write:

z̈DL = Riaz̈
a
DL (17.18)

where drag-lift acceleration components are identified with:

z̈aDL =

 z̈aLR
z̈aDI
z̈aLC

 =

 lift component radial
drag component intrack

lift component crosstrack

 (17.19)

Assume that integrals of the lift components z̈aLR and z̈aLC , and their errors,
are negligible2 relative to those of the scalar drag component z̈aDI , and replace
notation for the 3× 1 drag acceleration matrix z̈aDL with z̈aD. That is:

z̈aD =

 0
z̈aDI
0

 (17.20)

Let z̈D denote the associated 3× 1 drag acceleration matrix in inertial compo-
nents. Then from Eq. 17.18:

z̈D = Riaz̈
a
D (17.21)

17.4 Air-Drag Acceleration

17.4.1 Drag Acceleration

The perturbative air-drag acceleration matrix estimate has the form:

z̈D = −1

2
Bρ̂̊s2K (17.22)

where:

B =
CDA

m
(17.23)

where z̈D is a 3 × 1 perturbative drag acceleration matrix with inertial com-
ponents, where ρ̂ = ρ̂ (h) is is the atmospheric density estimate calculated ac-
cording to Eq. 17.52, CD is a unitless drag coefficient, A is the spacecraft area
projection onto a plane orthogonal to the spacecraft velocity vector r̊ referred
to a rotating Earth, s̊ is the length of r̊, m is spacecraft mass, and K is the
King-Hele 3× 1 unit matrix defined above that contains inertial components of
r̊/̊s.

2Integrals, and their errors, of the intrack component z̈aDI accumulate secularly into the
orbit mean motion and mean longitude estimates rev after rev, whereas integrals and errors of
the radial and crosstrack lift components z̈aLR and z̈aLC are quasi-periodic and have significant
canceling within each orbit period.
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17.5 Ballistic Coefficient Errors

The estimation errors ∆z̈D in LEO air-drag accelerations z̈D are due most sig-
nificantly to random errors in modeled atmospheric density ρ and ballistic co-
efficient B. Differentiation of Eq. 17.22 provides:

∆z̈D =

(
∆B

B
+

∆ρ

ρ

)
z̈D (17.24)

an associated instantaneous error model. We model both ∆B/B and ∆ρ/ρ as
exponentially correlated Gauss-Markov sequences. When their exponential half-
life times are significantly different, then they can be estimated simultaneously.
There is a significant subset of real LEOs for which this is true. We address
this subset to estimate ∆B/B and ∆ρ/ρ simultaneously. Parameter ∆B/B
is modeled directly, and simply, as an exponentially correlated Gauss-Markov
sequence. The modeling of parameter ∆ρ/ρ will now be described.

17.6 Atmospheric Density Errors

The atmospheric density error estimation model presented here was developed
by Wright between October 1996 and May 1998.

A stationary exponential Gauss-Markov sequence for relative air-density er-
ror is modeled at mean perigee height. This auto-correlated sequence is driven
by a white noise sequence whose variance is derived from a function that pro-
duced Figure 17.1, and from an input exponential half-life time constant. A
map from perigee height to height at current time is derived from Figure 17.1
and used for each point on the spacecraft trajectory integrator time grid. It is
important to note that the spacecraft physically samples its perigee height re-
gion, where air-density is greatest, once per orbit period. Thus there is a strong
periodic connection between the height modeled by the Gauss-Markov sequence
and spacecraft height. Filtered estimates of corrections to the CIRA 1972 air-
density model will thus be dominated by tracking measurements in the perigee
region. It is thus connected to air-density physics. CIRA 1972 is essentially
a synonym for Jacchia 1971. It produces modeled atmospheric density from a
lower height of 110 km to an upper height of 2000 km. However, the analysis
from which Figure 17.1 was derived extended to an upper height of only 800
km.

Two complete solar cycles of aP and F10 measurements provide a base-line
from which the variance on height dependent relative air-density error has been
averaged. Let us denote associated average values for aP and F10 with 〈aP 〉 and
〈F10〉.

This is the first time this physically-connected air-drag error model will have
been used in any system for operational orbit determination, or in the analysis
of orbit determination performance.
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Figure 17.1: Sigma for Relative Error in Air Density

17.6.1 Relative Error Base-Line Model on Air-Density

Define:

σ∆ρ/ρ̄ (h) =

√√√√E

{(
∆ρ (h)

ρ̄ (h)

)2
}

=

√
E
{

(∆ρ (h))
2
}

ρ̄ (h)
=
σ∆ρ (h)

ρ̄ (h)
(17.25)

where:

∆ρ (h) = ρ (h)− ρ̄ (h) (17.26)

where ρ (h) is true atmospheric density at height h (in km), and ρ̄ (h) is the
associated value of estimated atmospheric density according to the CIRA 1972
atmospheric density model. An estimated graph of σ∆ρ/ρ̄ (h) is presented by
Figure 17.1.

Let us denote this graph with the function:

f (h) = σ∆ρ/ρ̄ (h) (17.27)

17.6.2 Gauss-Markov Sequence on Air-Density Relative
Error

A stationary exponential Gauss-Markov sequence was introduced in Section
13.1 as a stochastic sequence that satisfies Kalman’s model Eqs. 4.1 and 4.2.
Stationary means that the variance on this sequence does not change with time.
We shall use this sequence to model the base-line relative error:

D (t) =
∆ρhP

(t)

ρ̄hP
(t)

(17.28)
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in atmospheric density at mean perigee height hP , where D (t) satisfies the
equation:

D (tk+1) = Φ (tk+1, tk)D (tk) +
√

1− Φ2 (tk+1, tk)w (tk) , k ε {0, 1, 2, . . .}
(17.29)

where w (t) is a Gaussian white random variable with mean zero and variance
σ2
w, and where:

D (t0) = w (t0) (17.30)

Φ (tk+1, tk) = eα(tk+1−tk) (17.31)

constant α < 0 (17.32)

Note from Figure 17.1 that the variance σ2
∆ρ/ρ̄ on air-density-relative-error varies

significantly with height h. Thus it is appropriate to choose a height for ∆ρ/ρ̄
that is fixed, or approximately fixed. Therefore we have anchored the relative
air-density error to mean perigee height hP . Note that:

E
{
D2 (tk)

}
= σ2

w, for each k, (17.33)

that D (tk) has a Gaussian distribution, and that D (tk) is Markov.

17.6.3 Propagation of State Estimate

Let D̂n|m denote an optimal estimate of D (tn), where tn is the epoch for D̂n|m
and tm is the time of last measurement. Then according to Sherman’s Theorem
Eq. 3.9:

D̂n|m = E {D (tn) |ym} (17.34)

Apply Eq. 17.34 to Eq. 17.29, where yk at time tk was the last measurement
processed:

D̂k+1|k = Φ (tk+1, tk) D̂k|k (17.35)

Eq. 17.35 is the filter state estimate propagation equation for the filter time-
update. Given measurement yk+1 at time tk+1 use Kalman’s filter measurement-
update theorem, derived from application of Eq. 17.34 to D (tk+1), for the
representation:

D̂k+1|k+1 = E {D (tk+1) |yk+1} (17.36)

Propagation of D̂k+1|k+1 to time tk+2:

D̂k+2|k+1 = Φ (tk+2, tk+1) D̂k+1|k+1
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17.6.4 State Estimate Error

Define the error in D̂n|m by:

δD̂n|m = Dn − D̂n|m (17.37)

Insert Eqs. 17.35 and 17.29 into Eq. 17.37:

δDk+1|k = Φ (tk+1, tk) δDk|k +
√

1− Φ2
k+1,kwk (17.38)

17.6.5 Process Noise Covariance

Base-Line Model

Square Eq. 17.38 and apply the expectation operator to get:

E
{(
δDk+1|k

)2}
= Φ2 (tk+1, tk)E

{(
δDk|k

)2}
+
(
1− Φ2

k+1,k

)
σ2
w (17.39)

Notice that:
E
{(
δDk|k

)2}
< σ2

w (17.40)

due to the processing of measurements by the optimal filter. Thus the stochastic
sequence defined by Eq. 17.38 is not stationary. The second term in the right-
hand side of Eq.17.39 is the base-line process noise covariance for deweighting
prior estimates of D:

q
∆ρ/ρ
k+1,k =

(
1− Φ2

k+1,k

)
σ2
w (17.41)

For long propagation time intervals [tk, tk+1] the factor
(

1− Φ2
k+1,k

)
tends to

unity, and this adds σ2
w. For short propagation time intervals [tk, tk+1] the factor(

1− Φ2
k+1,k

)
tends to zero, and only a small part of σ2

w is added. Thus the factor(
1− Φ2

k+1,k

)
drives the variance E

{(
δDk+1|k

)2}
toward σ2

w in the absence of

measurements, but adds little or nothing during dense measurements. When
mean values 〈aP 〉 and 〈F10〉 of aP and F10 are experienced, this is appropriate
for the base-line Gauss-Markov model.

But for an active Sun (solar maximum) when aP and F10 are much larger
than 〈aP 〉 and 〈F10〉, then an important model extension is called for. The
Gauss-Markov model must be immediately interrupted to open the filter gain,
particularly during dense measurements.

Active Sun

The CIRA 1972 atmospheric density model ρ̄ is a function of several arguments.
It will suffice in this section to write:

ρ̄ = ρ̄
(
h, F10, F̄10, aP , tk+1

)
(17.42)
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Define the unitless ratio:

R =
ρ̄
(
hP , F10, F̄10, aP , tk+1

)
ρ̄ (hP , 〈F10〉 , 〈F10〉 , 〈aP 〉 , tk+1)

(17.43)

and define Rmax. Initialize:
Rmax = 1 (17.44)

Algorithm: If R > Rmax, set Rmax = R and define:

Q
∆ρ/ρ
k+1,k = R2σ2

w (17.45)

else, set Rmax = R and define:

Q
∆ρ/ρ
k+1,k = q

∆ρ/ρ
k+1,k (17.46)

Use Q
∆ρ/ρ
k+1,k for air-density error process noise covariance deweighting. Effect:

When ρ̄ is increasing at hP due to F10, F̄10, and aP , then the air density variance
and filter gain are immediately opened to enable tracking measurements to
estimate significant changes in air density. But when ρ̄ is decreasing at hP due
to F10, F̄10, and aP , then the air density variance and filter gain begin their
return to the baseline model.

The active Sun model is an innovation in that it enables real time range
and/or Doppler spacecraft tracking measurements to estimate atmospheric den-
sity corrections due to extreme solar activity (e.g., CME), or due to mean or
quiet solar activity, in real time.

Real-Time Filtering of Tracking Data

Near real time values of F10 and aP are derived from global observatory mea-
surements. The 10 centimeter solar flux measurement F10 is available once per
day in near real time. The mean value F̄10, averaged over the previous four
solar rotations, is also available once per day. The geomagnetic measurement
aP , or KP , is available in near real time at the end of each three hour interval.

Time propagations of F10 and aP provide values for real-time filtering of
LEO tracking measurements. There is an obvious problem here. Namely, the
predicted values of F10 and aP always suffer from propagation error. Typically,
F10 and aP are treated as random walk stochastic sequences. Thus the last
observed value is used as the predicted estimate. Consider the prediction error
in aP during the geomagnetic response to a commencement of coronal mass
ejection at solar maximum. The aP may increase by several hundred per-cent
at any time during any three-hour prediction interval. Atmospheric density is
extremely sensitive to sudden changes in aP . Since there exists no real-time
measurement of aP , it is impossible to explicitly model the sudden change in
atmospheric density in real-time. What can one do?

If one forces the error variance on the relative atmospheric density parameter
to remain wide open during the entire time interval of solar maximum (say
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from two to four years), then the filter will be sensitive to sudden changes in
atmospheric density due to range and/or Doppler tracking data. However, filter
orbit accuracy performance will suffer during much of this time interval due
to passive geomagnetic activity and an excessively open gain on the relative
atmospheric density parameter. Also, the atmospheric density parameter will
experience huge and sudden estimate corrections, both positive and negative,
while the filter distributes its over-corrections throughout the multi-dimensional
state space with time.

If one controls the error variance on the relative atmospheric density pa-
rameter to behave in accordance with most variations in aP , then the filter
performance will be relatively satisfactory and smooth most of the time. How-
ever, the filter will not be responsive to sudden changes in atmospheric density.

Initialization

For filter initialization, define:

Q
∆ρ/ρ
k+1,k = R2σ2

w (17.47)

The filter should be restarted, using the filter restart capability, following filter
initialization.

17.6.6 Transform From Perigee Height to Current Height

Recall Eqs. 17.27 and 17.25 to write:

σ∆ρ (h)

ρ̄ (h)
= f (h)

f (hP )

f (hP )
=

f (h)

f (hP )
f (hP ) =

f (h)

f (hP )

σ∆ρ (hP )

ρ̄ (hP )
(17.48)

That is:

D (h) =
f (h)

f (hP )
D (hP ) (17.49)

Eq. 17.48 derives from:

∆ρ (h)

ρ̄ (h)
=

f (h)

f (hP )

∆ρ (hP )

ρ̄ (hP )
(17.50)

That is, square Eq. 17.50, apply expectation, and take square root to get Eq.
17.48. From Eq. 17.26:

ρ (h) = ρ̄ (h) + ∆ρ (h)

= ρ̄ (h)

[
1 +

∆ρ (h)

ρ̄ (h)

]
(17.51)

Insert Eq. 17.50 into Eq. 17.51:

ρ (h) = ρ̄ (h)

[
1 +

f (h)

f (hP )

∆ρ (hP )

ρ̄ (hP )

]
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and apply Sherman’s Theorem to get:

ρ̂ (h) = ρ̄ (h)

[
1 +

f (h)

f (hP )

∆ρ̂ (hP )

ρ̄ (hP )

]
or:

ρ̂ (h) = ρ̄ (h)

[
1 +

f (h)

f (hP )
D̂

]
(17.52)

Eq. 17.52 defines the method to map the filter estimate D̂ at perigee height hP
to the optimal estimate ρ̂ (h) of atmospheric density, at current height h, for use
in trajectory propagation.

17.6.7 Orbit Error Covariance

Acceleration Errors

Use the stochastic differential operator ∆ on Eq. 17.22 to relate random errors
in z̈D to random errors in ρ̂, where both are serially correlated:

∆z̈D = −1

2

(
CDA

m

)
s̊2∆ρ̂K (17.53)

where ∆ρ is represented according to Eq. 17.50:

∆ρ (h) = ρ̄ (h)
f (h)

f (hP )

∆ρ (hP )

ρ̄ (hP )
= ρ̄ (h)

f (h)

f (hP )
D (17.54)

Orbit Errors

Let Zi denote the 6x1 column matrix of position and velocity components, with
epoch at ti. From the theory of Variation of Parameters in Universal Variables:

dZi

dt
=
∂Zi

∂ż
z̈D

or:

dZi =
∂Zi

∂ż
z̈Ddt

where ∂Zi/∂z̈D is a 6x3 matrix and z̈D is a 3 × 1 matrix. Use the stochastic
differential operator ∆ on the equation above to relate random errors in Zi to
random errors in z̈D, where both are serially correlated, and exchange differential
operators on the left-hand side:

d
(
∆Zi

)
=
∂Zi

∂ż
∆z̈Ddt

Use the definite integral operator
∫ tj
ti

on the equation above to get:

∆Zi =

∫ tj

ti

∂Zi

∂ż
∆z̈Ddt
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Apply the expectation operator E {·} to the outer product on the equation
above to get:

E
{(

∆Zi
) (

∆Zi
)T}

=

∫ tj

ti

∫ tj

ti

(
∂Zi

∂ż
(t)

)
G (t, τ)

(
∂Zi

∂ż
(τ)

)T
dtdτ (17.55)

a 6× 6 matrix, where:

G (t, τ) = E
{

∆z̈D (t) ∆z̈TD (τ)
}

(17.56)

a 3× 3 matrix, and it is assumed that:

E {∆z̈D} = 0

E
{

∆Zi
}

= 0.

Repeat the above development using conditional expectations E
{

∆Zi|y
}

and

E
{(

∆Zi
) (

∆Zi
)T |y} where y is an m×1 column matrix of time-ordered mea-

surements. Invoke Sherman’s Theorem to remove the optimal estimate ∆Ẑi:

∆Ẑi = E
{

∆Zi|y
}

so that:
E
{

∆Zi|y
}
−∆Ẑi = 0

It is in this sense that the above assumptions are made. The optimal filter will

always remove ∆Ẑi so that the orbit error covariance E
{(

∆Zi
) (

∆Zi
)T |y} is

always calculated about ∆Ẑi, and not about the origin. Continue development
with the implicit agreement that all expectations are conditioned on measure-
ments of y.

Assume that the definite integral time |tj − ti| < ε is small. We will now
make what will seem to be rather gross approximations. They are justified by
the fact that we are looking for at most only two digits of significance in the
calculation of state error covariance quantities. First notice for Variation of
Parameters in Universal Variables that approximately:

∂Zi

∂ż
∼=
[

03×3

I3×3

]
Then: (

∂Zi

∂ż
(t)

)
G (t, τ)

(
∂Zi

∂ż
(τ)

)T
∼=
[

03×3 03×3

03×3 G (t, τ)

]
Eq. 17.55 becomes:

E
{(

∆Zi
) (

∆Zi
)T} ∼= ∫ tj

ti

∫ tj

ti

[
03×3 03×3

03×3 G (t, τ)

]
dtdτ
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Further, insert the double impulsive sifting integral into the integrand to get:

E
{(

∆Zi
) (

∆Zi
)T}

=

[
03×3 03×3

03×3 G (ti, ti) [tj − ti]2
]

(17.57)

Insert Eqs. 17.53 and 17.54 into 17.56 to get:

G =

(
−1

2

(
CDA

m

)
ś2

)2

E
{

(∆ρ̂)
2
}
KKT (17.58)

The orbit error transition function Φ will integrate the velocity error covari-
ance G (ti, ti) [tj − ti]2 into position error covariance with a lag of one time unit
[tj − ti]. A reasonable time increment upper bound is given by:

|tj − ti| ≤ ε = P/50

where P is orbit period.



Chapter 18

Solar Photon Pressure

When spacecraft height is sufficiently low, the perturbative accelerations and
modeling errors due to solar photon pressure are masked by the perturbative
accelerations and modeling errors due to air-drag. Knowledge of this height is
necessary for setting the force model for numerical trajectory propagation, and
for the estimation of drag and/or solar pressure parameters. Musen (see Baker
[4] page 188) put this height at 800 km, whereas Vokrouhlicky [112] put this
height at 300 km.

Hujsak [40] presents a useful survey for identification of state-of-the-art solar
pressure modeling.

18.1 Coordinate Frame for Solar Pressure

Stochastic stationary Gauss-Markov sequences are used for estimation of ob-
servable solar pressure parameters. It is desirable to select a coordinate frame
that best supports stationarity. The spacecraft-Sun line is a natural accessible
choice. To this end, let r denote the ECI position vector of the spacecraft center
of mass, let S denote the ECI position vector of the Sun center of mass, and let
ρ denote the vector from Sun center of mass to spacecraft center of mass. Then:

ρ = r− S (18.1)

enables definition of the unit vector s1 from Sun to spacecraft:

s1= ρ/ρ = [i]
T

 s11

s12

s13

 (18.2)

where:
ρ =
√
ρ · ρ (18.3)

Use the orbit angular momentum defined in Section 1.2.1 to specify the unit
vector W. Then construct an intermediate vector T orthogonal to both s1 and

129
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W:

T = W × s1 (18.4)

and use its unit vector for the orthonormal basis:

s2 = T/T = [i]
T

 s21

s22

s23

 (18.5)

where:

T =
√

T ·T (18.6)

Finally:

s3 = s1 × s2 = [i]
T

 s31

s32

s33

 (18.7)

completes the orthonormal vector basis [s] for specification of solar pressure:

[s] =

 s1

s2

s3

 (18.8)

The direction of solar photon motion is defined by s1. The rotation Rsi from [i]
to [s] is given by:

[s] = Rsi [i] (18.9)

where:

Rsi =

 s11 s12 s13

s21 s22 s23

s31 s32 s33

 (18.10)

We also have need of unit vector U, defined in Section 1.2.1, to specify the
direction of IR photons from Earth to spacecraft.

18.2 Solar Pressure Acceleration

Pechenick’s model[95] is implemented for two approximations to the satellite
shape and characteristics. The difference between the two models is simply a
multiplicative scale factor which will be absorbed during the estimation process.
The sphere with perfect absorption model is the model most commonly used in
trajectory generation software.
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18.2.1 Notation

Symbols used for our solar pressure acceleration model are identified in the fol-

lowing table:

m mass of spacecraft
L luminosity of Sun
ρ distance from Sun to spacecraft
r̈S solar pressure acceleration of spacecraft
rD diffuse reflection coefficient
rS specular reflection coefficient
n̂ unit outward normal vector to spacecraft surface element

k̂ unit vector defines direction of motion of photons from Sun to spacecraft
dA infinitesimal element of spacecraft surface area
c speed of light

18.2.2 Conservation of Linear Momentum

From conservation of linear momentum, Pechenick[95] integrates over a convex
illuminated spacecraft surface to find the following expression for spacecraft
solar pressure acceleration:

r̈S =
L

4πρ2mc

∫ ∫ [
(1− rS) k̂−2

3
rDn̂− 2rS

(
−k̂ · n̂

)
n̂

](
−k̂ · n̂

)
dA (18.11)

where:

k̂ · n̂ <0 (18.12)

k̂ = s1 (18.13)

L = 3.8530× 1026 joules

sec

(
kg m2

sec3

)
(18.14)

c = 2.99792458× 108 m

sec
(18.15)

1 au = 1.49600× 1011 m (18.16)

From Eq. 18.11 Pechenick derives the solar pressure acceleration for a spherical
surface, a flat plate, a cylinder with closed ends, and various surface orientation
averages over the flat plate and cylinder.

18.2.3 Spherical Surface Diffuse Reflection

Spacecraft solar pressure acceleration due to a spherical surface:

r̈S =
L

4πρ2mc
πR2

s

(
1 +

4

9

)
rDk̂ (18.17)
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where Rs is radius of the sphere. Define a constant:

KS =

(
1 + 4

9

)
L

4c
,

(
default: 4.6411× 1017 kg-m

sec2

)
(18.18)

This leaves rD, ρ, m, and Rs for use as time variables. Variations in ρ can be
as large as twice the orbit semi-major axis if the orbit line of nodes lies along
the Sun-spacecraft line. Then:

r̈S = KS

(
R2
s

ρ2m

)
rDk̂ (18.19)

Example: For a spherical spacecraft with ρ = 1 au, rD = 0.75, Rs = 1 m, and
m = 1 kg we have:

|̈rS | = 1.5553× 10−5 m

sec2

Eq. 18.17 can be written in conventional operational form for diffuse photon
reflection:

r̈S =
L

4πρ2c

AS
m

(
1 +

4

9

)
CRk̂ (18.20)

where CR is the solar pressure coefficient and AS is the spacecraft area exposed
to the Sun:

CR = rD and AS = πR2
s (18.21)

18.2.4 Spherical Surface Perfect Absorption

For perfect photon absorption:

r̈S =
L

4πρ2c

AS
m
CRk̂ (18.22)

18.3 Eclipse Modeling

18.3.1 Selection

The cylindrical model used by GSFC/GTDS for solar pressure eclipsing is re-
jected as a result of complete failure (10 sigma) of rigorous filter-smoother con-
sistency testing with real GEO tracking data.

Computational tractability currently excludes use of an atmospheric refrac-
tion model for solar pressure eclipsing. For example, consider Vokrouhlicky’s
[112] atmospheric refraction model. The angular width of a 50 km atmospheric
slab, when seen from LAGEOS’ height of 5500 km, is about 16 arcmin, and this
is half the apparent size of the undistorted solar disk. Due to differential atmo-
spheric refraction of solar rays, the entire solar disk is easily contained within
the 16 arcmin atmospheric width. The apparent solar image is highly flattened.
The associated radiant force is highly correlated with this refraction effect, and
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Figure 18.1: Dual-Cone Eclipse Geometry

the two-cone umbra-penumbra definition is made obsolete. Atmospheric refrac-
tion produces a long-lived perturbation tail of solar rays deep into the umbra
region for the two-cone model.

Until a tractable atmospheric refraction model is available, we shall use
Baker’s [4] two-cone eclipsing model with three sharply defined geometrical
conditions: full sunlight, penumbra (partial eclipse), and umbra (total eclipse).
Physically, the two-cone model is appropriate for a planet with no atmosphere.
Baker’s model ignores atmospheric refraction and solar limb darkening.

Rigorous filter-smoother consistency testing with real GEO tracking data
demonstrated performance just within 3 sigmas. While poor, this result is far
superior to that using a cylindrical eclipsing model. Also, the filter-smoother
test result confirms Vokrouhlicky’s analysis results relating to absence of models
for atmospheric refraction and solar limb darkening.

18.3.2 Baker’s Dual-Cone Eclipse Model

Baker [4] defines:

f (γ, η, ξ) =


1 ξ > γ + η full sunlight
0 η + ξ ≤ γ umbra, none
f1 η + ξ > γ penumbra
f2 γ + ξ < η annular eclipse

(18.23)

where:
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Figure 18.2: Baker’s Solar Obscura

f1 = 1−

[(
γ

η

)2(
α− 1

2
sin (2α)

)
+

(
β − 1

2
sin (2β)

)]
/π (18.24)

f2 =

(
γ

η

)2

(18.25)

sin γ = ae/r (18.26)

sin η = aS/ρ (18.27)

cos ξ = r · ρ (18.28)

sinα =
2K

ξγ
(18.29)

sinβ =
2K

ξη
(18.30)

cosα =
ξ2 + γ2 − η2

2ξγ
(18.31)
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cosβ =
ξ2 − γ2 + η2

2ξη
(18.32)

S =
ξ + γ + η

2
(18.33)

K =
√
S (S − η) (S − γ) (S − ξ) (18.34)

ae = 1 er ' rγ (18.35)

ãS = 108.966 er ' rη (18.36)

R̃ ' rξ (18.37)

18.3.3 Earth Radius

The errors incurred by use of a two-cone model can be reduced by artificially in-
flating the modeled Earth radius so as to increase its shadow size. See Vokrouh-
licky [112], midway through Section 5. Hujsak [40] cites McCarthy [71] and Link
[63] on this practice, and notes that Link traces it back to 1707. McCarthy rec-
ommends increasing the effective radius of the Earth by 24 km to 6402 km, with
1738 km for radius of the Moon, and 696000 km for radius of the Sun.

18.4 Stochastic Solar Pressure Error Model

Let p denote a unitless time-varying Gauss-Markov parameter for solar pressure
defined by:

p = rD − r̄D (18.38)

where rD is associated with Eq. 18.17, and r̄D denotes a model constant with
default value r̄D = 0.75. Insert Eq. 18.38 into Eq. 18.19 to get:

r̈S = KS

(
R2
s

ρ2m

)
(r̄D + p (t)) k̂ (18.39)

where p (t) is a stationary Gauss-Markov sequence:

p (tk+1) = Φ (tk+1, tk) p (tk) +
√

1− Φ2 (tk+1, tk)w (tk) , k ε {0, 1, 2, . . .}
(18.40)

defined by Eqs. 17.29 (with D → p) through 17.40, except that solar pressure
values are assigned to σ2

ω and α.
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Chapter 19

GPS Solar Pressure Models

19.1 GSPM.04a

Implementation of the JPL GSPM.04a models for Block IIA and Block IIR
satellites follows Bar-Sever and Kuang (2004) [6]. This model was derived from
a study of non-eclipsing satellites. The model is dependent on the angle of the
sun out of the orbit plane (angle β), but holds the absolute value of the angle
β at 14.5 degrees for cases where β goes below 14.5, as is the case for eclipsing
satellites. The form of the model is the same for Block IIA and Block IIR
satellites, but the coefficients are different.

19.2 GSPM.04ae

Implementation of the JPL GSPM.04ae models for Block IIA and Block IIR
satellites follows reference Bar-Sever and Kuang (2005) [7]. This model was
derived as an extension of the GSPM.04a models Bar-Sever and Kuang (2004)
[6], where the models deviate from the GSPM.04a models only for eclipsing
satellites. The model is dependent on the angle β of the sun out of the orbit
plane, but drops one term involving division by the sine of β when β goes below
one degree. The form of the model is the same for Block IIA and Block IIR
satellites, but the coefficients are different.

19.3 AeroT20

Implementation of the Aerospace T20 model for use with Block IIA satellites
follows O’Toole[91]. This model originally presented in Bar-Sever and Kuang
(2004) [6].
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19.4 AeroT30

Implementation of the Aerospace T30 model for use with Block IIA satellites
follows O’Toole[91]. This model originally presented in Fliegel [24].

19.5 Estimation

Consider estimation of the K1 and K2 parameters of the GPS solar pressure
model. K1 is a unitless parameter which scales the acceleration along the sun
to satellite line. The nominal value of K1 is 1.0. K2 is provided in units
of 10−12m/s2 and specifies the acceleration along the GPS body-fixed Y axis.
This is often is referred to as the Y-bias acceleration. The Y axis points in
opposite directions for Block IIA and Block IIR satellites when they are in their
nominal attitudes. Nominal values for K2 are on the order of 1. For estimation
purposes, the complete values of K1 and K2 are given as

K1 = K̄1 +K1,GM (19.1)

K2 = K̄2 +K2,GM (19.2)

where K̄1 and are K̄2 constant nominal values and K1,GM and K2,GM are
sequentially correlated Gauss-Markov random variables.



Chapter 20

Spacecraft Thrusting

The Frenét vector basis [f ] = (f1, f2, f3)
T

was selected for definition of coor-
dinate frame to represent input thrust accelerations. Many operational thrust
maneuvers are specified to change only the orbit period (or semi-major axis)
with thrusting along the spacecraft inertial velocity vector. The second vector
component f2 of the Frenét basis isolates this effect. See Eq. 1.13 through Eq.
1.20 for complete definition of the Frenét vector basis.

Impulsive maneuver models are physically unrealistic because the thrust
burn time interval is zero – infinitely small. Physically realistic maneuver mod-
eling imitates the maneuver with an appropriate finite thrust burn time – for
finite maneuver.

20.1 Impulsive Maneuver Model

The impulsive acceleration model is always an approximation. It is a good
approximation when the thrusting time interval is very short compared to orbit
period. When the thrusting time interval is significant compared to orbit period,
the impulsive acceleration model is essentially useless.

Model the impulsive acceleration as a three-dimensional vector Dirac delta
functional AD (t). Then in the three-dimensional velocity space we have a (dis-
continuous) Heaviside step functional vector ∆V (t), and in the three-dimensional
position space we have a (continuous) corner functional vector. ∆V (t) is a gen-
eralized integral to AD (t).

20.1.1 Trajectory

Define components of vector ∆V = ∆V (t) with the equation:

∆V = [i]
T

∆V i = [f ]
T

∆V f (20.1)
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where:

∆V i =

 ∆V i1
∆V i2
∆V i3

 , inertial components (20.2)

∆V f =

 ∆V f1
∆V f2
∆V f3

 , Frenét components (20.3)

Insert Eq. 1.20 into Eq. 20.1:

∆V = [i]
T

∆V i = [i]
T
RTfi∆V

f (20.4)

to get:
∆V i = RTfi∆V

f (20.5)

∆V f = Rfi∆V
i (20.6)

Eq. 20.5 enables conversion of input Frenét components of ∆V f to inertial
components of ∆V i. The inertial components of ∆V i = ∆V i (tC) are added
directly to velocity components of the predicted trajectory estimate at time of
centroid tC .

20.1.2 Trajectory Error Covariance

Let us denote the error in vector ∆V with δV. Replace ∆ with δ in the notation
above to get:

δV i = RTfiδV
f (20.7)

δV f = RfiδV
i (20.8)

Take the expectation of the outer product on Eq. 20.7:

E
{
δV i

(
δV i

)T}
= RTfiE

{
δV f

(
δV f

)T}
Rfi (20.9)

and give names to the 3× 3 covariance matrices:

P iδV = E
{
δV i

(
δV i

)T}
(20.10)

P fδV = E
{
δV f

(
δV f

)T}
(20.11)

Then:
P iδV = RTfiP

f
δVRfi (20.12)

The user will specify the square-roots (sigmas) to the diagonal elements of the

input Frenét covariance matrix P fδV in user units, the program will convert to
internal units and square the user inputs to form variances, insert the variances
into the diagonal elements of P fδV , and put zeros in the off-diagonal elements

of P fδV . The program will then evaluate Rfi and perform the multiplications
indicated by Eq. 20.12 to calculate P iδV . The program will add P iδV = P iδV (tC)
to the velocity covariance submatrix at time tC .
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20.1.3 Time of Centroid tC

Let tB and tE denote begin-burn and end-burn times, and let Af (t) denote a
Frenét matrix 3 × 1 acceleration function across [tB , tE ]. The time of centroid
for each Frenét component tCj is defined by:

tCj =
Mf
j

∆V fj
, j ∈ {1, 2, 3} (20.13)

where:

Mf
j =

∫ tE

tB

tAfj (t) dt (20.14)

∆V fj =

∫ tE

tB

Afj (t) dt (20.15)

If the acceleration is given along Frenét component k only, where k ∈ {1, 2, 3},
then:

tC = tCk (20.16)

If not, then a weighted combination of times is in order:

tC =

3∑
k=1

WktCk (20.17)

where:
3∑
k=1

Wk = 1, Wk ≥ 0 (20.18)

and where weight Wk, k ∈ {1, 2, 3}, is derived from
∣∣∣∆V fj ∣∣∣ , j ∈ {1, 2, 3}; e.g.:

Wk =

∣∣∣∆V fk ∣∣∣∑3
j=1

∣∣∣∆V fj ∣∣∣ (20.19)

Constant Acceleration Components

Given that Afj (t) is a time constant, then Eqs. 20.15, 20.14, and 20.13 are
reduced to:

∆V fj = Afj (tE − tB) (20.20)

Mf
j =

1

2
Afj
(
t2E − t2B

)
(20.21)

tCj =
1

2
(tE + tB) (20.22)
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20.2 Impulsive Maneuver Error Covariance

20.2.1 Notation

tk−1, time of last measurement before burn

tc, burn time centroid

tk = t(−)
c = tc − ε/2, start burn time

tk+1 = t(+)
c = tc + ε/2 = end burn time

tk+2 = time of first measurement after burn

P̂∆V
c , cov for ∆V at tc

20.2.2 Time Relations

tk−1 < tk < tc < tk+1 < tk+2

ε > 0

20.2.3 Covariance

Filter Running Forward with Time

Given P̂k−1|k−1 at time of last measurement before burn, then:

P̂
(−)
c|k−1 = Φc,k−1P̂k−1|k−1ΦTc,k−1 + P

∫ ∫
c,k−1 (20.23)

P̂
(+)
c|k−1 = P̂

(−)
c|k−1 + P̂∆V

c (20.24)

P̂k+2|k−1 = Φk+2,cP̂
(+)
c|k−1ΦTk+2,c + P

∫ ∫
k+2,c (20.25)
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Smoother Running Backward with Time

Nominally:
P̃L|L = P̂L|L (20.26)

...

P̃k+2|L = P̂k+2|k+2 +Ak+2,k+3

[
P̃k+3|L − P̂k+3|k+2

]
ATk+2,k+3 (20.27)

The smoother covariance P̃k+2|L is now available at time of first measurement
after burn. Then:

P̃
(+)
c|L = P̂

(+)
c|k−1 +Ac,k+2

[
P̃k+2|L − P̂k+2|k−1

]
ATc,k+2 (20.28)

where:
Ac,k+2 = P̂

(+)
c|k−1ΦTk+2,cP̂

−1
k+2|k−1 (20.29)

and:
P̃

(−)
c|L = P̂

(−)
c|k−1 +Ac,c

[
P̃

(+)
c|L − P̂

(+)
c|k−1

]
ATc,c (20.30)

where:

Ac,c = P̂
(−)
c|k−1

(
P̂

(+)
c|k−1

)−1

(20.31)

20.3 Impulsive Maneuver Covariance

From the smoothed estimates X̃k+1|L = X̃
(+)
c|L and X̃k|L = X̃

(−)
c|L , the difference

DX̃c|L = X̃k+1|L−X̃k|L is calculated so as to quantify the difference in smoothed
estimates, before and after the impulsive maneuver. The purpose here is to
derive the associated error covariance P̃c|L defined by:

P̃c|L = E

{
δDX̃c|L

(
δDX̃c|L

)T}
(20.32)

on the error difference:

δDX̃c|L = δX̃k+1|L − δX̃k|L (20.33)

So:

P̃c|L = E

{(
δX̃k+1|L − δX̃k|L

)(
δX̃k+1|L − δX̃k|L

)T}
= E

{
δX̃k+1|L

(
δX̃k+1|L

)T}
+ E

{
δX̃k|L

(
δX̃k|L

)T}

−
[
E

{
δX̃k+1|L

(
δX̃k|L

)T}
+ E

{
δX̃k|L

(
δX̃k+1|L

)T}]
(20.34)
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Note that the sum in square brackets is symmetric, but neither of its terms is

symmetric. Covariance matrices E

{
δX̃k+1|L

(
δX̃k+1|L

)T}
and E

{
δX̃k|L

(
δX̃k|L

)T}
are readily available from standard smoother output. But:

P̃k+1,k|L = E

{
δX̃k+1|L

(
δX̃k|L

)T}
(20.35)

and:

P̃k,k+1|L = E

{
δX̃k|L

(
δX̃k+1|L

)T}
(20.36)

are not available. Our purpose now is to derive a structure to evaluate P̃k+1,k|L

and P̃k,k+1|L. Begin with Meditch[77], page 221, Eq. 6.48:

δX̃k|L = δX̂k|k −Ak,k+1

(
X̃k+1|L − X̂k+1|k

)
(20.37)

where:
Ak,k+1 = P̂k|kΦTk+1,kP̂

−1
k+1|k (20.38)

Let Xk denote truth, and let Xk|j denote an estimate. The error δXk|j in Xk|j
is defined by:

δXk|j = Xk −Xk|j (20.39)

Eq. 20.37 then becomes:

δX̃k|L = δX̂k|k −Ak,k+1

(
δX̂k+1|k − δX̃k+1|L

)
(20.40)

Insert Eq. 20.40 twice into Eq. 20.36 to get:

P̃k,k+1|L = E

{
δX̃k|L

(
δX̃k+1|L

)T}
= E

{
δX̂k|k

(
δX̂k+1|k+1

)T}
+Ak,k+1 [B − C] (Ak+1,k+2)

T

+

(
E

{
δX̂k|k

(
δX̃k+2|L

)T}
− E

{
δX̂k|k

(
δX̂k+2|k+1

)T})
(Ak+1,k+2)

T

+Ak,k+1

(
E

{
δX̃k+1|N

(
δX̂k+1|k+1

)T}
− δX̂k+1|k+1

(
δX̂k+2|k+1

)T)
(20.41)

where:

B = E

{
δX̂k+1|k

(
δX̂k+2|k+1

)T}
+ E

{
δX̃k+1|L

(
δX̃k+2|L

)T}
(20.42)

C = E

{
δX̃k+1|L

(
δX̂k+2|k+1

)T}
+ E

{
δX̂k+1|k

(
δX̃k+2|L

)T}
(20.43)
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20.3.1 Discussion

Eq. 20.41 appears to be recursive, containing both E

{
δX̃k|L

(
δX̃k+1|L

)T}
and

E

{
δX̃k+1|L

(
δX̃k+2|L

)T}
. If simplification can be found to remove the implied

recursion, then implementation is feasible at a later date. If not, a conservative
approximation to P̃c|L is given by:

P̃c|L = E

{
δX̃k+1|L

(
δX̃k+1|L

)T}
+ E

{
δX̃k|L

(
δX̃k|L

)T}
where:

E

{
δX̃k+1|L

(
δX̃k|L

)T}
+ E

{
δX̃k|L

(
δX̃k+1|L

)T}
is ignored (set to zero). The recursion would need to be initialized from ini-
tial conditions in the filter and initial conditions in the smoother followed by
associated sequential calculations.

20.4 Finite Maneuver Model

20.4.1 Kinematics

Let [t] = [t1, t2, t3]
T

denote an orthonormal vector basis variable [t] ∈ {[i] , [u] , [f ]}
that may be assigned inertial [i], Gaussian [u], or Frenét [f ] according to user

selection. Thus [t] is a trajectory frame. Let [b] = [b1,b2,b3]
T

denote an or-
thonormal vector basis where b3 is defined to be the nominal thrust direction.
Thus [b] defines the nominal maneuver (thrust direction) coordinate frame. Re-
late [b] to [t] with the 3× 3 orthogonal rotation matrix Rbt:

[b] = Rbt [t] (20.44)

[t] = RTbt [b] (20.45)

When Rbt = I3×3, then the nominal thrust direction b3 = t3 is referred directly
to a trajectory frame [t]. Let T = T (t) denote the time-dependent spacecraft
thrust vector, and let T̂ denote the thrust unit vector:

T̂ = T/T (20.46)

where thrust magnitude T is defined:

T =
√

T ·T (20.47)

Then T̂ has components referred to [b]:

T̂ = [b]
T

 T̂1

T̂2

T̂3

 (20.48)
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b1

b2

b3

T

Φh ΦV 1

Figure 20.1: Unit Thrust Referred to Maneuver Frame

defined by horizontal angle ϕh and vertical angle ϕv such that:

tanϕh =
T̂1

T̂3

(20.49)

tanϕv =
T̂2

T̂3

(20.50)

T̂3 =
(
1 + tan2 ϕh + tan2 ϕv

)−1/2
(20.51)

By inspection: (
T̂1

)2

+
(
T̂2

)2

+
(
T̂3

)2

= 1
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Estimate σ States
none N/A none
T ϕh, ϕv,∆T/T ∆T/T
T ϕh, ϕv, T T
ϕh, ϕv, T ϕh, ϕv,∆T/T ϕh, ϕv,∆T/T
ϕh, ϕv, T ϕh, ϕv, T ϕh, ϕv, T
ϕh, ϕv, T T components T components

Table 20.1: Table Caption

20.4.2 Dynamics

Let us denote the acceleration vector due to thrust with AT . Then:

AT = AT T̂ (20.52)

where AT is the acceleration magnitude. From Newton’s second law:

T = mAT (20.53)

where m is spacecraft mass.

20.4.3 Stochastic Sequences

Angles ϕh and ϕv, and relative thrust magnitude ∆T/T are modeled as Gauss-
Markov biases, and are not expected to be large.

20.4.4 Estimation

Thrust magnitude T , or relative thrust magnitude ∆T/T , angles ϕh and ϕv,
and AT components on inertial, Gaussian, and Frenét frames may be estimated,
with a variety of user selected options.
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Spacecraft Attitude
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Chapter 21

Attitude Modeling

The attitude of satellites may be specified through two mechanisms:

� Geometrically defined orientation of the body axes relative to specified
inertial directions, referred to as the Aligned and Constrained attitude
specification

� A time history of attitude states in the form of quaternions or Euler angles
contained in a file

However the attitude for the satellite is defined, it is used in ODTK to
determine the location of antenna phase centers used in observation modeling.
Antenna phase center locations are specified as fixed locations in the body frame
of the satellite. The origin of the satellite body frame is at the center of mass
of the satellite by default, but fixed coordinates in the body frame may also
be specified for the center of mass. The inertial location of the antenna phase
center is computed for use in observation modeling as follows,

Rant= Rcm +M (rant − rcm) (21.1)

where Rcm is the inertial location of the center of mass of the satellite, M is the
current 3×3 rotation matrix from body fixed coordinates to inertial coordinates,
rant is the antenna phase center location relative to the origin of the body frame
expressed in body fixed coordinates and rcm is the center of mass location
relative to the origin of the body frame expressed in body fixed coordinates.

21.1 Antenna Phase Center Estimation

The GPS measurement models in ODTK support estimation of the antenna
phase center location in the body frame of the satellite when applied to a space
based GPS receiver. In this case, the antenna phase center coordinates are
estimated as constants. Estimation of the antenna phase center is facilitated by
applying the chain rule to the observation partials with respect to the inertial

151
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antenna phase center location to obtain the observation partials with respect to
the antenna phase center location in the body fixed frame. If α is the observed
quantity, then

∂α

∂rant
=

∂α

∂Rant

∂Rant

∂rant
=

∂α

∂Rant
M (21.2)



Part V

State Error Transition

153





Chapter 22

Transitive Partial
Derivatives

22.1 State Error Transition Function

The stateX may contain one or more observable orbits Zi, associated observable
acceleration model parameters Ai, associated observable measurement model
parameters Bi, and other observable parameters:

X =



Z1

A1

B1

Z2

A2

B2

...


The state error transition function Φ (tk, tj) will be calculated as the Jacobian
matrix ∂X (tk) /∂X (tj):

Φ (tk, tj) =
∂X (tk)

∂X (tj)
(22.1)

22.2 Position & Velocity Partials

Recall Eqs. 1.24, 1.25, and 1.35.

Z =

[
z
ż

]
=


z1

z2

z3

ż1

ż2

ż3

 =


Z1

Z2

Z3

Z4

Z5

Z6
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for notation for spacecraft position component matrix z, velocity component
matrix ż, and their composition Z. The 6x6 matrix of partial derivatives:

ΦZ (tk, tj) =
∂Z (tk)

∂Z (tj)

moves position and velocity error ∆Z (t) from time tj to time tk:

∆Z (tk) =
∂Z (tk)

∂Z (tj)
∆Z (tj) = ΦZ (tk, tj) ∆Z (tj)

22.2.1 Two-Body Transition Matrix

The two-body 6x6 matrix ΦZTB (tk, tj) of two-body partial derivatives for Uni-
versal Variables given by Herrick ([34] 15C)1 has been shown to be sufficient for
geocentric applications that have dense tracking data with time. But they have
been shown to be insufficient for sparse tracking data with time. They are also
likely to be insufficient for cases where two-body gravity is not the dominant
force acting on the spacecraft. For these cases it is appropriate to use variational
equations to incorporate perturbative effects in the orbit transition function.

22.2.2 Variational Equations Transition Matrix

Eq. 22.10 gives the general structure for the differential variational equations.

General Structure

Let ΦZ (tk, tj) denote the 6x6 matrix of variational equations. It is appropriate

to first derive a representation for ΦZ (tk, tj). The time derivative Ż (t) of the
orbit Z (t) is some nonlinear function f (Z, t) of the orbit Z and time t:

Ż (t) = f (Z, t) (22.2)

Recall Eq. 1.36:

Z (t) = ϕz {t;Z (t0) , t0, u (Z (τ) , τ) , t0 ≤ τ ≤ t} (22.3)

Differentiate Eq. 22.2 with respect to Z (t0) with t0 fixed

∂Ż (t)

∂Z (t0)
=
∂f (Z, t)

∂Z

∂ϕz
∂Z (t0)

=
∂Ż (t)

∂Z (t)

∂Z (t)

∂Z (t0)
(22.4)

because Z (t0) is a constant. Then:

∂Ż (t)

∂Z (t0)
=

d

dt

∂Z (t)

∂Z (t0)
(22.5)

1A simple correction is required to the second equation of (Herrick 15C20B).
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Insert this into Eq. 22.4 to get:

d

dt

∂Z (t)

∂Z (t0)
=
∂Ż (t)

∂Z (t)

∂Z (t)

∂Z (t0)
(22.6)

Let us denote:

Φ (t) =
∂Z (t)

∂Z (t0)
(22.7)

A (t) =
∂Ż (t)

∂Z (t)
(22.8)

and note that:
Φ (t) = I6×6 (22.9)

Eq. 22.6 has the form:
Φ̇ (t) = A (t) Φ (t) (22.10)

Symbolically, write the integral to Eq. 22.10 as:

Φ (t) = I6×6 +

∫ t

t0

A (τ) Φ (τ) dτ (22.11)

The implementation of Eq. 22.11 benefits from simultaneous numerical integra-
tion with the numerical integration of the orbit.

The A Matrix

In essence, the problem for integration of the variational equation, Eq. 22.10,
is to calculate the matrix A (t) defined by Eq. 22.8:

A =

[
A11 A12

A21 A22

]
(22.12)

where:

A11 =
∂ż

∂z
= 03×3 (22.13)

since position and velocity are instantaneously independent. Then:

A12 =
∂ż

∂ż
= I3×3 (22.14)

A21 =
∂z̈

∂z
(22.15)

A22 =
∂z̈

∂ż
(22.16)

Geopotential

The geopotential is a function only of position and time. Therefore A22 = 03×3,
and we are left with the calculation only of A21.
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Calculate A21

Write the geopotential function U (negative potential energy per unit spacecraft
mass) as:

U =
µ

r

∞∑
n=0

(ae
r

)n n∑
m=0

Pnm (sinϕ) {Cnm cosmλ+ Snm sinmλ}

=

∞∑
n=0

n∑
m=0

{CnmUnm + SnmVnm} (22.17)

where ϕ and λ are geodetic latitude and longitude, Pnm (sinϕ) are Legendre
functions of degree n and order m, and:

Unm =

(
µane
rn+1

)
Pnm (sinϕ) cosmλ (22.18)

Vnm =

(
µane
rn+1

)
Pnm (sinϕ) sinmλ (22.19)

The 3 × 1 gravitational acceleration matrix z̈eG, referred to an Earth-fixed or-
thonormal vector basis, is derived from the 3 × 1 gradient vector component
matrix 5ethat has been applied to the geopotential function U :

z̈eG = 5eU =

∞∑
n=0

n∑
m=0

{Cnm 5e Unm + Snm 5e Vnm} (22.20)

The gravitational acceleration matrix z̈eG in Earth-fixed components is rotated
to an inertial component matrix z̈G by application of the 3× 3 rotation matrix2

Rie:

z̈G = Riez̈
e
G = Rie

∞∑
n=0

n∑
m=0

{Cnm 5e Unm + Snm 5e Vnm} (22.21)

Then the A21 matrix has the representation:

A21 =
∂z̈G
∂z

= Rie

∞∑
n=0

n∑
m=0

{
Cnm

∂ (5eUnm)

∂z
+ Snm

∂ (5eVnm)

∂z

}
(22.22)

Evaluation of the second derivative terms in Eq. 22.22 is accomplished with a
fast running recursive technique on indices n and m.

2Precession, nutation, Greenwich rotation, and polar motion.
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22.3 Air-Drag Partials

Consider:

X =

[
Z
D

]
(22.23)

where Z is a 6x1 substate consisting of spacecraft position and velocity, and D
is a scalar 1x1 air-drag substate coefficient. The drag parameter D is modeled
as an exponential Gauss-Markov sequence. Then:

∂X (tk+1)

∂X (tk)
=
[

∂X(tk+1)
∂Z(tk)

∂X(tk+1)
∂D(tk)

]
=

[
∂Z(tk+1)
∂Z(tk)

∂Z(tk+1)
∂D(tk)

∂D(tk+1)
∂Z(tk)

∂D(tk+1)
∂D(tk)

]
(22.24)

where:
∂D (tk+1)

∂Z (tk)
= 01x6 (22.25)

The 6x6 position and velocity Jacobian matrix ∂Z (tk+1) /∂Z (tk) is calculated
in the filter TimeUpdate() function using either an analytic two-body approx-
imation, a fully perturbative numerical method, or a fast running perturba-
tive numerical method that uses Encke’s method. The 1x1 air-drag derivative
∂D (tk+1) /∂D (tk) = Φ (tk+1, tk) is given by Eq. 17.31, and the 6x1 Jacobian
matrix ∂Z (tk+1) /∂D (tk) is the subject of this section.

Generalize Eq. 1.36 to get:

X (tk+1) = ϕ {tk+1;X (tk) , tk, u (X (τ) , τ) , tk ≤ τ ≤ tk+1} (22.26)

Insert Eq. 22.26 into the 6x1 Jacobian matrix expression ∂X (tk+1) /∂D (tk) to
get:

∂X (tk+1)

∂D (tk)
=
∂ϕ {tk+1;X (tk) , tk}

∂D (tk)
=
∂ϕ
{
tk+1; [Z (tk) , D (tk)]

T
, tk

}
∂D (tk)

(22.27)

The right-hand side of Eq. 22.27 can be equated to the definition of the partial
derivative:

∂ϕ
{
tk+1; [Z (tk) , D (tk)]

T
, tk

}
∂D (tk)

=

lim
εD→0

{
1

εD

{
ϕ
{
tk+1; [Z (tk) , D (tk) + εD]

T
, tk

}
− ϕ

{
tk+1; [Z (tk) , D (tk)]

T
, tk

}}}
(22.28)

The second term on the right-hand side denotes the nominal propagation from
tk to tk+1, but the first term on the right-hand side requires an additional
propagation from tk to tk+1 with the air-drag element modified:

D (tk) −→ D (tk) + εD (22.29)
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Recall from the partial derivative definition that limεD→0 {·} means that εD > 0
is sufficiently small, and that εD 6= 0. Several values for εD should be tried in or-
der to identify the linear region for εD; i.e., an interval where ∂X (tk+1) /∂D (tk)
has negligible variations. The 7x1 column matrix of partial derivatives ∂X (tk+1) /∂D (tk)
is thus calculated according to Eq. 22.28. These propagations are executed us-
ing a fast running Encke propagator.

22.4 Solar Pressure Partials

Replace D with p in the discussion above.
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The estimation of location in the Earth-fixed reference frame is supported by
many measurement models within ODTK. To obtain the observation partials
with respect to a terrestrial location in the Earth-fixed frame for estimation
purposes, the chain rule is applied to these observation partials with respect to
the inertial terrestrial location. If α is the observed quantity, then

∂α

∂RECF
=

∂α

∂RECI

∂RECI
∂RECF

=
∂α

∂RECI
M (22.30)

where M is the 3×3 ECF to ECI transformation matrix. There are two op-
tions for ground location estimation: to estimate the 3D position of the ground
location or to estimate only the latitude and longitude of the ground location
while the altitude remains fixed at a specified value. In the second case, where
only latitude and longitude are estimated an additional step must be taken to
transform the partial derivatives with respect to Cartesian coordinates to par-
tial derivatives with respect to geodetic coordinates. Define position as the 3 x
1 matrix G:

G =

 ϕ
λ
H

 (22.31)

where ϕ is the geodetic latitude, λ is the longitude and H is the altitude above
the ellipsoid. Another application of the chain rule gives

∂α

∂G
=

∂α

∂RECF

∂RECF
∂G

(22.32)

The matrix δRECF

δG is computed using a spherical Earth approximation as

∂RECF
∂G

=

 βxECF −yECF xECF /R
βyECF xECF yECF /R
θ 0 zECF /R

 (22.33)

where

θ =
√
x2
ECF + y2

ECF (22.34)

β =
−zECF

θ
(22.35)
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Chapter 23

Tracking Station
Kinematics

23.1 Introduction

The purpose of this section is to derive and provide complete and consistent
station kinematics results. Tracking station kinematics are used several times,
and at different places, in the ODTK orbit determination program. Appropriate
results include the calculation of:

� Unit range vector components on the ECEF frame from azimuth and
elevation

� Azimuth and elevation from unit range vector components on the ECEF
frame

� Rotation matrices for use in azimuth and elevation calculations

� Azimuth and elevation partial derivatives for use in the optimal filter

� Station position vector components on the ECEF frame, given station
geodetic latitude ϕ, longitude λ, and height h above ellipsoid (comparison
to known results enables validation)

� Station position vector components on the ECEF frame, given station geo-
centric latitude ϕ′, longitude λ, and position vector length s (comparison
to known results enables validation)

� Rigorous transformations: From (ϕ′, s) to (ϕ, h) and from (ϕ, h) to (ϕ′, s)
(comparison of transform to inverse transform – and to known results –
enables validation)

� A table to show ϕ-dependent differences between ϕ′ and ϕ for comparison
to white noise RMS on angles measurements (demonstrates necessity for
oblate ellipsoid in IOD angles measurement models)
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Perhaps the most important result is the clarity provided in relating the var-
ious coordinate frames required for use in IOD, the simulator, and the optimal
filter.

23.2 The Earth-Centered Unit Sphere

Let [i] denote the dextral orthonormal Earth centered inertial (ECI) vector basis,
and let [e] denote the dextral orthonormal time-dependent Earth centered Earth
fixed (ECEF) vector basis [e], where:

[i] =

 i1
i2
i3

 (23.1)

[e] =

 e1

e2

e3

 (23.2)

[e] = Rei [i] (23.3)

where e3 is coincident with the instantaneous polar axis of figure, e2 and e3

lie in the instantaneous equator of figure, e1 lies in the Greenwich meridian of
figure, and e3 = e1 × e2. The 3 × 3 rotation matrix Rei is a product of four
rotations: precession, nutation, Greenwich rotation, and polar motion (PNGM).

Let s denote an Earth centered ground station position vector with geo-
centric latitude angle ϕ′ and East longitude angle λ. Let [f ] denote the dextral
orthonormal vector basis obtained from [e] by an East longitude λ rotation from
the Greenwich meridian to the station meridian: f1

f2
f3

 =

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 e1

e2

e3

 (23.4)

That is:

[f ] = Rfe [e] (23.5)

where:

Rfe =

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 (23.6)

Note that the ground station position vector s and geocentric latitude angle
ϕ′ are contained in the meridian plane spanned by f1 and f3. The station vector
s is defined by:

s = [f ]
T
sf (23.7)

where:
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λ

φ'

s/s

e1

e2

e3=f3

f1

M3

Figure 23.1: Station Longitude Rotation

sf =

 s cosϕ′

0
s sinϕ′

 (23.8)

and where:

s =
√

s · s =

√
(sf )

T
sf (23.9)

The station unit vector ŝ is defined by:

ŝ= s/s= [f ]
T
ŝf (23.10)

where:

ŝf =

 cosϕ′

0
sinϕ′

 (23.11)

Define the dextral orthonormal geocentric station vector basis: M1

M2

M3

 =

 − sinϕ′ 0 cosϕ′

0 −1 0
cosϕ′ 0 sinϕ′

 f1
f2
f3

 (23.12)

or:
[M] = RMf [f ] (23.13)
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f1

f3

M3=s/s

M1

Φ’

Φ’

M2=f2

Figure 23.2: Geocentric Station Vector Basis

where:

RMf =

 − sinϕ′ 0 cosϕ′

0 −1 0
cosϕ′ 0 sinϕ′

 (23.14)

23.3 Ellipse in Plane of f1 and f3

Let p denote an Earth centered vector:

p = [f ]
T
pf (23.15)

where:

pf =

 pf1
pf2
pf3

 (23.16)

that defines an Earth centered ellipse in the (f1, f3) plane with function:

S
(
pf
)

= b2
(
pf1

)2

+ a2
(
pf3

)2

− a2b2 = 0 (23.17)

pf2 = 0 (23.18)

where a and b are semi-major axis and semi-minor axis respectively. Thus:

b2 = a2
(
1− e2

)
(23.19)



23.3. ELLIPSE IN PLANE OF F1 AND F3 171

where e denotes eccentricity of the ellipse. Define the flattening f with:

f =
a− b
a

(23.20)

Then:

e2 =
a2 − b2

a2
= 2f − f2 (23.21)

23.3.1 Normal Vector n
(
pf
)

Differentiate S
(
pf
)

with respect to pf to derive the gradient ∇f to the ellipse:

∇f = [f ]
T

 ∂S/∂pf1
0

∂S/∂pf3

 = [f ]
T

 2b2pf1
0

2a2pf3

 (23.22)

Define the outward normal unit vector n to the ellipse:

n = ∇f/
√
∇f · ∇f (23.23)

Then:

n = [f ]
T


(
1− e2

)
pf1/

√
(1− e2)

2
(
pf1

)2

+
(
pf3

)2

0

pf3/

√
(1− e2)

2
(
pf1

)2

+
(
pf3

)2

 (23.24)

23.3.2 Geodetic Latitude

Define the geodetic latitude ϕ with its tangent function:

tanϕ =
∂S/∂pf3

∂S/∂pf1
=

pf3

(1− e2) pf1
(23.25)

Compare to Eq. 23.17 to eliminate pf3 and solve for pf1 :

pf1 =
a cosϕ√

1− e2 sin2 ϕ
(23.26)

Back substitute to get:

pf3 =
a
(
1− e2

)
sinϕ√

1− e2 sin2 ϕ
(23.27)

Define:
Nϕ =

a√
1− e2 sin2 ϕ

(23.28)

Then:

pf =

 pf1
pf2
pf3

 =

 Nϕ cosϕ
0

Nϕ
(
1− e2

)
sinϕ

 (23.29)
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23.3.3 Normal Vector n (ϕ)

Insert Eqs. 23.26 and 23.27 into Eq. 23.24 to demonstrate:

n = [f ]
T
nf (23.30)

where:

nf =

 nf1
nf2
nf3

 =

 cosϕ
0

sinϕ

 (23.31)

23.3.4 Station Height Above Ellipse

Let h denote the station height above the ellipse and measured along n. Then:

s = p+hn (23.32)

f1

f3

φ

R
p

hn

s

Figure 23.3: Station Position Vector

That is:

s = [f ]
T
sf (23.33)

where:

sf =

 (Nϕ + h) cosϕ
0((

1− e2
)
Nϕ + h

)
sinϕ

 (23.34)
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23.3.5 R

Define:
R =Rn (23.35)

where:
R =

√
R ·R = pf3/ sinϕ = Nϕ

(
1− e2

)
(23.36)

Thus:
R =R [f ]

T
nf = [f ]

T
Rf (23.37)

where:

Rf =

 Rf1
Rf2
Rf3

 =

 Nϕ
(
1− e2

)
cosϕ

0
Nϕ
(
1− e2

)
sinϕ

 (23.38)

23.3.6 Geocentric vs Geodetic Latitude

f1

f3

φφ'

R

hn

s

Figure 23.4: Geocentric vs Geodetic

Fundamental Results

Compare Eq. 23.8 with Eq. 23.34 to write:

tanϕ′ =

[(
1− e2

)
Nϕ + h

Nϕ + h

]
tanϕ (23.39)
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where:
sf1 = (Nϕ + h) cosϕ = s cosϕ′ (23.40)

sf3 =
((

1− e2
)
Nϕ + h

)
sinϕ = s sinϕ′ (23.41)

Given values for ϕ and h, then ϕ′ can be evaluated directly using Eq. 23.39.
Then using Eqs. 23.9 and 23.34:

s =

√(
sf1

)2

+
(
sf3

)2

(23.42)

Given values for ϕ′ and s, then Eqs. 23.39 and 23.42 can be iterated for ϕ and
h.

Newton-Raphson

Define:

X =

[
x1

x2

]
=

[[
ϕ
h

]]
(23.43)

f (X) =

[
f1 (X)
f2 (X)

]
(23.44)

where:
f1 (X) = xyz − tanϕ′ = 0 (23.45)

f2 (X) =
(
sf1

)2

+
(
sf3

)2

− s2 = 0 (23.46)

x =
(
1− e2

)
Nϕ + h (23.47)

y = (Nϕ + h)
−1

(23.48)

z = tanϕ (23.49)

and sf1 and sf3 are defined by Eqs. 23.40 and 23.41.

Partial Derivatives
∂f (X)

∂X
=

[
∂f1
∂ϕ

∂f1
∂h

∂f2
∂ϕ

∂f2
∂h

]
(23.50)

where:
∂f1

∂ϕ
=
∂x

∂ϕ
yz + x

(
∂y

∂ϕ
z + y

∂z

∂ϕ

)
(23.51)

∂f1

∂h
= z

(
y +

∂y

∂h

)
(23.52)
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∂f2

∂ϕ
= 2.0

(
sf1
∂sf1
∂ϕ

+ sf3
∂sf3
∂ϕ

)
(23.53)

∂f2

∂h
= 2.0

(
sf1
∂sf1
∂h

+ sf3
∂sf3
∂h

)
(23.54)

where:
∂sf1
∂ϕ

=
∂Nϕ
∂ϕ

cosϕ− (Nϕ + h) sinϕ (23.55)

∂sf1
∂h

= cosϕ (23.56)

∂sf3
∂ϕ

=
(
1− e2

) ∂Nϕ
∂ϕ

sinϕ+ x cosϕ (23.57)

∂sf3
∂h

= sinϕ (23.58)

∂Nϕ
∂ϕ

=
e2Nϕ sinϕ cosϕ

1− e2 sin2 ϕ
(23.59)

∂x

∂ϕ
=
(
1− e2

) ∂Nϕ
∂ϕ

(23.60)

∂x

∂h
= 1 (23.61)

∂y

∂ϕ
= −∂Nϕ

∂ϕ
y2 (23.62)

∂y

∂h
= −y2 (23.63)

∂z

∂ϕ
= sec2 ϕ (23.64)

∂z

∂h
= 0 (23.65)

Algorithm

X(0) =

[
ϕ′

0

]
(23.66)

X(k+1) = X(k) −∆X(k), k ∈ {0, 1, . . . , n} (23.67)

∆X(k) =

[
∂f (X)

∂X

]−1

(k)

[f (X)](k) (23.68)∣∣∣∆X(n)
∣∣∣ < ε (23.69)
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23.3.7 Topocentric Geodetic Vector Basis [N]

Define station zenith with N3:

N3= n = [f ]
T

 cosϕ
0

sinϕ

 (23.70)

Obtain a dextral orthonormal triad [N] with N1 as origin for station North
reference:

Ñ2 = n× f3 (23.71)

N2 = Ñ2/

√
Ñ2 · Ñ2= [f ]

T

 0
−1
0

 (23.72)

N1 = N2 ×N3= [f ]
T

 − sinϕ
0

cosϕ

 (23.73)

f1

f3

N2=f2

N1

φ

φ

N3

Figure 23.5: Vector Basis for Angles Measurements

In matrix form we have: N1

N2

N3

 =

 − sinϕ 0 cosϕ
0 −1 0

cosϕ 0 sinϕ

 f1
f2
f3

 (23.74)
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That is:

[N] =RNf [f ] (23.75)

where:

RNf =

 − sinϕ 0 cosϕ
0 −1 0

cosϕ 0 sinϕ

 (23.76)

This particular definition for rotation matrix RNf is necessary in order to si-
multaneously: Put N3 at station zenith, define station North origin with N1,
and obtain a dextral orthonormal triad [N].

23.3.8 Topocentric Geocentric Vector Basis [M]

The rotation between geocentric latitude ϕ′ and geodetic latitude ϕ is repre-
sented by a rotation from vector basis [N] to vector basis [M] by angle ∆ where:

∆ = ϕ− ϕ′ (23.77)

f1

f3

φφ'

R

s

Δ

n=N3
s/s=M3

hn

Figure 23.6: Latitude Rotation

Define:  M1

M2

M3

 =

 cos ∆ 0 sin ∆
0 1 0

− sin ∆ 0 cos ∆

 N1

N2

N3

 (23.78)
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That is:
[M] =RMN [N] (23.79)

where:

RMN =

 cos ∆ 0 sin ∆
0 1 0

− sin ∆ 0 cos ∆

 (23.80)

N3

M3=s/s

M1

N1

Δ

Δ

Figure 23.7: Latitude Difference Rotation

Check

Compare Eq. 23.79 with Eq. 23.13:

[N] = RNf [f ] (23.81)

where:
RNM = RTMN (23.82)

and:
RNf = RNMRMf (23.83)

to get:

RNf =

 − sin (ϕ′ + ∆) 0 cos (ϕ′ + ∆)
0 −1 0

cos (ϕ′ + ∆) 0 sin (ϕ′ + ∆)

 (23.84)

Compare Eq. 23.84 with Eq. 23.76 to confirm Eq. 23.77: ∆ = ϕ− ϕ′.
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23.4 Earth Fixed Vector Basis [e]

23.4.1 From [f ] to [e]

Eq. 23.5 presents:
[f ] = Rfe [e] (23.85)

where:

Rfe =

 cosλ sinλ 0
− sinλ cosλ 0

0 0 1

 (23.86)

Run the matrix transpose operator through Eq. 23.85 to get:

[f ]
T

= [e]
T
RTfe = [e]

T
Ref (23.87)

where:

RTfe = Ref =

 cosλ − sinλ 0
sinλ cosλ 0

0 0 1

 (23.88)

23.4.2 The Ellipsoid

Insert Eq. 23.87 into Eq. 23.15 to get:

p = [e]
T
Refp

f = [e]
T
pe (23.89)

where:
pe = Refp

f (23.90)

Insert Eqs. 23.88 and 23.29 into Eq. 23.90 to get:

pe =

 Nϕ cosϕ cosλ
Nϕ cosϕ sinλ

Nϕ
(
1− e2

)
sinϕ

 (23.91)

where pe ≡ pe (ϕ, λ) specifies each point on the Earth ellipsoid.

23.4.3 Station Vector

Insert Eqs. 23.87 into Eq. 23.33:

s = [e]
T
Refs

f = [e]
T
se (23.92)

That is:
se = Refs

f (23.93)

Geodetic: Given h and ϕ

Insert Eq. 23.34 into Eq. 23.93:

se =

 (Nϕ + h) cosϕ cosλ
(Nϕ + h) cosϕ sinλ((
1− e2

)
Nϕ + h

)
sinϕ

 (23.94)
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Geocentric: Given s and ϕ′

Insert Eq. 23.8 into Eq. 23.93:

se =

 s cosϕ′ cosλ
s cosϕ′ sinλ
s sinϕ′

 (23.95)

23.4.4 Normal Vector n (ϕ)

Insert Eq. 23.87 into Eq. 23.30 to get:

n = [e]
T
Refn

f = [e]
T
ne (23.96)

where:

ne = Refn
f =

 cosϕ cosλ
cosϕ sinλ

sinϕ

 (23.97)

23.4.5 R

Insert Eq. 23.87 into Eq. 23.37:

R =R [f ]
T
nf = [e]

T
RefR

f = [e]
T
Re (23.98)

where:
Re = RefR

f (23.99)

Thus:

Re =

 Re1
Re2
Re3

 =

 Nϕ
(
1− e2

)
cosϕ cosλ

Nϕ
(
1− e2

)
cosϕ sinλ

Nϕ
(
1− e2

)
sinϕ

 (23.100)



Chapter 24

Angles

24.1 Unit Range Vector

The instantaneous ground station unit range vector L is defined by:

L = ρ/ρ (24.1)

where:
ρ = r− s (24.2)

ρ =
√
ρ · ρ (24.3)

and where r is the Earth centered spacecraft position vector. The 3× 1 matrix
Li of inertial components for L is defined by:

L = [i]
T
Li (24.4)

where:

Li =

 Li1
Li2
Li3

 (24.5)

24.2 Azimuth and Elevation

Let us denote azimuth and elevation with A and E, and define:

β = 2π −A (24.6)

24.2.1 Construct L from Azimuth and Elevation

L is constructed here from an azimuth-elevation pair.

L = [N]
T
LN (24.7)
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N1

N2

N3

L

E

β H

1

Figure 24.1: Azimuth-Elevation Description

where:

LN =

 LN1
LN2
LN3

 =

 cosE cosA
− cosE sinA

sinE

 (24.8)

The following notational convention is used repeatedly in that which follows:
Given any orthonormal rotation matrix Rαβ , then Rβα = RTαβ . Given the value
for ϕ, insert Eq. 23.75 into Eq. 24.7 to get:

L = [f ]
T
RfNL

N = [f ]
T
Lf (24.9)

where:
Lf = RfNL

N (24.10)

Into Eq. 24.9 insert Eq. 23.5 to get:

L = [e]
T
RefRfNL

N = [e]
T
Le (24.11)

where:
Le = RefRfNL

N (24.12)

If Li is desired, insert Eq. 23.3 into Eq. 24.11:

L = [i]
T
RieRefRfNL

N= [i]
T
Li (24.13)

to get:
Li = RieRefRfNL

N (24.14)
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24.2.2 Construct Azimuth and Elevation from L

Given Li, construct an azimuth-elevation pair.

L = [i]
T
Li = [i]

T
RieRefRfNL

N (24.15)

so:

LN = RNfRfeReiL
i (24.16)

Solve Eq. 24.8 for A and E:

[
A
E

]
=

 tan−1
(
−LN2 /LN1

)
4QUADRANT

tan−1

(
LN3 /

√(
LN1
)2

+
(
LN2
)2)

 (24.17)

24.2.3 Partial Derivatives of Azimuth and Elevation

Azimuth and Elevation with respect to LN

From Eq. 24.8:

sinA = −LN2 / cosE (24.18)

cosA = LN1 / cosE (24.19)

sinE = LN3 (24.20)

cosE =

√(
LN1
)2

+
(
LN2
)2

(24.21)

tanA = −LN2
(
LN1
)−1

(24.22)

tanE = LN3 / cosE (24.23)

Differentiate Eqs. 24.22 and 24.23 to get the tensor covariant derivatives:

∂A

∂LN
=
[

∂A
∂LN

1

∂A
∂LN

2

∂A
∂LN

3

]
=
[
− sinA/ cosE − cosA/ cosE 0

]
(24.24)

∂E

∂LN
=
[

∂E
∂LN

1

∂E
∂LN

2

∂E
∂LN

3

]
=
[
− sinE cosA sinE sinA cosE

]
(24.25)
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Azimuth and Elevation with respect to Le

From:
LN = RNeL

e (24.26)

derive:
∂E

∂Le
=

∂E

∂LN
∂LN

∂Le
=

∂E

∂LN
RNe (24.27)

∂A

∂Le
=

∂A

∂LN
∂LN

∂Le
=

∂A

∂LN
RNe (24.28)

Azimuth and Elevation with respect to Li

From
Le = ReiL

i (24.29)

derive:
∂E

∂Li
=

∂E

∂Le
∂Le

∂Li
=

∂E

∂Le
Rei (24.30)

∂A

∂Li
=

∂A

∂Le
∂Le

∂Li
=

∂A

∂Le
Rei (24.31)

Azimuth and Elevation with respect to x

Let x denote the 3× 1 matrix of inertial components for the spacecraft position
vector. Then:

∂E

∂x
=
∂E

∂Li
∂Li

∂x
(24.32)

∂A

∂x
=

∂A

∂Li
∂Li

∂x
(24.33)

It remains to find ∂Li/∂x. From:

ρ =ρL = r− s (24.34)

derive:
L = (r− s) ρ−1 (24.35)

Take the inner product of L with Eq. 24.35 to get:

ρ = L· (r− s) (24.36)

Convert the vectors in the last two equations to component arrays on the inertial
frame:

Li =
(
x− si

)
ρ−1 (24.37)

ρ =
(
Li
)T (

x− si
)

(24.38)
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Insert Eq. 24.38 into Eq. 24.37 to get:

Li =
(
x− si

) ((
Li
)T (

x− si
))−1

(24.39)

Differentiate with respect to x to get:[
I3×3 +

(
x− si

) (
x− si

)T
/ρ2
] ∂Li
∂x

=
[
(I3×3/ρ)−

(
x− si

) (
Li
)T
/ρ2
]

(24.40)

[
ρ2I3×3 +

(
x− si

) (
x− si

)T ] ∂Li
∂x

=
[
(ρI3×3)−

(
x− si

) (
Li
)T ]

(24.41)

Multiply through by the inverse of the first factor to get the desired result:

∂Li

∂x
=
[
ρ2I3×3 +

(
x− si

) (
x− si

)T ]−1 [
(ρI3×3)−

(
x− si

) (
Li
)T ]

(24.42)

24.2.4 Construct Le from Azimuth and Elevation

Form LN with Eq. 24.8. Then from Eq. 24.12:

Le = RefRfNL
N = ReNL

N (24.43)

where:

ReN =

 − sinϕ cosλ sinλ cosϕ cosλ
− sinϕ sinλ − cosλ cosϕ sinλ

cosϕ 0 sinϕ

 (24.44)

24.2.5 Construct Azimuth and Elevation from Le

From Eq. 24.43:
LN = RNeL

e (24.45)

where, using Eq. 24.44:
RNe = RTeN (24.46)

From Eq. 24.17:

[
A
E

]
=

 tan−1
(
−LN2 /LN1

)
4QUADRANT

tan−1

(
LN3 /

√(
LN1
)2

+
(
LN2
)2)

 (24.47)

24.3 Direction Cosines

ODTK supports the processing of direction cosine observations. These obser-
vations are referenced to a local dextral horizontal reference frame, the baseline
directions of which may rotated relative to the frame designated by N (North,
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Figure 24.2: Direction Cosines Description

West, Zenith) in the description of Azimuth and Elevation. The direction-cosine
triplet is defined by the components of L referred to the topocentric basis F.
Analogous to our presentation of the topocentric basis for azimuth and elevation
angles:

L = [F]
T
LF (24.48)

where:

LF =

 LF1
LF2
LF3

 (24.49)

The F basis is rotated about the F3 (or N3) axis by the amount −∆β in the
right-handed sense

RFN =

 − cos(∆β) − sin(∆β) 0
sin(∆β) − cos(∆β) 0

0 0 1

 (24.50)

LF = RFNL
N (24.51)

ODTK supports the processing of LF1 and LF2 as measurement types that origi-
nate from the Air Force Space Surveillance System (AFSSS) ”Fence” (formerly
known as the Naval Space Surveillance System, or NAVSPASUR). Only two
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direction-cosine observations are needed in practice, since the third component
is mathematically related to the other two

LF3 =

√(
LF1
)2

+
(
LF2
)2
. (24.52)

Given the value for ϕ, combine Eq. 23.75, Eq. 23.73 and Eq. 24.51 to get:

L = [F]
T
RFNL

N = [F]
T
LF (24.53)

Into Eq. 24.53 insert Eq. 23.5 to get:

L = [e]
T
RefRfNRNFL

F = [e]
T
Le (24.54)

where:
Le = RefRfNRNFL

F (24.55)

If Li is desired, insert Eq. 23.3 into Eq. 24.54:

L = [i]
T
RieRefRfNRNFL

F= [i]
T
Li (24.56)

to get:
Li = RieRefRfNRNFL

F (24.57)

24.3.1 Construct Direction Cosines LF1 and LF2 from L

Given Li, construct a direction-cosine set given

L = [i]
T
Li = [i]

T
RieRefRfNRNFL

F (24.58)

such that:
LF = RFNRNfRfeReiL

i (24.59)

24.3.2 Partial Derivatives of Direction Cosines LF1 and LF2

LF1 and LF2 with respect to LN

From Eq. 24.51:
LF1 = − cos(∆β)LN1 − sin(∆β)LN2 (24.60)

LF2 = sin(∆β)LN1 − cos(∆β)LN2 (24.61)

LF3 = LN3 =

√(
LN1
)2

+
(
LN2
)2

(24.62)

Differentiate Eqs. 24.60 and 24.61 to get the tensor-covariant derivatives:

∂LF1
∂LN

=
[

∂LF
2

∂LN
1

∂LF
2

∂LN
2

∂LF
2

∂LN
3

]
=
[
− cos(∆β) − sin(∆β) 0

]
(24.63)

∂LF2
∂LN

=
[

∂LF
2

∂LN
1

∂LF
2

∂LN
2

∂LF
2

∂LN
3

]
=
[

sin(∆β) − cos(∆β) 0
]

(24.64)
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LF1 and LF2 with respect to Le

From:
LF = RFeL

e (24.65)

derive:
∂LF1
∂Le

=
∂LF1
∂LN

∂LN

∂Le
=
∂LF1
∂LN

RNe (24.66)

∂LF2
∂Le

=
∂LF2
∂LN

∂LN

∂Le
=
∂LF2
∂LN

RNe (24.67)

LF1 and LF2 with respect to Li

From Eq. 24.65, derive:

∂LF1
∂Li

=
∂LF1
∂Le

∂Le

∂Li
=
∂LF1
∂Le

Rei (24.68)

∂LF2
∂Li

=
∂LF2
∂Le

∂Le

∂Li
=
∂LF2
∂Le

Rei (24.69)

LF1 and LF2 with respect to x

Let x denote the 3× 1 matrix of inertial components for the spacecraft position
vector. Then:

∂LF1
∂x

=
∂LF1
∂Li

∂Li

∂x
(24.70)

∂LF1
∂x

=
∂LF1
∂Li

∂Li

∂x
(24.71)

where ∂Li/∂x is given by Eq. 24.42.

24.4 X/Y Angles

ODTK supports three types of X/Y angles, where the distinction between the
types can be reduced to the unique definitions of the local reference frame in
which the angles are measured. After a transformation to the correct local
reference frame, theX/Y angle values and their partial derivatives are computed
by a single set of formulas. We will describe the local reference frames via
their relationship with the conventional topocentric frame (South, East, Zenith)
which is related to the frame designated by N (North, West, Zenith) in the
description of Azimuth and Elevation as

RTN =

 −1 0 0
0 −1 0
0 0 1

 (24.72)

ρT = RTNρ
N (24.73)
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24.4.1 X/Y East-West Reference Frame

The local reference frame for the computation of X/Y angles of the East-West
type has basis vectors in the local East, North and Zenith directions. The local
frame is related to the conventional topocentric frame as

RXT =

 0 1 0
−1 0 0
0 0 1

 (24.74)

ρX = RXT ρ
T (24.75)

24.4.2 X/Y North-South Reference Frame

The local reference frame for the computation of X/Y angles of the North-South
type has basis vectors in the local North, West and Zenith directions. The local
frame is related to the conventional topocentric frame (South, East, Zenith) as

RXT =

 −1 0 0
0 −1 0
0 0 1

 (24.76)

ρX = RXT ρ
T (24.77)

24.4.3 X/Y Z Reference Frame

The local reference frame for the computation of X/Y angles with an accom-
panying Z angle is related to the conventional topocentric frame (South, East,
Zenith) as

RXT =

 − cos(Z) − sin(Z) 0
sin(Z) − cos(Z) 0

0 0 1

 (24.78)

ρX = RXT ρ
T (24.79)

The Z angle specifies a rotation about the Zenith direction in a right handed
sense to specify the direction of the X axis where a rotation angle of zero corre-
sponds to the X axis oriented with local North. X/Y angles of the North-South
type are equivalent to X/Y Z angles with a Z angle of zero degrees. X/Y angles
of the East-West type are equivalent to X/Y Z angles with a Z angle of 270
degrees.

24.4.4 X and Y Angles

The X angle is computed in the local frame as the angle from the Zenith direc-
tion to the projection of the relative position vector into the Y-Z plane. The X
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angle is defined to be positive for a rotation in a right handed sense about the
X axis of the local frame.

X = tan−1

[
−ρX2
ρX3

]
(24.80)

The Y angle is measured in the local frame as the angle from the relative
position vector to the projection of the relative position vector into the Y-Z
plane. The Y angle is defined to be positive for a rotation in a right handed
sense about the Y axis of the local frame.

Y = tan−1

 ρX1√(
ρX2
)2

+
(
ρX3
)2
 (24.81)

24.4.5 Partial Derivatives of X and Y Angles

The partial derivative of the X angle with respect to components of the relative
position vector in the local frame is given by

∂X

∂ρX
=

[
0

−ρX3
(ρX2 )

2
+(ρX3 )

2

−ρX2
(ρX2 )

2
+(ρX3 )

2

]
(24.82)

The partial derivative of the Y angle with respect to components of the relative
position vector in the local frame is given by

∂Y

∂ρX
=

[ √
(ρX2 )

2
+(ρX3 )

2

ρ2
−ρX1 ρ

X
2

ρ2
√

(ρX2 )
2
+(ρX3 )

2

−ρX1 ρ
X
3

ρ2
√

(ρX2 )
2
+(ρX3 )

2

]
(24.83)

24.5 Ground Based Tracker

Let us denote the right ascension and declination of L with η1 = α and η2 = δ,
referred to the inertial orthonormal vector basis [i]. Recall Eqs. 24.4 and 24.5
to define α and δ with:

Li =

 Li1
Li2
Li3

 =

 cos δ cosα
cos δ sinα

sin δ

 (24.84)

from which:

η =

[
η1

η2

]
=

[
α
δ

]
=

 tan−1
(
Li2/L

i
1

)
4−quadrant

tan−1

(
Li3/

√(
Li1
)2

+
(
Li2
)2)

 (24.85)

24.5.1 Partials

We need a method to calculate the 2 × 3 matrix of partials ∂η/∂z. Construct
the chain:

∂η

∂z
=

∂η

∂Li
∂Li

∂z
(24.86)
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Figure 24.3: Unit Range Vector Right Ascension & Declination

Let us denote the 3× 1 matrix of ECI ground station position components with
si. Then recall Eqs. 1.24, 24.2, and 24.3 and to write:

ρ2 = zT z +
(
si
)T (

si
)
− 2

(
si
)T
z (24.87)

ρLi = z − si (24.88)

Differentiate the latter two equations with respect to z to get:

∂ρ

∂z
=

1

ρ

(
z − si

)T
(24.89)

∂Li

∂z
=

1

ρ

[
I3×3 −

∂ρ

∂z
Li
]

(24.90)

Thus:
∂Li

∂z
=

1

ρ

[
I3×3 −

1

ρ

(
z − si

)T
Li
]

(24.91)



192 CHAPTER 24. ANGLES

Use and differentiate Eq. 24.84 with respect to Li:

∂η

∂Li
=

[
∂α
∂Li

1

∂α
∂Li

2

∂α
∂Li

3
∂δ
∂Li

1

∂δ
∂Li

2

∂δ
∂Li

3

]
(24.92)

where:
∂α

∂Li1
= − L2

L2
1 + L2

2

(24.93)

∂α

∂Li2
=

L1

L2
1 + L2

2

(24.94)

∂α

∂Li3
= 0 (24.95)

∂δ

∂Li1
= − L1L3√

L2
1 + L2

2

(24.96)

∂δ

∂Li2
= − L2L3√

L2
1 + L2

2

(24.97)

∂δ

∂Li3
=
√
L2

1 + L2
2 (24.98)

The desired measurement partials are assembled with Eq. 24.86.

24.6 Space Based Tracker

Repeat the section above where vector s denotes space station position (not
ground station position).

24.7 Earth Ellipsoid Values

24.7.1 NGA/NASA EGM96

https://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html)

a 6378137.0m
f 1.0/298.2572235630
µ 0.3986004418× 1015m3/s2

ωE 7292115.0× 10−11rad/s

Derived Values

f 3.3528106647474807× 10−3

f2 1.124133935364444355382× 10−5

e2 6.694379990141316996137× 10−3

e 8.181919084262149433480× 10−2

b2 40408299984661.445273030317
b 6356752.314245179497563966
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24.7.2 On the EGM96 Ellipsoid

The white noise RMS on azimuth and elevation measurements for the AFSCN
is about 0.03 deg. Compare this to the values in the third column to see the
disaster that would result from ignoring Earth’s oblateness in ODTK IOD,
particularly in the neighborhood of ϕ = 45 deg.

ϕ (deg) ϕ′ (deg) (ϕ− ϕ′) (deg) p (er)
0 0.0 0.0 1.0
5 4.9666960870092 0.033303912990772 0.99997474293723
10 9.9343942102791 0.065605789720866 0.99989972026697
15 14.904067139653 0.095932860347192 0.99977715704490
20 19.876629862375 0.12337013762532 0.99961069373012
25 24.852912560483 0.14708743951726 0.99940528551795
30 29.833635809829 0.16636419017093 0.99916706403359
35 34.819388702350 0.18061129765039 0.99890316414677
40 39.810610551928 0.18938944807156 0.99862151961304
45 44.807576784018 0.19242321598195 0.99833063226197
50 49.810389526291 0.18961047370932 0.99803932050022
55 54.818973309214 0.18102669078556 0.99775645392176
60 59.833076150493 0.16692384950734 0.99749068174564
65 64.852276137025 0.14772386297540 0.99725016354492
70 69.875993436424 0.12400656357643 0.99704231120188
75 74.903507474004 0.096492525996069 0.99687355113999
80 79.933978809966 0.066021190034306 0.99674911558149
85 84.966475056686 0.033524943313807 0.99667287082508
90 90.0 0.0 0.99664718933525
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Chapter 25

Range

Range is time delay of a particular radio wave front from transmitter to re-
ceiver. Let tT denote time of transmission, and tR denote time of receipt. Then
intrinsically, range (tR − tT ) has units of time. But typically and ideally, the
time delay is multiplied by the speed of light c in a vacuum to define range
RSR = c (tR − tT ) with units of distance.

The radio wave front encounters high altitude clouds of electrons (iono-
sphere) between transmitter and receiver. Each electron interacts with the wave
front with an energy exchange in which the electron is displaced from its equi-
librium position and oscillates at its resonance frequency, and the radio wave
front suffers a delay ∆tI . The size of ∆tI depends on the radio wave length,
or frequency. At S-BAND (2 GHz) ∆tI is significant. At Ku-BAND (18 GHz)
∆tI is relatively insignificant. When range measurements are generated at two
distinct frequencies the first order effect of ∆tI can be easily removed. This is
the case with L-BAND GPS range measurements.

If the transmitter and/or receiver is located at a ground station, then the ra-
dio wave front encounters low altitude neutral tropospheric atoms and molecules
(dominated by nitrogen and oxygen). The refracted wave front suffers tropo-
spheric refraction and a delay ∆tR. Tropospheric refraction is independent of
carrier frequency but varies significantly with elevation of antenna. The current
version of ODTK uses the ’RC [106] model developed for the AFSCN.

When a transponder sits between transmitter and receiver there always ex-
ists a transponder time delay ∆tT . It is usually measured (with measurement
error) prior to use of the transponder, but varies as a function of its thermal
environment.

There are many other range delays (∆tO = sum of other delays) with varying
degrees of significance. Unmodelled cable lengths generate time delays. Varia-
tions in the thermal and humidity environment of ground cables are responsible
for variations in time delay. Antenna electromagnetic phase center varies as
a function of geometry. Rotation between transmitter antenna and receiver
antenna generates a time delay (Faraday rotation).

Each of the two times tT and tR is defined by a clock (oscillator). If tT

195
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and tR are defined by the same clock, the range measurements are said to be
coherent. If tT and tR are defined by distinct clocks, the range measurements
are said to be non-coherent.

Two Clocks

Consider first the case for non-coherent range measurements; i.e., the case for
two distinct clocks. There are two significant and independent clock frequency
effects that must be modeled: relativity and clock phenomenology.

According to Albert Einstein, if these two clocks have different velocities with
respect to the same inertial frame, then they will tick at different frequencies
(special relativity); clock frequency is a function of speed. And if they are at
different distances from the central body center of mass, then they will tick
at different frequencies (general relativity); i.e., clock frequency is a function of
gravitational field. Both special and general relativity must be deterministically
modeled.

When separate clocks are used for transmitter and receiver, it is usually the
case that one is inferior to the other. That is, the fractional frequency stability
of one clock is superior. Then when the time tR of one clock is compared to the
time tT of the other to define RSR, the frequency and phase errors of the inferior
clock are exposed. These random clock errors must be modeled by stochastic
processes.

We associate the term one-way range measurement with two clocks.

One Clock

When the transmitter clock and receiver clock are the same clock, then the
speed and location of transmitter clock and receiver clock are the same. The
frequency effects due to special and general relativity vanish. Also, the train
of radio waves received are a mirror image of those emitted, so random clock
frequency and phase errors generated by the transmitter are subtracted out by
the receiver. Clock phenomenology vanishes. Coherent range measurements are
thus relatively easy to model. We associate the term two-way range measure-
ment with one clock.

There can be one or more transponders between the colocated transmitter
and receiver. Transponders are placed on spacecraft and/or at ground locations
(e.g., NASA TDRSS). Thus two-way range measurements may have two or more
legs with one or more transponders, but only one clock.

Range measurement time-tag is physically associated with the clock used to
define the time-tag. Possible candidates are tT and tR. Experience suggests
that tR is preferred. Note that transponder times of receipt and emission are
not accessible by the transmitter/receiver clock.
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25.1 Classical Two-Way Range

Classical two-way range refers to use of a transmitter/receiver, and its clock,
at a ground station, and a transponder on a spacecraft.. Time-node order for
classical two-way range: ti < tj < tp < tq.

25.1.1 Notation

c speed of light in vacuum

Uplink

ti time of radio wave emission from ground station radar
si ECI position vector of ground station radar at time ti
tj time of radio wave receipt at spacecraft transponder
rj ECI position vector of spacecraft at time tj
Rij range vector, function of ti and tj
Rij one-leg range from radar to spacecraft
fUT radar transmitter frequency

Transponder Bias

βT transponder time bias

Downlink

tp time of radio wave emission from spacecraft transponder
rp ECI position vector of spacecraft at time tp
tq time of radio wave receipt at ground station radar
sq ECI position vector of ground station radar at time tq
Rpq range vector, function of tp and tq
Rpq one-leg range from spacecraft to radar
fDT transponder transmitter frequency

25.1.2 Definitions

Uplink

Rij = rj − si (25.1)

Note that range vector Rij points to node with latest time tj > ti.

Rij =
√

Rij ·Rij (25.2)

R̂ij = Rij/Rij (25.3)

Transponder

βT = tp − tj (25.4)
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Downlink

Rpq = sq − rp (25.5)

Comparison of Eq. 25.5 with Eq. 25.1 identifies a convention in which the
range vector always points to the node with latest time. Rpq points to node at
time tq > tp. This convention produces symmetry in the one-way equations for
range-rate.

Rpq =
√

Rpq ·Rpq (25.6)

R̂pq = Rpq/Rpq (25.7)

Two-Way

Riq = Rij + cβT +Rpq (25.8)

25.1.3 Special Relativity

Rij = c (tj − ti) (25.9)

Rpq = c (tq − tp) (25.10)

We now have two expressions for range Rij and two expressions for range
Rpq. Eq. 25.2 defines Rij geometrically in a flat cartesian space, and Eq. 25.9
presents a derived result for Rij from special relativity theory. Similarly for
Rpq.

25.1.4 Calculation

Notice that the range vector Rij is not an instantaneous vector. Thus the range
Rij =

√
Rij ·Rij is not invariant to rotation: One obtains different evaluations

in inertial and Earth fixed components. Second, spherical radio waves referred to
an inertial frame are not spherical when transformed to an Earth fixed rotating
frame; i.e., the straight-line propagation of radio plane waves in an inertial
frame transform to curved-line propagation in an Earth fixed rotating frame.
Bottom line: Make life easy by performing all related evaluations using inertial
vector components, and remember to independently rotate the station vector
from Earth-fixed to inertial components twice; i.e., at both transmit and receive
times. This paragraph is dedicated to Dr Jim Woodburn.

The simultaneous satisfaction of Eqs. 25.2 and 25.9 defines an uplink scalar
nonlinear problem that must be solved by iteration. Similarly for downlink.
One of the four time-nodes for two-way range ti < tj < tp < tq is the given
two-way range time-tag tR. Begin calculation at the time-tag tR, and solve the
problem for uplink and downlink with the transponder bias inserted between.
Example: If tR = tq (this is typical), solve the downlink problem first.



25.2. SATELLITE TO SATELLITE TWO-WAY RANGE 199

In units of time, the relativistic two-way range representation is given by:

Rij/c+ βT +Rpq/c

In units of distance, the relativistic component of the range representation is
given by:

RSR = Rij + cβT +Rpq (25.11)

at time-tag tR.

25.1.5 Complete Representation

Let us denote the complete two-way range measurement representation by R.
Then:

R = RSR +RR +RI +RGM + wR (25.12)

where is RR is tropospheric refraction, RI is the ionospheric perturbation, RGM
is a sequentially correlated Gauss-Markov random variable designed to accom-
modate the sum of all other unmodeled range effects, and wR is white Gaussian
thermal noise. Parameter wR is not observable, and is not estimated. The
parameter RGM is observable, and is estimated by the sequential filter.

25.2 Satellite to Satellite Two-Way Range

Satellite to satellite two-way range refers to use of a transmitter/receiver, and its
clock, on one spacecraft (the tracker), and a transponder on another spacecraft
(the target). There is perfect symmetry between classical two-way ranging and
satellite to satellite two-way ranging. For the latter, the tracker spacecraft with
the transmitter/receiver and its clock is a moving ”ground station”, and the
target spacecraft with the transponder is the spacecraft with the transponder.
With this correspondence, the classical two-way ranging is directly applicable
to satellite to satellite two-way ranging.

25.3 Bi-Static Range (One-Way)

Bi-static ranging refers to use of a transmitter/clock combination at a trans-
mitting facility, a relay transponder on tracked spacecraft (the target), and
a receiver/clock combination at a receiving facility. The bi-static range mea-
surement is analogous to classical two-way ranging, except the transmitter and
receiver are not necessarily co-located, and the uplink path length may be sig-
nificantly different than the downlink path. Each link path, or ”leg”, is treated
as a one-way ranging measurement, and the transponder delay is applied to
the downlink portion of the measurement. In the modeling of bi-static ranging,
ODTK assumes that the transmitter clock and the receiver clock are completely
synchronized, and therefore does not account for stochastic clock errors in either
the uplink or downlink range measurements.
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Chapter 26

Doppler

The Doppler measurement, defined by the receiver, is characterized by a phase
count Nhm on the Doppler frequency across a particular phase count time in-
terval. Since the transmit frequency is known, the Doppler frequency can be
extracted from the observed radio carrier frequency by differencing the observed
frequency with the transmit frequency. Let th and tm denote the initial and final
times of the phase count time interval [th, tm], and define ∆t = (tm − th). These
times are defined by the receiver clock and the counting is performed by the
receiver. Intrinsically the Doppler measurement consists of an integer (integer
phase count), plus a fraction, of accumulated phase, where each integer count
is defined by a 2π excursion on phase. If the receiver presents the phase count
Nhm, the Doppler measurement has units of cycles. If the receiver presents
Nhm/∆t rather than Nhm, the Doppler measurement has units of cycles/time
(mean frequency). If the receiver presents cNhm/fT , the Doppler measurement
has units of distance (range-difference). If the receiver presents cNhm/ (fT∆t),
the Doppler measurement has units of distance/time (mean range-rate).

The Doppler measurement is perturbed by ionosphericTotal Electron Con-
tent (TEC) in the signal path. This effect must be modeled.

It is useful to think of the Doppler measurement in terms of its representation
as a range-difference. If the range is perturbed by a particular physical effect,
then the range difference over distinct times is perturbed accordingly. If a
particular physical effect is a time-constant across light-time delay intervals
within the phase count interval, then it will difference to zero. But this is
usually not the case.

The Doppler measurement time-tag is physically associated with the clock
used to define the phase count time interval. It is customary to place the
measurement time-tag at the time tm at end of the phase count time interval.

Note that many sequential range values may be calculated within the phase
count time interval. When both range and Doppler measurements are derived
and presented by the receiver, it is customary to present only one range mea-
surement with one Doppler measurement where both have the same time tag.
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26.1 Classical Two-Way Doppler

26.1.1 Notation

λ wave length of radio carrier
ωD Doppler angular frequency
fD Doppler frequency
fO observed frequency

Uplink

Ṙjij range-rate, due to relative motion between radar and spacecraft

ṫji frequency shift
nij number of wave lengths in uplink one-way signal path
ϕij total angular excursion by radio wave from radar to spacecraft

Downlink

Ṙqpq range-rate, due to relative motion between radar and spacecraft
ṫqp frequency shift
npq number of wave lengths in downlink one-way signal path
ϕpq total angular excursion by radio wave from spacecraft to radar

Two-Way

ϕiq total angular excursion by radio wave from radar to spacecraft to radar

Ṙqiq two-way range-rate, due to relative motion between radar and spacecraft

∆thm radio carrier phase count time interval
Nhm phase count on Doppler frequency

26.1.2 Definitions

fT = c/λ (26.1)

ωD = dϕ/dt (26.2)

fD = ωD/ (2π) (26.3)

Nhm =

∫ tm

th

fDdtq (26.4)

∆Rhm =

∫ tm

th

dR = R (tm)−R (th) (26.5)

fO = fT + fD (26.6)
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Mhm =

∫ tm

th

fOdtq (26.7)

∆t = tm − th (26.8)

Uplink

Ṙjij = dRij/dtj (26.9)

ṫji = dti/dtj (26.10)

nij = Rij/λ (26.11)

ϕij = −2πnij (26.12)

Downlink

Ṙqpq = dRpq/dtq (26.13)

ṫqp = dtp/dtq (26.14)

npq = Rpq/λ (26.15)

ϕpq = −2πnpq (26.16)

Two-Way

niq = Riq/λ (26.17)

ϕiq = −2πniq (26.18)

26.1.3 Expressions for Uplink Range-Rate

Differentiate Eq. 25.1 with respect to time tj :

dRij

dtj
=
drj
dtj
− dsi
dti

dti
dtj

That is:
Ṙj
ij = ṙj − ṡiṫ

j
i (26.19)

Combine Eqs. 25.2 and 25.9 to write:

Rij =
√

Rij ·Rij = c (tj − ti) (26.20)
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Differentiate Eq. 26.20 with respect to time tj , and insert Eq. 26.19:

Ṙjij = R̂ij ·
(
ṙj − ṡiṫ

j
i

)
= c

(
1− ṫji

)
(26.21)

Use the equation with second and third expressions from Eq. 26.21 to solve for
ṫji :

ṫji =
1− R̂ij · ṙj/c
1− R̂ij · ṡi/c

(26.22)

Use the equation with first and third expressions from Eq. 26.21 to calculate
Ṙjij :

Ṙjij = c
(

1− ṫji
)

(26.23)

Solve Eq. 26.23 for the frequency shift ṫji :

ṫji = 1− Ṙjij/c (26.24)

Alternate Expressions

Expand Eq. 26.22 to write:

ṫji = 1−

(
R̂ij · (ṙj − ṡi)

c

)1 +
R̂ij · ṡi

c
+

(
R̂ij · ṡi

)2

c2
+ · · ·

 (26.25)

and:

Ṙjij =
(
R̂ij · (ṙj − ṡi)

)1 +
R̂ij · ṡi

c
+

(
R̂ij · ṡi

)2

c2
+ · · ·

 (26.26)

On comparison to Eq. 26.21, Eq. 26.26 provides a numerically stable method
for evaluation of Ṙjij .

26.1.4 Expressions for Downlink Range-Rate

Differentiate Eq. 25.5 with respect to time tq:

dRpq

dtq
=
dsq
dtq
− drp
dtp

dtp
dtq

That is:
Ṙq
pq = ṡq − ṙpṫ

q
p (26.27)

Combine Eqs. 25.6 and 25.10 to write:

Rpq =
√

Rpq ·Rpq = c (tq − tp) (26.28)
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Differentiate Eq. 26.28 with respect to time tq, and insert Eq. 26.27:

Ṙqpq = R̂pq ·
(
ṡq − ṙpṫ

q
p

)
= c

(
1− ṫqp

)
(26.29)

Use the equation with second and third expressions from Eq. 26.29 to solve for
ṫqp:

ṫqp =
1− R̂pq · ṡq/c
1− R̂pq · ṙp/c

(26.30)

Use the equation with first and third expressions from Eq. 26.29 to calculate
Ṙqpq:

Ṙqpq = c
(
1− ṫqp

)
(26.31)

Solve Eq. 26.31 for the frequency shift ṫqp:

ṫqp = 1− Ṙqpq/c (26.32)

Alternate Expressions

Expand Eq. 26.30 to write:

ṫqp = 1−

(
R̂pq · (ṡq − ṙp)

c

)1 +
R̂pq · ṙp

c
+

(
R̂pq · ṙp

)2

c2
+ · · ·

 (26.33)

and:

Ṙqpq =
(
R̂pq · (ṡq − ṙp)

)1 +
R̂pq · ṙp

c
+

(
R̂pq · ṙp

)2

c2
+ · · ·

 (26.34)

26.1.5 Two-Way Range-Rate

Recall Eq. 25.8:
Riq = Rij + cβT +Rpq

If the time-tag is at time tq, then differentiate with respect to tq:

dRiq
dtq

=
dRij
dtj

dtj
dtp

dtp
dtq

+ c
dβT
dtq

+
dRpq
dtq

(26.35)

By definition:
βT = tq − tp

so:
dβT = dtq − dtp

Since the transponder bias βT is independent of Doppler frequency, we have:

dβT = 0
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and this implies:
dtp = dtj

Then Eq. 26.35 reduces to:

dRiq
dtq

=
dRij
dtq

+
dRpq
dtq

(26.36)

where:
dRij
dtq

=
dRij
dtj

dtj
dtp

dtp
dtq

(26.37)

and:
dtj
dtp

= 1 (26.38)

26.1.6 Two-Way Doppler Frequency Equation

Recall that ϕiq is the total angular excursion by radio wave from radar to
spacecraft to radar. Insert Eq. 26.17 into Eq. 26.18:

ϕiq = −2πRiq/λ (26.39)

and then insert Eq. 26.1:
ϕiq = −2πfTRiq/c (26.40)

Differentiate Eq. 26.40 with respect to time tq:

dϕiq
dtq

=
−2πfT
c

dRiq
dtq

(26.41)

and use Eqs. 26.2 and 26.3 to get the two-way Doppler frequency equation:

fD = −fT
c

dRiq
dtq

(26.42)

26.1.7 Two-Way Phase Count Equation

Take definite time integrals over both sides of Eq. 26.42 between th and tm:∫ tm

th

fDdtq = −fT
c

∫ tm

th

dRiq (26.43)

and use the definition for Nhm to get the phase count equation:

Nhm = −fT
c

[Riq (tm)−Riq (th)] (26.44)

where Nhm is the two-way radio carrier phase count, fT is transmitter frequency
produced by the ground station clock, Riq (th) is the two-way range at beginning
of the phase count interval and Riq (tm) is the two-way range at the end of the
phase count time interval [th, tm].
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The left hand quantity Nhm is produced only by receiver hardware. The
right-hand expression −fT∆Rhm/c is used for the Doppler measurement repre-
sentation in orbit determination algorithms. Eq. 26.44 relates receiver hardware
on the left to orbit determination software on the right.

The radio wave propagation time interval [ti, tq] is typically very short com-
pared to the arbitrary phase count time interval [th, tm]. Check to see that both
the left-hand and right-hand sides of Eq. 26.44 have units of cycles; i.e., phase
count.

Various forms of Eq. 26.44 are generated by manipulating fT and c. Then
the Doppler measurement will have different units. For all of these cases Nhm
is produced by the receiver and ∆Rhm is used for the Doppler measurement
representation in orbit determination algorithms.

Times tq do not exist continuously with real t. Thus the Riemann integrals
given in Eq. 26.43 should be replaced with discreet sums, Dirac-delta sifting
integrals, or appropriate Lebesgue integrals. The Riemann notation is symbolic.

26.1.8 Observed Frequency

Uplink at Spacecraft with Time tj

From definitions and Eq. 26.42 we have the frequency equation for fOj measured
by an observer in motion (e.g., a spacecraft) relative to the transmitter:

fOj = fT

(
1− Ṙjij/c

)
(26.45)

where the factor
(

1− Ṙjij/c
)

is the uplink frequency shift.

Downlink at Radar with Time tq

If transponder performs no frequency shift, then:

fOq = fOj

(
1− Ṙqpq/c

)
= fT

(
1−

(
Ṙjij + Ṙqpq

)
/c+ ṘjijṘ

q
pq/c

2
)

(26.46)

26.1.9 Measurement Names

Receiver hardware engineers (e.g., Motorola) quite naturally refer to Nhm as a
phase count measurement. NGA engineers have referred to phase count mea-
surements as Doppler measurements because the Doppler frequency fD is inte-
grated with time to produce phase count. Rearrange Eq. 26.44:

− c

fT
Nhm = ∆Rhm (26.47)

If the receiver produces values of −Nhmc/fT , it is easy to see why some en-
gineers (NSWC) have referred to these measurements as delta-range measure-
ments ∆Rhm. Divide this equation by ∆t = (tm − th):

− c

fT

Nhm
∆t

=
∆Rhm

∆t
(26.48)



208 CHAPTER 26. DOPPLER

and we have the same units as range-rate ∆Rhm/∆t (AFSCN). But to model a
measurement derived from phase count as a range-rate is a big mistake, because
|∆t| is never arbitrarily small. Divide Eq. 26.44 through by ∆t to get:

Nhm
∆t

= −fT
c

∆Rhm
∆t

(26.49)

If the receiver (e.g., NASA TDRSS) produces values of Nhm/∆t, then the mea-
surements have frequency units, and some engineers refer to them as frequency
measurements.

To summarize, we must address various transmitter/receiver hardware im-
plementations with various names, but with common physics. For all of these
cases Nhm is produced by the receiver and ∆Rhm is used for the Doppler mea-
surement representation in orbit determination algorithms.

26.2 AFSCN ARTS Doppler

’Automated Remote Tracking Station’ (ARTS) is used to identify any ground
tracking station in the Air Force Satellite Control Network (AFSCN).

Multiply Eq. 26.44 through by −c/ (fT (tm − th)) to get:

− c

fT

Nhm
(tm − th)

=
Riq (tm)−Riq (th)

(tm − th)
(26.50)

where:
(tm − th) = 1 sec (26.51)

The left-hand side of Eq. 26.50 describes the Doppler measurement presented by
the ARTS receiver, and the right-hand side describes the Doppler representation
to be used for orbit determination software. Riq (tm) and Riq (th) are both two-
way ranges with uplink-downlink time nodes: ti < tj < tp < tq. The ARTS
Doppler measurement is inappropriately referred to as a range-rate measurement
by ARTS documentation.

Note that a value for c is required to solve for ranges Riq (tm) and Riq (th) by
orbit determination software. This raises the question as to whether the same
value for c is used on both sides of Eq. 26.50.

26.2.1 Complete Representation

Let ψ denote the complete two-way Doppler measurement representation. Then:

ψ = ψSR + ψI + ψR + ψGM + wψ (26.52)

where ψSR is a function of spacecraft position and velocity, ψI is due to iono-
sphere, ψR is due to troposphere, ψGM is a sequentially correlated Gauss-Markov
random variable designed to accommodate the sum of all other unmodeled
Doppler effects, and wψ is Gaussian white noise. Parameter wψ is not observ-
able, and is not estimated. The parameter ψGM is observable, and is estimated
by the sequential filter.
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26.2.2 Partial Derivatives

Position and Velocity

Recall Eq. 1.35, notation for spacecraft position and velocity:

Z =

[
z
ż

]
=


z1

z2

z3

ż1

ż2

ż3

 =


Z1

Z2

Z3

Z4

Z5

Z6


Let us denote the right-hand side of Eq. 26.50 with ψSR:

ψSR =
Riq (tm)−Riq (th)

(tm − th)
(26.53)

Differentiate ψSR with respect to Z (tm), where tm = tq, to construct the 1x6
matrix of partials:

∂ψ

∂Z (tm)
=

∂ψSR
∂Z (tm)

=
1

(tm − th)

[
∂Riq (tm)

∂Z (tm)
− ∂Riq (th)

∂Z (th)

∂Z (th)

∂Z (tm)

]
(26.54)

remembering that the difference (tm − th) is a time constant. The 6x6 orbit
transition matrix:

ΦZ (th, tm) =
∂Z (th)

∂Z (tm)

moves the denominator of the 1x6 matrix ∂Riq (th) /∂Z (th) from time th to time
tm. Velocity partials emerge due to this transition matrix. Identify position and
velocity partials:

∂Riq (tα)

∂Z (tα)
=

[
∂Riq (tα)

∂z (tα)
,
∂Riq (tα)

∂ż (tα)

]
, α in {h,m} (26.55)

Then:
∂Riq (tα)

∂z (tα)
= (Lx, Ly, Lz) (26.56)

∂Riq (tα)

∂ż (tα)
= (0, 0, 0) (26.57)

using approximations:

R̂pq (tα) = (Lx, Ly, Lz) [i] (26.58)

Doppler Bias

∂ψ

∂βψ
= 1 (26.59)
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26.3 NASA STDN Doppler

26.3.1 Observed Range Rate

The NASA GSFC STDN document [103] defines the Observed Range Rate. The
Doppler measurement is the cumulative cycle count of 1000 times the Doppler
frequency plus a 240-MHz bias frequency. It is time tagged at the time of
cycle counter reading. To process, convert Doppler data to decimal form. The
observed average range rate is:

Ṙ (T0) =
−c

2fTKM

[
N (T0)−N (T−1)

T0 − T−1
− 2.4× 108

]
(26.60)

where:

c speed of light
fT transmit frequency in Hertz
K 240/221
M 1000
N cumulative Doppler-plus-bias counter reading
T0, T−1 time of present and previous Doppler count, respectively

26.3.2 Doppler Representation from the Observed Range
Rate Equation

We shall attempt to derive an appropriate Doppler representation model equa-
tion from the observed range-rate model Eq. 26.60 (and Teles’ equation (4-2)
[107]) in terms of the notation given previously herein. Define the S-BAND
input frequency fin with:

fin (t) = fD (t) + 240KHz (26.61)

where fD (t) denotes the Doppler frequency. Define the output Doppler count
N (tm)−N (th) over [th, tm] with:

N (tm)−N (th) =

∫ tm

th

Jfin (t) dt (26.62)

where:
J = KM (26.63)

Then:

N (tm)−N (th) = J

{∫ tm

th

fD (t) dt+ (240KHz) (tm − th)

}
(26.64)

Define the average Doppler frequency f̄D (tm) with:

f̄D (tm) =

∫ tm
th

fD (t) dt

tm − th
(26.65)
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and use Eq. 26.64 to get:

f̄D (tm) =
1

KM

{
N (tm)−N (th)

tm − th
− 2.40× 108

}
Hz (26.66)

Multiply through both equations by −c/ (2fT ) to get:(
−c
2fT

)
f̄D (tm) =

(
−c
2fT

)(∫ tm
th

fD (t) dt

tm − th

)
=

(
−c

2fTKM

){
N (tm)−N (th)

tm − th
− 2.40× 108

}
Hz

(26.67)
Compare Eq. 26.67 with Eq. 26.60 to write:

Ṙ (tm) =

(
−c
2fT

)(∫ tm
th

fD (t) dt

tm − th

)
(26.68)

Insert Eq. 26.43 to get:

Ṙ (tm) =

(
1

2

)(
Riq (tm)−Riq (th)

tm − th

)
(26.69)

Eq. 26.69 is a one-way Doppler representation model due to the factor of 1/2.
Since we model two-way range and Doppler internally as two-way measurements
our implementation of Eq.26.69 is given by:[

Ṙ (tm)
]

2−way
=
Riq (tm)−Riq (th)

tm − th
(26.70)
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Chapter 27

Troposphere

Our use of the term troposphere range refers to tropospheric propagation delay
in distance units, or range error due to tropospheric refractivity. Troposphere
range is one additive component of the complete one-way range measurement
between a ground station and a spacecraft.

27.1 Troposphere Range

Let R denote troposphere range. Let ε denote the geometric (non-refracted) ele-
vation angle of an instantaneous range vector, referred to the local tangent plane,
and let θ denote the refracted elevation (apparent elevation). It is conventional
to indicate the dependence of troposphere range R on the geometric elevation
ε: R ≡ R (ε). Current computational methods have two very different functions
in common: (i) A function to calculate the zenith troposphere range component
R (π/2), and (ii) A multiplicative mapping function m (ε, εZ) = m (ε, π/2) that
maps the zenith troposphere range component R (π/2) to other elevations ε.
Thus:

R (ε) = m (ε, π/2)R (π/2) (27.1)

27.1.1 Zenith Component

Physics

Refractivity N is related to index of refraction n with:

N = 10−6 (n− 1) (27.2)

For a spherically symmetric atmosphere, an integral expression for troposphere
range R (π/2) at zenith1 has been presented (Mendes and Langley[83] Eq. (4)):

R (π/2) = 10−6

∫ rA

rS

Ndr (27.3)

1Langley[59] also presents an integral expression for approximate troposphere range as a
function of non-zenith elevation.

213
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where rS is the geocentric radius of the Earth’s surface and rA is the geocentric
radius of top of the neutral atmosphere.

Crane Model (not implemented in ODTK)

The classic model for radio refractivity of the neutral troposphere was defined
by Crane ([15]1976):

N = k1
pd
T

+ k2
pw
T

+ k3
pw
T 2

(27.4)

where pd (mb) and pw (mb) are partial pressures of dry gases and water vapor,
T is absolute temperature (K), and:

k1 77.6± 0.1K/mb
k2 72.0± 9.0K/mb
k3 (3.75± 0.03)× 105K2/mb

(27.5)

Values for pd (mb) and pw (mb) are derived from measurements of temperature,
pressure, and relative humidity. See below.

Thayer/Owens Improvement (not implemented in ODTK)

Crane’s model was improved by Thayer ([108]19742) to account for non-ideal
gaseous behavior of the atmosphere:

N = k1
pd
T
Z−1
d + k2

pw
T
Z−1
w + k3

pw
T 2
Z−1
w (27.6)

where Z−1
d and Z−1

w are inverse compressibility factors for dry air and water
vapor. Expressions for them are given by Owens ([92]19673):

Z−1
d = 1.0 + 10−4pd

(
57.90× 10−4

(
1.0 +

0.52

T

)
− 9.4611

t

T 2

)
(27.7)

Z−1
w = 1.0 + 1650.0× 10−5 pw

T 3

(
1.0× 104 − 1317.0t+ 17.5t2 + 0.144t3

)
(27.8)

where T and t are temperatures in units Kelvin and Celsius. Constants for Eq.
27.6:

k1 77.6036± 0.014K/mb
k2 64.8000± 0.080K/mb
k3 (3.7760± 0.004)× 105K2/mb

(27.9)

2Thayer’s extension seems to predate Crane. The Crane date was given by Ifadis without
reference, and Ifadis implies that Thayer’s extension is an improvement over Crane. Langley’s
bibliography[59] confirms the two dates.

3Indeed!?
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Davis Modification

A more compact form for Eq. 27.6 was presented by Davis, et. al. ([17]1985):

N = k1Rdρ+ k
′

2

pw
T
Z−1
w + k3

pw
T 2
Z−1
w (27.10)

using equation of state:

pi = ZiρiRiT (27.11)

where pi is the partial pressure of an atmospheric constituent, ρi is the mass
density, and Ri the specific gas constant for that constituent. So Rd is the
specific gas constant for dry air, and k

′

2 = (17± 10)K/mb.
Davis also presents the form of the hydrostatic delay based on Saastemoinen,

Rh =
[
(0.0022768± 0.0000005)

m

mbar

] P0

f (λ,H)
(27.12)

where

f (λ,H) = 1− 0.00266 cos (2λ)− 0.00028H (27.13)

In the above, λ is the geodetic latitude and H is the height in kilometers above
the geoid of the reference point. This is the a priori zenith delay model used in
the Saastemoinen model in ODTK.

Refractivity Partition

Refractivity is presented as the sum of hydrostatic and wet components:

N = Nh +Nw (27.14)

where:

Nh = k1Rdρ (27.15)

Nw =
(
k2
pw
T

+ k3
pw
T 2

)
Z−1
w (27.16)

Tropospheric Range Partition

Tropospheric range has the form:

R = Rh +Rw (27.17)

where:

Rh = 10−6

∫ rA

rS

Nhds (27.18)

Rw = 10−6

∫ rA

rS

Nwds (27.19)
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27.1.2 Mapping Function

All mapping functions tested by Mendes and Langley[83] demonstrated sub-
centimeter accuracy for elevation angles above 15 degrees. For elevation angles
below 10 degrees, only a select few were found to adequately meet the require-
ments imposed by space geodetic techniques. Functions by Herring, Ifadis, and
Niel were recommended as best performing, especially for lower elevations. Least
satisfactory performance was associated with Hopfield-based functions and the
Marini-Murray function.

Marini ([69]1971) defined a continued fraction on sin (ε) to model the map-
ping function m (ε):

m (ε) =
1

sin (ε) +
a

sin (ε) +
b

sin (ε) + c

(27.20)

and an illustrative numerical example is presented. Marini’s mapping function
was adopted and modified by several investigators. In common, each model has
three parameter functions a, b, and c, but they are defined differently by each
investigator.

IFADIS-GLOBAL (Ifadis) (not implemented in ODTK)

Marini’s[69] model structure of the mapping function m (ε) was adopted by
Ifadis ([45]1986):

m (ε) =
1

sin (ε) +
a

sin (ε) +
b

sin (ε) + c

(27.21)

where:
a = k1 + k2 (P0 − 1000) + k3 (T0 − 15) + k4

√
pw (27.22)

b = k1 + k2 (P0 − 1000) + k3 (T0 − 15) + k4
√
pw (27.23)

Note: One of the repeated equations above is surely in error.

c = 0.078 (27.24)

MTT (Herring) (not implemented in ODTK)

Marini’s[69] model of the mapping function m (η) was modified by Herring
([35]1992) to arrive at the form:

m (ε) =

1 +
a

1 +
b

1 + c

sin (ε) +
a

sin (ε) +
b

sin (ε) + c

(27.25)
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where[44]:

a = [1.2320 + 0.0130 cosϕ− 0.0209Hσ + 0.00215 (Ts − 10)] 10−3 (27.26)

b = [3.1612− 0.1600 cosϕ− 0.0331Hs + 0.00206 (Ts − 10)] 10−3 (27.27)

c = [71.244− 4.293 cosϕ− 0.149Hs − 0.0021 (Ts − 10)] 10−3 (27.28)

NMF Niell

Niell (27.301993) extended the Herring formula with a height correction term:

m (ε) =

1 +
a

1 +
b

1 + c

sin (ε) +
a

sin (ε) +
b

sin (ε) + c

+ 10−3HsMh (27.29)

where:

Mh =
1

sin ε
−

1 +
aht

1 +
bht

1 + cht

sin (ε) +
aht

sin (ε) +
bht

sin (ε) + cht

(27.30)

and aht, bht, and cht are constants. See Niell ([90]2002) for his recent model of
mapping functions.

The parameters (a, b, c) of the hydrostatic mapping function all have the
form

α (λ, t) = αavg (λ)− αamp (λ) cos

(
2π

t− T0

365.25

)
(27.31)

where αavg (λ) and αamp (λ) are computed based on interpolation of tabulated
values as a function of geodetic latitude (λ), t is the time in days past the
beginning of the year and T0 is a phase of 28 days. The parameters (a, b, c)
of the wet mapping function are simply constants which are interpolated from
tabulated values as a function of geodetic latitude. These are the mapping
functions used with the Saastemoinen model in ODTK. The combination of the
Saastemoinen a priori hydrostatic zenith model with the Niell NMF mapping
function is also the recommended by McCarthey and Petit [72].
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Marini Murray

The Marini Murray model is commonly used in satellite laser ranging applica-
tions. It is not separated into hydrostatic and wet component, but takes the
form

R =
f (λ)

f (ϕ,H)

A+B

sinE + B/(A+B)
sinE+0.01

(27.32)

The site location function is given by

f (ϕ,H) = 1− 0.00266 cos (2ϕ)− 0.00031H (27.33)

where ϕ is the geodetic latitude and H is the height in kilometers above the
geoid of the reference point. The laser frequency parameter is given by

f (λ) = 0.9650 +
0.0164

λ2
+

0.000228

λ4
(27.34)

where λ is the laser wavelength in micrometers. A and B are computed as

A = 0.002357P0 + 0.000141e0 (27.35)

B =
(
1.084× 10−8

)
P0T0K +

(
4.734× 10−8

) [P 2
0

T0

] [
2

3− 1/K

]
(27.36)

where,

e0 =

[
(relative humidity (%))

100

]
eSfW (27.37)

eS = 0.01 exp(
1.2378847× 10−5T 2

0 − 1.9121316× 10−2T0 + 33.93711047− 6.3431645× 103T−1
0

)
(27.38)

fW = 1.00062 + 3.14× 10−6P0 + 5.6× 10−7 (T0 − 273.15)
2

(27.39)

K = 1.163− 0.00968 cos (2ϕ)− 0.00104T0 + 0.00001435P0 (27.40)

and T0 is the temperature in degrees Kelvin, P0 is the pressure in millibars and
(relative humidity (%)) is the relative humidity expressed as a percentage. The
use of this model with laser ranging data is the recommended by McCarthey
and Petit [72].

Estimation Estimation of corrections to the troposphere corrections is done
estimating corrections to the zenith delay of the wet component. The hydro-
static portion of the troposphere correction is assumed to be perfectly accurate.
The contribution of the wet component is initially zero. The partial of the tro-
posphere range correction with respect to the troposphere estimate is therefore
given by the wet mapping function.
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27.2 Partial Pressure Measurements

A partial pressure is the pressure that would be exerted by one component of
a mixture of gases if it were present alone. The total atmospheric pressure is
the sum of all partial pressures. Partial pressure values are derived from in-situ
measurements of atmospheric pressure, temperature, and relative humidity. The
partial pressure pd for dry gases is approximated with the measured total ambi-
ent pressure. The partial pressure pw for water vapor is temperature dependent;
e.g., pw = 32mb for T = 25 degC (tropics), and pw = 1.2mb for T = −20 degC
(polar vortex). Its value is derived from a measurement of relative humidity
(RH):

pw =
(
p0
w

)
(RH)

where p0
w is the partial pressure of water vapor at saturation, derived from a

temperature dependent table. And RH, for constant water vapor, is tempera-
ture dependent: If the amount of water vapor is held constant, then increasing
temperature decreases RH, and decreasing temperature increases RH. If tem-
perature is held constant, then adding water vapor increases RH, and removing
water vapor decreases RH.

The dew-point is the temperature to which the air would have to be cooled,
without changing pressure or moisture content, to reach saturation.

The psychrometer and chilled-mirror hygrometer (dew-point meter) are stan-
dard sensors for measurements of humidity. A carbon resistance hygrometer and
a human-hair hygrometer have also been developed to measure humidity.

The psychrometer consists of two thermometers, a dry-bulb thermometer
and a wet-bulb thermometer, and tables of associated data. The wet-bulb ther-
mometer measures the temperature to which objects are cooled by evaporation
of water. The temperature difference between dry-bulb and wet-bulb thermome-
ters is indexed to the dry-bulb temperature in a standard table to derive a value
of RH.

The chilled-mirror hygrometer is a temperature controlled mirror in which
the mirror is cooled until condensation occurs. The condensation temperature
is the dew point measurement. The dew point is directly related to the amount
of moisture in the air, so is an excellent indicator of absolute humidity.

The carbon resistance hygrometer derives from the observation that as hu-
midity increases, water molecules fill up pores in a carbon resistor; i.e., resistance
in carbon is inversely proportional to relative humidity.

The human-hair hygrometer derives from the fact that human hair lengthens
as relative humidity increases.
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27.3 Atmospheric Thermodynamics

27.3.1 State Variables

Pressure

Atmospheric pressure p is the weight of the atmosphere per unit area. Average
sea level pressure:

1atm = 1013.25mb = 14.7psi = 29.92”Hg

Temperature

Let T denote temperature, and let K, C, and F denote units in Kelvin, Centi-
grade, and Fahrenheit. Temperature is directly proportional to kinetic energy
of a molecule. Molecular motion is zero at T = 0K.

T (K) = T (C) + 273.2K

T (C) = [5/9] [T (F )− 32F ]

Density

Air density ρ is mass of air per unit volume. Dry air at sea level and 273.2K
has a density of 1.29kg/m3.

Specific Humidity

Specific humidity q is the ratio of the mass of water vapor to that of air. When
the air is saturated, denote q with qs. qs is temperature dependent. Warmer
air holds more water.

q ≥ qs

27.3.2 Ideal Gas Law

Consider a closed container of gas molecules colliding with container walls in
accordance with Newton’s laws. Let us denote:

n number of moles in container
R universal gas constant (8.3145J/molK)
N number of molecules in container
k = R/NA Baltzmann constant

(
1.38066× 10−23J/K

)
NA Avogadro’s number

(
6.0221× 1023

)
p absolute pressure in container
V volume of container
T temperature in container
ρ = m/V molecular density in container
R∗ = nR
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Then the ideal gas law can be written:

p =
nRT

V
=
NkT

V
=
R∗

m
ρT

27.3.3 Relative Humidity and Partial Pressures

Let us denote the relative humidity with RH. Let pw denote the actual partial
pressure of water vapor, and let p0

w denote the saturation partial pressure of
water vapor, both at the same temperature. Then[114]:

RH =
pw
p0
w

=
q

qs

Water vapor density (concentration) is a function of relative humidity and tem-
perature. It increases smoothly with increasing relative humidity, and with
increasing temperature.

Evaporation:

� Is a change in liquid water to vapor

� Is a cooling process

� Will occur as long as the air is not saturated

� Will stop when air is saturated

Saturation:

� Is defined when the total number of water molecules condensed from the
air is balanced with the total number of water molecules evaporated into
the air

� Can be realized by cooling air without adding or removing moisture, or
by adding water vapor without changing temperature

� Is marked by a wet-bulb thermometer temperature

� Is measured by a psychrometer

Saturation vapor pressure:

� Is defined as the maximum vapor pressure that is thermodynamically sta-
ble for a given temperature

� Is the pressure that water vapor molecules would exert if the air were
saturated at a given temperature

� Describes how much water vapor is necessary to make the air saturated
at a given temperature

� Increases with temperature
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Dew Point

� Is the temperature Td at which the saturation vapor pressure equals the
actual vapor pressure

A dew-point meter has a cooled surface. The air in contact with it is cooled
at constant pressure until it saturates and begins to deposit dew. This is the
dew-point temperature Td. Since the amount of vapor in the air has not changed,
and the pressure has remained constant, the partial pressure of water must be
constant during the cooling process. Therefore (Wencek[114]) :

pw (T ) = p0
w (Td)

RH =
p0
w (Td)

p0
w (T )

The measurement of RH by a dew-point meter is superior to that using a wet-
bulb thermometer because the former invokes only condensation, whereas the
latter invokes both condensation and evaporation – they act against each other.
Also, the wet-bulb variation (depression) is only about half of the dew-point
meter variation.

27.4 Troposphere Range Error

Let us denote any a priori modeled estimate of R with R̄, and define the error
in R̄ with:

∆R = R− R̄ (27.41)

Define the relative error in R̄ with:

x =

(
∆R

R̄

)
(27.42)

where ∆R is a random variable. The random variable x has a Gauss-Markov
transition Φk+1,k:

xk+1 = Φk+1,kxk +
√

1− Φ2
k+1,kwx,k+1 (27.43)

with elevation ε (nonlinear with time):

Φk+1,k = exp [α (εk+1 − εk)] (27.44)

α < 0, an input constant

where wx,k+1 is an unbiased Gaussian white sequence and:

x0 = wx,0 (27.45)

σ2
x,k = E

{
w2
x,k

}
, an input constant for all k (27.46)
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27.4.1 Propagation Variance for Relative Troposphere Range
Error

Square Eq. 27.43 and take expectation:

E
{
x2
k+1

}
= Φ2

k+1,kE
{
x2
k

}
+
(
1− Φ2

k+1,k

)
E
{
w2
x,k+1

}
(27.47)

For k = 0, using Eq. 27.45:

E
{
x2

0

}
= E

{
w2
x,0

}
= σ2

x,0 (27.48)

and using Eq. 27.47:

E
{
x2

1

}
= Φ2

1,0E
{
x2

0

}
+
(
1− Φ2

1,0

)
E
{
w2
x,1

}
= Φ2

1,0E
{
w2
x,0

}
+
(
1− Φ2

1,0

)
E
{
w2
x,1

}
= σ2

x,0

Use Eq. 27.47 recursively with induction on the non-negative integers to show:

E
{
x2
k

}
= σ2

x,0, k ∈ {2, 3, . . .} (27.49)

That is, xk is a stationary sequence on elevation ε. But from Eq. 27.42:

E
{
x2
k

}
=
E
{

(∆Rk)
2
}

R2
k

=
σ2

∆Rk

R2
k

(27.50)

So:
σ2

∆Rk
= R2

kσ
2
x,0 (27.51)

Since σ2
x,0 is constant, then σ2

∆Rk
increases if and only if R2

k increases, and σ2
∆Rk

decreases if and only if R2
k decreases. From Eq. 27.25, R2

k decreases if and only
if ε increases, and R2

k increases if and only if ε decreases.
Therefore: When the elevation ε increases, then error variance on tropo-

sphere range σ2
∆Rk

decreases. And when ε decreases, then σ2
∆Rk

increases. We
thus have the desired inverse proportionality. These variations in σ2

∆Rk
with ε

are quantified by user input control constants for α and σx,0.

27.4.2 Sequential Estimation

The relative error xj in R̄j is unknown. Given range measurements, run the con-
ditional expectation operator through Eq. 27.43, and use Sherman’s Theorem,
to get:

x̂k+1|k = Φk+1,kx̂k|k (27.52)

because wx,k+1 is zero mean. Define the error in x̂k|k with:

δx̂k|k = xk − x̂k|k (27.53)
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where xk is unknown truth. Insert Eq. 27.43 into Eq. 27.53 to get:

δx̂k+1|k = Φk+1,kδx̂k|k +
√

1− Φ2
k+1,kwx,k+1 (27.54)

Insert δx̂k+1|k into E
{(
δx̂k+1|k

)2}
:

E
{(
δx̂k+1|k

)2}
= Φ2

k+1,kE
{(
δx̂k|k

)2}
+
(
1− Φ2

k+1,k

)
σ2
x,0 (27.55)

The two terms on the right-hand side define filter covariance propagation and
deweighting, respectively. Propagation here refers to propagation in elevation
(εk+1, εk) , not time.

27.5 AFSCN ’RC Model

27.5.1 Tropospheric Range Model (’RC)

The current version of ODTK uses the ’RC [106] model for R, developed for the
AFSCN.

R =
5.6× 10−6N̄

(sin ε+ 0.06483)
1.4 (27.56)

where R has units km, ε denotes elevation angle, and N̄ denotes mean surface
refractivity (either a constant monthly average, or a value interpolated from a
series of monthly averages).

Tropospheric Range Error Model

Let us denote the tropospheric refraction one-way range error with ∆R, and
define tropospheric refraction two-way range error variance about zero mean
with:

σ2
∆R = 2E

{
(∆R)

2
}

(27.57)

where serial correlation in ∆RR is assumed negligible. The two-way root-
variance is modeled and calculated with:

σ∆R =
√

2C |R| , with 0 < C < 1 (27.58)

where the ratio C is a user defined stored constant, and |R| is derived dynami-
cally from the ’RC algorithm. Thus σ∆R is modeled as some fraction of |R|.

27.5.2 Doppler

The right-hand side of Eq. 26.50 describes the Doppler representation to be
used for orbit determination software. Notice that the Doppler measurement
is modeled as a range difference divided by a time difference. This provides a
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prototype model, particularly for modeling the tropospheric contribution to the
complete Doppler representation:

ψR =
R (tm)−R (th)

(tm − th)
(27.59)

where R is tropospheric range, and [th, tm] is the Doppler count interval.

Doppler Error Model

Let us denote the tropospheric refraction one-way Doppler error with ∆ψ, and
define tropospheric refraction two-way Doppler error variance about zero mean
with:

σ2
∆ψ = 2E

{
(∆ψ)

2
}

(27.60)

where serial correlation in ∆ψR is assumed negligible. The two-way root-
variance is modeled with:

σ∆ψ =
√

2

(
σ∆ψ

|ψ|

)
|ψ| , with 0 <

(
σ∆ψ

|ψ|

)
< 1 (27.61)

where the ratio (σ∆ψ/ |ψ|) is a user defined stored constant, and |ψ| is derived
dynamically, as above. Thus σ∆ψ is modeled as some fraction of |ψ|.
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Chapter 28

Ionosphere

The ionosphere is that part of the Earth’s atmosphere above sixty kilometers
which, when in equilibrium, consists of an electrically neutral plasma of pos-
itive ions and free negative electrons. Electrons are stripped from atoms and
molecules by the ionizing action of the sun’s ultraviolet radiation. In this plasma
the ions are much more massive than the electrons. Consequently the passage
of a radio wave front through the plasma has a much more significant effect
on the electrons than on the ions. Electrons are moved from their equilibrium
positions and then oscillate at resonant frequency. In this energy exchange the
radio wave front suffers a frequency dependent phase delay, and any range or
Doppler measurement derived from the radio wave front suffers a frequency de-
pendent measurement perturbation. The purpose of this chapter is to present
expressions for range and Doppler ionospheric perturbations.

The current version of ODTK uses the IRI (International Reference Iono-
sphere) 2016 model for calculation of Total Electron Content (TEC).

28.1 Range

Let RI denote the additive ionospheric component to range. Then:

RI = a

(
NT
f2
T

)
(28.1)

where fT is transmitter frequency, NT is the two-way Total Electron Content
(TEC) measured in units of TECU where:

1 TECU =
1016electrons

m2
(28.2)

and:

a = 4.030816× 105 (m)
(
MHz2

)
TECU

(28.3)

This evaluation provides RI in units of meters (m). Two-way TEC is approxi-
mated by doubling the one-way range TEC experienced on the downward leg.
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28.2 Doppler

Let N I
hm denote the perturbation in Doppler phase count due to ionospheric

effects, and let NT,h and NT,m denote two-way TEC at beginning and end of
the phase count interval; i.e., at phase count times th and tm. Then:

N I
hm =

(a
c

)(NT,m −NT,h
fT

)
(28.4)

where fT is radio transmitter frequency, a is defined above, and c is speed of
light in vacuum.

28.2.1 AFSCN ARTS Doppler (Range-Rate)

Let ψI denote the AFSCN ARTS range-rate component due to ionosphere
with dimension distance per time. Multiply Eq. 28.4 through by the factor
−c/ (fT (tm − th)) to get:

ψI = − cN I
hm

fT (tm − th)
= −

(
a

f2
T

)(
NT,m −NT,h

(tm − th)

)
(28.5)

This evaluation provides ψI in units of meters per second (m/s).
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TDOA

Time Difference Of Arrival observations provide a measure of the difference in
distance traveled along two distinct signal paths which originate from the same
emitter and end at different receivers. ODTK processing of these measurements
assumes coherency between the receivers so that clock differences between the
receivers need not be modeled or estimated despite the one way nature of the
observations. We will refer to the two paths as signal path 1 and signal path
2 and assume that the observation time tag is at the time of receipt of signal
on path 1. The difference measurement is formed in sense of time of arrival on
path 2 (TOA2) minus the time of arrival on path 1 (TOA1).

29.1 Ground-based TDOA (Ground to Space-
craft to Ground)

In the ground based TDOA measurement, the signal is generated by a static
ground based emitter, is transponded by two relay satellites and received by
static ground based receivers. ODTK modeling currently assumes the same
location of the ground based receiver for both signal paths. Since the observation
time tag is at signal receipt on path 1, modeling of the TDOA measurement
requires the computation of the relative time of signal receipt on path 2. This
computation is performed by working backwards from the time of receipt on
path 1 to determine the time of emission and then working forwards along the
path 2 to determine the time of receipt on path 2.

29.1.1 Ground-based TDOA light time algorithm

Let tR1 be the time of signal reception on path 1. The time of transmission
from the relay satellite on path 1, tST1, is determined by modeling the light
time delay due to special relativity and adding the delays due to tropospheric

229



230 CHAPTER 29. TDOA

and ionospheric effects,

tST1 = tR1 −
1

c
[RSR + ∆Rtropo + ∆Riono] (29.1)

where RSR is the one way range based on special relativity,

RSR = |RS1 (tST1)−RR (tR1)| , (29.2)

∆Rtropo is the tropospheric delay in terms of range, ∆Riono is the ionospheric
delay in terms of range, RS1 is the inertial position of relay satellite on path
1 and RR is the inertial position of the ground based receiver. The time of
receipt of the signal at the relay satellite on path 1 is simply given as the time
of transmission minus the transponder delay at the relay on path 1, β1,

tSR1 = tST1 − β1 (29.3)

The time of signal transmission from the emitter is then computed by model-
ing the light time delay due to special relativity and adding the delays due to
tropospheric and ionospheric effects,

tE = tSR1 −
1

c
[RSR + ∆Rtropo + ∆Riono] (29.4)

where RSR is the one way range based on special relativity,

RSR = |RS1 (tSR1)−RE (tE)| , (29.5)

and RE is the inertial position of the ground based emitter. This completes the
backwards leg of the TDOA computation along path 1. We now move forward
along path 2 to compute the time of signal receipt at relay on path 2,

tSR2 = tE +
1

c
[RSR + ∆Rtropo + ∆Riono] , (29.6)

where RSR is the one way range based on special relativity,

RSR = |RS2 (tSR2)−RE (tE)| (29.7)

and RS2 is the inertial position of receiving satellite on path 2. The time of
transmission from the relay on path 2 is simply given as the time of receipt plus
the transponder delay at the relay on path 2, β2,

.
tST2 = tSR2 + β2. (29.8)

The time of signal arrival at the receiver along path 2 is then computed by
modeling the light time delay due to special relativity and adding the delays
due to tropospheric and ionospheric effects,

tR2 = tST2 +
1

c
[RSR + ∆Rtropo + ∆Riono] , (29.9)

where RSR is the one way range based on special relativity,

RSR = |RS2 (tST2)−RE (tR2)| (29.10)
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29.1.2 Complete Representation

The complete representation of the ground based TDOA measurement is then
given by

TDOA = (tR2 − tR1) + TDOAGM + ωTDOA (29.11)

where TDOAGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled TDOA effects and
ωTDOA is white Gaussian thermal noise.

29.2 Ground TDOA (Spacecraft to Ground)

In the ground TDOA measurement, the signal is generated by a space based
emitter and received by static ground based receivers. The observation time
tag is at signal receipt at receive station 2, therefore modeling of the TDOA
measurement requires the computation of the relative time of signal receipt at
receive station 1. This computation is performed by working backwards from
the time of receipt at station 2 to determine the time of emission and then
working forwards determine the time of receipt at station 1.

29.2.1 Ground TDOA light time algorithm

Let tR2 be the time of signal reception at receive station 2. The time of trans-
mission from the satellite based emitter, tE , is determined by modeling the light
time delay due to special relativity and adding the delays due to tropospheric
and ionospheric effects,

tE = tR2 −
1

c
[RSR2 + ∆Rtropo + ∆Riono] (29.12)

where RSR2 is the one way range based on special relativity,

RSR2 = |RE (tE)−RR2 (tR2)| , (29.13)

∆Rtropo is the tropospheric delay in terms of range, ∆Riono is the ionospheric
delay in terms of range, RE is the inertial position of space based emitter and
RR2 is the inertial position of ground based receiver 2.

We now move forward to compute the time of signal receipt at ground receive
station 1,

tR1 = tE +
1

c
[RSR1 + ∆Rtropo + ∆Riono] , (29.14)

where RSR1 is the one way range based on special relativity,

RSR1 = |RR1 (tR1)−RE (tE)| , (29.15)

and RR1 is the inertial position of ground based receiver 2.
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29.2.2 Complete Representation

The complete representation of the ground TDOA measurement is then given
by

TDOA = (tR2 − tR1) + TDOAGM + ωTDOA (29.16)

where TDOAGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled TDOA effects and
ωTDOA is white Gaussian thermal noise.

29.3 Ground-based single differenced TDOA (Ground
to Spacecraft to Ground)

For a ground-based single-differenced TDOA measurement, the signals gener-
ated by two static ground-based emitters are transponded by two relay satellites
and received at a ground-based receiver. ODTK modeling assumes the terminal
receiver location is the same for both signal paths contributing to the TDOA
measurement. Differencing TDOA measurements effectively removes the down-
link part of the TDOA observation since those paths are common to all signals.
A differenced TDOA measurement will also be independent of relay transponder
delays if the signals pass through the same transponder paths. The disadvantage
is that much of the geometrical information will subtract out if the emitters are
near each other, and the white noise on differenced measurements is increased.
The observation time tag is at emitter 1 signal receipt on path 1 (Emitter 1 →
Relay 1 → Receiver). The difference is formed in the sense of emitter 2 TDOA
minus emitter 1 TDOA.

SDTDOA = (TDOAE2 − TDOAE1) + SDTDOAGM + ωSDTDOA (29.17)

29.4 Space-based TDOA (Ground to Spacecraft)

In the space based TDOA measurement, the signal is generated by a static
ground based emitter and received by two space based receivers. Since the
observation time tag is at signal receipt on path 1, modeling of the TDOA
measurement requires the computation of the relative time of signal receipt on
path 2. This computation is performed by working backwards from the time of
receipt on path 1 to determine the time of emission and then working forwards
along the path 2 to determine the time of receipt on path 2. Note that the
assumption of a time tag at time of receipt of signal at the satellite means
that all satellite based delays must be removed from the observation prior to
processing in ODTK.
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29.4.1 Space-based TDOA light time algorithm

Let tSR1 be the time of signal reception on path 1. The time of transmission
from the emitter is then computed by modeling the light time delay due to
special relativity and adding the delays due to tropospheric and ionospheric
effects,

tE = tSR1 −
1

c
[RSR + ∆Rtropo + ∆Riono] (29.18)

where RSR is the one way range based on special relativity,

RSR = |RS1 (tSR1)−RE (tE)| , (29.19)

∆Rtropo is the tropospheric delay in terms of range, ∆Riono is the ionospheric
delay in terms of range, RS1 is the inertial position of receiving satellite on path
1 and RE is the inertial position of the ground based emitter. This completes
the backwards leg of the TDOA computation along path 1. We now move
forward along path 2 to compute the time of signal receipt at relay on path 2,

tSR2 = tE +
1

c
[RSR + ∆Rtropo + ∆Riono] , (29.20)

where RSR is the one way range based on special relativity,

RSR = |RS2 (tSR2)−RE (tE)| (29.21)

and RS2 is the inertial position of receiving satellite on path 2.

29.4.2 Complete Representation

The complete representation of the space based TDOA measurement is then
given by

TDOA = (tSR2 − tSR1) + TDOAGM + ωTDOA (29.22)

where TDOAGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled TDOA effects and
ωTDOA is white Gaussian thermal noise.
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Chapter 30

FDOA

Frequency Difference Of Arrival observations provide a measure of the difference
in Doppler shift along two distinct signal paths which originate from the same
emitter and end at different receivers. ODTK processing of these measurements
assumes coherency between the receivers so that clock differences between the
receivers need not be modeled or estimated despite the one way nature of the
observations. We will refer to the two paths as signal path 1 and signal path 2
and assume that the observation time tag is at the time of receipt of signal on
path 1. The difference measurement is formed in sense of frequency of arrival
on path 2 (FOA2) minus the frequency of arrival on path 1 (FOA1).

30.1 Ground-based FDOA (Ground to Space-
craft to Ground)

In the ground based FDOA measurement, the signal is generated by a static
ground based emitter, is transponded by two relay satellites and received by
static ground based receivers. ODTK modeling currently assumes the same
location of the ground based receiver for both signal paths. The ground-based
TDOA light time algorithm is used to generate the positions and velocities of all
satellites and ground locations required to support the computation of frequency
of arrival along each signal path.

30.1.1 Doppler shift

The received frequency at location 2 of a transmission from location 1 at fre-
quency ft is computed as

fR = A (R1,V1,R2,V2) ft (30.1)
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where,

A (R1,V1,R2,V2) =

√√√√1− ρ̇1,2
c

1 +
ρ̇1,2
c

(30.2)

ρ1,2 = |R2 −R1| (30.3)

ρ̇1,2 =
(R2 −R1) · (V2 −V1)

ρ1,2
(30.4)

In ODTK, A is computed based on a Taylor series expansion in
ρ̇1,2
c ,

A (R1,V1,R2,V2) ∼= 1− ρ̇1,2

c
+

1

2

(
ρ̇1,2

c

)2

(30.5)

30.1.2 Frequency of arrival

The frequency of arrival at the relay satellite for a signal of frequency fE trans-
mitted by the emitter is computed as

fSR = A (RE (tE) ,VE (tE) ,RS (tSR) ,VS (tSR)) fE (30.6)

When the signal travels through the transponder, the frequency is subjected
to additive frequency shift, ∆f , to yield the frequency transmitted from the
satellite,

FST = fSR + ∆f (30.7)

The frequency of the signal observed at the receiving ground station is then
computed as

fR = A (RS (tST ) ,VS (tST ) ,RR (tR) ,VR (tR)) fST (30.8)

30.1.3 Complete Representation

The complete representation of the ground based FDOA measurement is then
given by

FDOA = (fR2 − fR1) + FDOAGM + ωFDOA (30.9)

where FDOAGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled FDOA effects and
ωFDOA is white Gaussian thermal noise.

30.2 Ground FDOA (Spacecraft to Ground)

In the ground FDOA measurement, the signal is generated by a space based
emitter and received by static ground based receivers. The observation time tag
is at signal receipt at receive station 2. The ground TDOA light time algorithm
is used to generate the positions and velocities of the emitter satellite and ground
locations required to support the computation of frequency of arrival along each
signal path.
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30.2.1 Frequency of arrival

The frequency of arrival at ground receive station 2 for a signal of frequency fE
transmitted by the emitter is computed as

fR2 = A (RE (tE) ,VE (tE) ,RR2 (tR2) ,VR2 (tR2)) fE (30.10)

The frequency of arrival at ground receive station 1 for a signal of frequency
fE transmitted by the emitter is computed as

fR1 = A (RE (tE) ,VE (tE) ,RR1 (tR1) ,VR1 (tR1)) fE (30.11)

30.2.2 Complete Representation

The complete representation of the ground FDOA measurement is then given
by

FDOA = (fR2 − fR1) + FDOAGM + ωFDOA (30.12)

where FDOAGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled FDOA effects and
ωFDOA is white Gaussian thermal noise.

30.3 Ground-based single differenced FDOA (Ground
to Spacecraft to Ground)

For a ground-based single-differenced FDOA measurement, the signals gener-
ated by two static ground-based emitters are transponded by two relay satellites
and received at a ground-based receiver. ODTK modeling assumes the terminal
receiver location is the same for both signal paths contributing to the FDOA
measurement. Differencing FDOA measurements effectively removes the down-
link part of the FDOA observation since those paths are common to all signals.
A differenced FDOA measurement will also be independent of relay transponder
delays if the signals pass through the same transponder paths. The disadvantage
is that much of the geometrical information will subtract out if the emitters are
near each other, and the white noise on differenced measurements is increased.
The observation time tag is at emitter 1 signal receipt on path 1 (Emitter 1 →
Relay 1 → Receiver). The difference is formed in the sense of emitter 2 FDOA
minus emitter 1 FDOA.

SDFDOA = (FDOAE2 − FDOAE1) + SDFDOAGM + ωSDFDOA (30.13)

30.4 Space-based FDOA (Ground to Spacecraft)

In the space based FDOA measurement, the signal is generated by a static
ground based emitter and received by two satellites. The space-based TDOA
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light time algorithm is used to generate the positions and velocities of all satel-
lites and ground locations required to support the computation of frequency
of arrival along each signal path. The Doppler shift algorithm is given in the
section on ground-based FDOA.

30.4.1 Frequency of arrival

The frequency of arrival at the relay satellite for a signal of frequency fE trans-
mitted by the emitter is computed as

fSR = A (RE (tE) ,VE (tE) ,RS (tSR) ,VS (tSR)) fE (30.14)

30.4.2 Complete Representation

The complete representation of the space based FDOA measurement is then
given by

FDOA = (fSR2 − fSR1) + FDOAGM + ωFDOA (30.15)

where FDOAGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled FDOA effects and
ωFDOA is white Gaussian thermal noise.
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TDOA Dot

Time Difference Of Arrival Dot observations provide a measure of the rate of
change of the difference in distance traveled along two distinct signal paths
which originate from the same emitter and end at different receivers. ODTK
processing of these measurements assumes coherency between the receivers so
that clock differences between the receivers need not be modeled or estimated
despite the one way nature of the observations. We will refer to the two paths
as signal path 1 and signal path 2 and assume that the observation time tag is
at the time of receipt of signal on path 1. The difference measurement is formed
in sense of rate of arrival on path 2 (TOADot2) minus the rate of arrival on
path 1 (TOADot1).

31.1 Ground-based TDOA Dot (Ground to Space-
craft to Ground)

In the ground based TDOA Dot measurement, the signal is generated by a
static ground based emitter, is transponded by two relay satellites and received
by static ground based receivers. ODTK modeling currently assumes the same
location of the ground based receiver for both signal paths. The ground-based
TDOA light time algorithm is used to generate the positions and velocities of all
satellites and ground locations required to support the computation of frequency
of arrival along each signal path.

31.1.1 Range rate

The rate of change of the distance between location 2 and location 1 at frequency
ft is computed as

ρ = |R2 −R1| (31.1)

ρ̇ (R1,V1,R2,V2) =
(R2 −R1) · (V2 −V1)

ρ
(31.2)
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31.1.2 Rate of change of time of arrival

The rate of change in the uplink distance between the emitter and a relay
satellite is given by

ṫSR =
1

c

[
ṘSR + ∆Ṙtropo + ∆Ṙiono

]
(31.3)

which is approximated in ODTK as

ṫSR ∼=
1

c

[
ṘSR

]
= ρ̇ (RE (tE) ,VE (tE) ,RS (tSR) ,VS (tSR)) (31.4)

where the rate of change of contributions due to the troposphere and ionosphere
are ignored. The rate of change in the downlink distance between a relay satellite
and the ground receiver is given by

ṫR = ṫSR + β̇ +
1

c

[
ṘSR + ∆Ṙtropo + ∆Ṙiono

]
(31.5)

which is approximated in ODTK as

ṫR ∼= ṫSR +
1

c

[
ṘSR

]
= ṫSR + ρ̇ (RS (tST ) ,VS (tST ) ,RS (tR) ,VS (tR)) (31.6)

where the rate of change of contributions due to the transponder delay, the
troposphere and ionosphere are ignored.

31.1.3 Complete Representation

The complete representation of the ground based TDOA Dot measurement is
then given by

TDOADot =
(
ṫR2 − ṫR1

)
+ TDOADotGM + ωTDOADot (31.7)

where TDOADotGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled TDOA Dot effects
and ωTDOADot is white Gaussian thermal noise.

31.2 Space-based TDOA Dot (Ground to Space-
craft)

In the space based TDOA Dot measurement, the signal is generated by a static
ground based emitter and received by space based receivers. The space-based
TDOA light time algorithm is used to generate the positions and velocities of
all satellites and ground locations required to support the computation of the
rate of change of time of arrival along each signal path.
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31.2.1 Rate of change of time of arrival

The rate of change in the uplink distance between the emitter and a relay
satellite is given by

ṫSR =
1

c

[
ṘSR + ∆Ṙtropo + ∆Ṙiono

]
(31.8)

which is approximated in ODTK as

ṫSR ∼=
1

c

[
ṘSR

]
= ρ̇ (RE (tE) ,VE (tE) ,RS (tSR) ,VS (tSR)) (31.9)

where the rate of change of contributions due to the troposphere and ionosphere
are ignored.

31.2.2 Complete Representation

The complete representation of the space based TDOA Dot measurement is
then given by

TDOADot =
(
ṫSR2 − ṫSR1

)
+ TDOADotGM + ωTDOADot (31.10)

where TDOADotGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled TDOA Dot effects
and ωTDOADot is white Gaussian thermal noise.
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Chapter 32

FDOA Dot

32.1 Ground FDOA Dot

In the ground FDOA Dot measurement, the signal is generated by a space based
emitter and received by a pair of static ground based receivers. The observation
time tag is at signal receipt at receive station 2. The ground TDOA light time
algorithm is used to generate the positions, velocities and accelerations of the
emitter satellite and ground locations required to support the computation of
frequency of arrival rate along each signal path.

32.1.1 Frequency of arrival rate

The frequency of arrival rate at ground receive station 2 for a signal of frequency
fE transmitted by the emitter is computed as

ḟR2 =
d

dt
A (RE (tE) ,VE (tE) ,RR2 (tR2) ,VR2 (tR2)) fE (32.1)

The rate of change of the frequency of arrival at ground receive station 1 for a
signal of frequency fE transmitted by the emitter is computed as

ḟR1 =
d

dt
A (RE (tE) ,VE (tE) ,RR1 (tR1) ,VR1 (tR1)) fE (32.2)

where,

A (R1,V1,R2,V2) ≈ 1− ρ̈1,2

c
+

1

2

(
ρ̈1,2

c

)2

(32.3)

and

ρ̈1,2 =
1

ρ1,2

(
(R2 −R1) · (A2 −A1) + (V2 −V1) · (V2 −V1)− ρ̇2

1,2

)
(32.4)
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32.1.2 Complete Representation

The complete representation of the ground FDOA Dot measurement is then
given by

FDOADot =
(
ḟR2 − ḟR1

)
+ FDOADotGM + ωFDOADot (32.5)

where FDOADotGM is a sequentially correlated Gauss-Markov random variable
which is designed to accommodate the sum of all unmodeled FDOA rate effects
and ωFDOADot is white Gaussian thermal noise.
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DSN Range and Total
Count Phase

Processing of observations from the NASA/JPL Deep Space Network is sup-
ported via observation models for two-way sequential range, two-way and three-
way Doppler and two-way and three-way total count phase measurements. In
the context of DSN measurement modeling, a two-way measurement involves a
signal which is received by the same ground station from which it was trans-
mitted. A three-way measurement involves a signal which is received by the
different ground station than the one from which it was transmitted. Transmit-
ted signals may be ramped or constant in frequency. The mathematical model
for computed values for these measurement types follows Moyer [87] except as
noted below. All measurement modeling is consistent with DSN operations us-
ing Block V receivers following the completion of the Network Simplification
Program.

33.1 Sequential Range

The DSN sequential range measurement is an ambiguous range. The length of
the unambiguous part of the observable is supplied in the tracking data file in
conjunction with the observation value. During the simulation of measurements,
the ambiguity is set to be 1099 which results in generation of unambiguous
ranges.

33.2 Total Count Phase

The DSN total count phase measurement is a measure of total received cycles
of the carrier from a specified epoch. The epoch for the start of the count is
supplied in the tracking data file in conjunction with the observed value. Se-
quential total count phase measurements are differenced during the reading of
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the tracking data file so that the resulting measurement processed in ODTK is
the received cycles over the current count interval. This differencing operation
makes the processing of total count phase observations equivalent to processing
Doppler observations. While the differencing operation may reduce the strength
of the total count phase measurement, it simplifies the processing of the mea-
surement in the sequential filter. During the simulation of measurements, a
constant transmit frequency associated with the transmitting ground station is
used.

33.3 Doppler

The DSN Doppler measurement is a measure of total received cycles of the
carrier over the specified Doppler count interval. The count interval is supplied
in the tracking data file in conjunction with the observed value. The Doppler
measurement differs slightly from the total count phase measurement in that
the time tag on the Doppler measurement is placed in the middle of the count
interval while the time tag on the total count phase measurement is placed at the
end of the count interval. During the simulation of measurements, a constant
transmit frequency associated with the transmitting ground station is used.

33.4 Antenna Corrections

Antenna correction effects are modeled based on Moyer.

33.5 Media Corrections

The corrections for effects of the troposphere and the ionosphere in Moyer are
replaced with the troposphere and ionosphere models available in ODTK.

33.6 Solar Corona Model

The effects of the solar corona are not currently modeled.



Chapter 34

Clock Modeling

34.1 Introduction

The currently implemented ODTK three-state clock model was derived from
that presented by Zucca-Tavella[105] (ZT, 2005) but can be shown to be func-
tionally equivalent to the two-state model by David Allan[1] (DA, 1990) when
the third state in the ZT model is ignored, and to the three state GEONS
model. The three states in the ODTK model are referred to as clock phase
deviation, frequency deviation and frequency drift (aging). The ODTK clock
model is stochastically characterized by clock model diffusion constants σ1, σ2,
and σ3 as introduced by ZT. The exact relationship between clock model dif-
fusion coefficients and the Allan variance was the objective of ZT (ZT page
290).

In the presentation of each model (Zucca-Tavella, Allan and GEONS) dif-
ferent notation is used to refer to common clock model parameters which can
lead to some confusion. Table 34.1 presents a clock model notational map that
relates the notation used in the ODTK user interface to the notation used in the
description of ZT, DA and GEONS. Note that while the ODTK model follows
ZT, the ODTK inputs are a combination of terms from Allan’s presentation
with frequency drift based on ZT. The FM acronym used three times in Table
34.1 header is read: frequency modulated.

Row 1 of Table 34.1 presents ZT notation for clock parameter diffusion
coefficients. Row 2 presents equivalent DA notation for clock parameter diffu-
sion coefficients, but DA did not address FM frequency drift. Row 3 presents
GEONS notation for clock parameter diffusion coefficients. Row 4 of Table
34.1 presents adopted ODTK notation for clock parameter diffusion coefficients.
ODTK stochastic clock input parameters are a0, a−2, and σ3.

The ODTK filter-smoother estimates the 3× 1 matrix clock state X (t) for
each clock Ci according to Equations 34.42 through 34.49, where Qk+1,k is used
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FM
white noise

FM
random walk

FM
frequency

drift
Zucca-Tavella σ1 σ2 σ3

Allan
√
a0

√
3a−2 NONE

GEONS
√
Q̇bR

√
Q̇dR

√
Q̇ḋR

ODTK
√
a0

√
3a−2 σ3

Table 34.1: Diffusion Coefficient Parameter Map

for clock Ci filter process noise covariance, and the estimation of X3 (t) (aging)
is user optional. Allan parameter values for a0, a−2, and ZT diffusion coefficient
σ3 are input to the filter by the user. Allan parameter values for a0 and a−2 can
be determined by the user by inspection of user Allan variance diagram for each
clock Ci. The GEONS[32] deterministic relativistic clock phase drift ∆dnRRe l

for
each satellite clock is modeled in ODTK with user option selection.

34.2 Time

34.2.1 Variable t

Let t denote the instantaneous value of the mean phase of a superior ensemble of
atomic clocks (examples: USNO ensemble, GPS ensemble), where t is referred
to a particular origin. Let Ci denote a clock that is not a member of the atomic
clock ensemble, and let x (t) denote the instantaneous value of the phase (time)
deviation of clock Ci from t. Let y (t) denote the instantaneous value of the
fractional frequency deviation of clock Ci referred to the mean frequency of the
atomic clock ensemble.

34.2.2 Constant τ

For k ∈ {0, 1, 2, . . .}, let tk and tk+1 denote estimates of t by clock Ci. For all
k, define a clock Ci time length constant τ > 0 by

τ = tk+1 − tk (34.1)

34.3 ODTK Simulator Clock Time Update

The clock three-state simulated deviation X (tk) is propagated from tk to tk+1

X (tk+1) = Φ (tk+1, tk)X (tk) +G (tk+1) (34.2)



34.4. ODTK FILTER CLOCK TIME UPDATE 249

with the 3× 3 transition matrix

Φ (tk+1, tk) =

 1 τ τ2/2
0 1 τ
0 0 1

 (34.3)

and the random functional G (tk+1) defined by Equation 34.47 in Section 34.6.

34.4 ODTK Filter Clock Time Update

34.4.1 State

The clock three-state estimate X̂ (tk) is propagated from tk to tk+1

X̂ (tk+1) = Φ (tk+1, tk) X̂ (tk) (34.4)

with transition matrix defined by Equation 34.3.

34.4.2 Covariance

The clock three-state estimate error covariance P (tk) is propagated to time tk+1

P (tk+1) = Φ (tk+1, tk)P (tk) ΦT (tk+1, tk) +Qk+1,k (34.5)

with process noise covariance Qk+1,k

Qk+1,k =

 σ2
1τ + σ2

2
τ3

3 + σ2
3
τ5

20 σ2
2
τ2

2 + σ2
3
τ4

8 σ2
3
τ3

6

σ2
2
τ2

2 + σ2
3
τ4

8 σ2
2τ + σ2

3
τ3

3 σ2
3
τ2

2

σ2
3
τ3

6 σ2
3
τ2

2 σ2
3τ

 (34.6)

34.5 Allan Variance

Initial values for clock parameters identified in Table 34.1 are useful for operators
of spacecraft equipped with space qualified clocks. The clock manufacturer of
each space qualified clock usually provides an associated Allan variance diagram.
The spacecraft operator can estimate Allan parameter values of the two Allan
parameters a0 and a−2 from that Allan variance diagram. This provides initial
values for two of the three clock parameters. Conversion to ZT and GEONS
forms can then be achieved using Table 34.1.

Allan[1], Equation (6) page 649, defines the average fractional frequency ȳk
for the kth measurement interval

ȳk =
xk+1 − xk

τ
(34.7)

where:
xk = x (tk) (34.8)
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Define

∆ȳ = ȳk+1 − ȳk (34.9)

The sample Allan variance is defined by Allan page 649 Equation (7)

σ2
y (τ) =

1

2

〈
(∆ȳ)

2
〉

(34.10)

where 〈·〉 indicates an infinite time average. Then

σ2
y (τ) =

1

2

〈
(ȳk+1 − ȳk)

2
〉

= lim
n→∞

[
1

2n

n∑
k=1

(ȳk+1 − ȳk)
2

]
(34.11)

Allan[1] (page 651 Table II) presents representations of σ2
y (τ) for frequency

modulated (FM) white noise, FM flicker noise, and FM random walk

σ2
y (τ) =

 a0τ
−1 FM white noise

a−1 FM flicker noise
a−2τ FM random walk

(34.12)

where a0, a−1, and a−2 are Ci clock dependent constants. FM flicker noise
is difficult to model or simulate, and is usually ignored. Allan also presents
representations of σ2

y (τ) for phase modulated (PM) white noise and PM flicker
noise. But σ2

y (τ) is dominated by the frequency modulated sequences that
integrate into phase.

34.5.1 Covariance on Clock Phase

Values for clock dependent parameter constants a0 and a−2 define selected mod-
els for composition of the Allan variance σ2

y (τ) according to Eqs. 34.12. We
assume that the clock can be sufficiently characterized1 by frequency modu-
lated (FM) white noise and frequency modulated random walk. Then clock
phase modulation (PM) will be driven by their generalized integrals.

Let x (t) denote clock time deviation (or clock phase deviation) and let y (t)
denote clock frequency deviation. Formally, Allan[1] presents the (generalized2)
integral:

x (t) =

∫ t

0

y (η) dη (34.13)

1This assumption is supported by Allan: ”Note that the quadratic D term occurs because
x (t) is the integral of y (t), the fractional frequency, and is often the predominant cause of
time deviation.”

2Allan does not distinguish between integrals and generalized integrals in his paper refer-
enced above. But the standard calculus does not work for the ”integration” of white noise and
random walk sequences. These sequences are summable and differenceable, but they are not
integrable and differentiable. It is nonetheless helpful to communicate the relation between
x and y by analogy to the standard calculus in the absence of measure theory and Lebesgue
integration tools.
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Frequency White Noise

The physical Allan variance for FM white noise is given by:

σ2
y (τ) = a0τ

−1, FM white noise (34.14)

Compare Eqs. 34.11 and 34.14 to write:

a0τ
−1 = lim

n→∞

1

2n

n∑
j=1

(ȳj+1 − ȳj)2
(34.15)

From this equation derive:

E {x (tk)x (tj)} = (a0) (min [tj , tk]) (34.16)

A candidate value: a0 = 10−22s.

Frequency Random Walk

The physical Allan variance for FM random walk is given by:

σ2
y (τ) = a−2τ , FM random walk (34.17)

Compare Eqs. 34.11 and 34.17 to write:

a−2τ = lim
n→∞

1

2n

n∑
j=1

(ȳj+1 − ȳj)2
(34.18)

Adopt the reset to zero condition:

yj = 0, tj = 0 (34.19)

Then derive:
E
{

(y (t))
2
}

= 3a−2t (34.20)

A candidate value: a−2 =
(
10−25/300

)
s−1.

Superposition

Ignoring FM flicker noise and phase modulated (PM) sequences given by Allan,
then:

σ2
y (τ) = a0τ

−1 + a−2τ (34.21)

34.5.2 Simulations

FM White Noise

Let t0 = 0, τ0 a positive small time increment, x0 a positive small number, and
n an unbounded positive integer. Define:

t = nτ0 > t0 (34.22)
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x (t) =

n∑
i=1

xi (34.23)

and adopt the probability statement:

P {xi = x0} = P {xi = −x0} = 0.5 (34.24)

Then [93]:

E
{

(x (t))
2
}

=

(
x2

0

τ0

)
t (34.25)

when the sizes of τ0 and x0 are sufficiently small. From Eq. 34.16:

E
{

(x (t))
2
}

= a0t (34.26)

Comparison of the latter two equations yields:

x0 =
√
a0τ0 (34.27)

Given t0 = 0, and values for a0 and τ0, derive x0 from Eq. 34.27, and with
the help of a uniform random number generator, simulate the random walk
sequence in clock phase, defined by Eq. 34.23, due to FM white noise. Derive
the corresponding white noise sequence in clock frequency with the help of Eq.
34.7.

FM Random Walk

Let t0 = 0, τ0 a positive small time increment, y0 a positive small number, and
n an unbounded positive integer. Define:

t = nτ0 > t0 (34.28)

y (t) =

n∑
i=1

yi (34.29)

and adopt the probability statement:

P {yi = y0} = P {yi = −y0} = 0.5 (34.30)

Then [93]:

E
{

(y (t))
2
}

=

(
y2

0

τ0

)
t (34.31)

when the sizes of τ0 and y0 are sufficiently small. From Eq. 34.20:

E
{

(y (t))
2
}

= 3a−2t (34.32)
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a0 = 1022 s, a2 = 3.33 x 1027 s1, τ0 = 0.02 s,

output span = 105 s,  sum/difference granularity = 1.0 s

Figure 34.1: Simulated Allan Variance Diagram

Comparison of the latter two equations yields:

y0 =
√

3a−2τ0 (34.33)

Given t0 = 0, and values for a−2 and τ0, derive y0 from Eq. 34.33, and with the
help of a uniform random number generator, simulate the random walk sequence
in clock frequency y (t), defined by Eq. 34.29, due to FM random walk.

Clock phase, due to FM random walk is derived by inserting Eq. 34.29 into
Eq. 34.13:

x (t) = y (t) τ0 (34.34)

The Allan Variance Diagram presents the logarithm (base 10) of clock sample
time τ (sec) on the abscissa (x axis), and the logarithm (base 10) of the square-
root σy (τ) of the Allan Variance σ2

y (τ) on the ordinate (y axis). That is,
log10 σy (τ) is graphed as a function of log10 τ .
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Fig. 34.1 presents an ideal simulated Allan Variance Diagram. Abscissa val-
ues {0,1,2,3,4,5} have been replaced with {100,101,102,103,104,105}. Ordinate
values {−10,−11,−12,−13,−14} have been replaced with {10−10,10−11,10−12,
10−13,10−14}. The Allan root-variance graph approximation from Fig. 34.1 is
defined by the sum of the two straight lines. Frequency white noise (for a0) is
associated with the straight line with negative slope (−1/2). Frequency random
walk (for a−2) is associated with the straight line with positive slope (1/2). The
wiggly overlaid functions are reconstructions from simulated data – they become
poorer approximations as τ increases because the sample ensemble is exhausted
(becomes smaller) as τ increases.

34.5.3 Filter Time Update for Clock

Let tk and tk+1 > tk define the time update interval [tk, tk+1]. Let us denote
the clock filter transition function Φk+1,k, and the clock filter process noise
covariance Qk+1,k.

State Estimate

State estimate propagation for the clock:

Xk+1|k = Φk+1,kXk|k (34.35)

where:

Φk+1,k =

[
1 (tk+1 − tk)
0 1

]
(34.36)

Error Covariance

Error covariance propagation for the clock:

Pk+1|k = Φk+1,kPk|kΦTk+1,k +Qk+1,k (34.37)

where:

Qk+1,k =

 [a0 (tk+1 − tk) + a−2 (tk+1 − tk)
3
] [(

a0 + 3a−2 (tk+1 − tk)
2
)
/2
][(

a0 + 3a−2 (tk+1 − tk)
2
)
/2
]

[(a0/ (tk+1 − tk)) + 3a−2 (tk+1 − tk)]


(34.38)

Pj|k =

[
P xj|k P xyj|k
P yxj|k P yj|k

]
, j ∈ {k, k + 1} (34.39)

34.5.4 State Estimate Parameters

The fractional frequency y (t) and its generalized integral x (t) is estimated for
the clock.



34.6. ZUCCA-TAVELLA CLOCK MODEL 255

34.6 Zucca-Tavella Clock Model

Following ZT [105] Eq. (19), define

Ȳ =
1

τ

∫ tk+1

tk

y (t) dt (34.40)

Let E {·} denote the expectation operator, and let σ2
y (τ) denote the Allan Vari-

ance, defined by (ZT [105] Eq. (18))

σ2
y (τ) =

1

2
E
{(
Ȳk+1 − Ȳk

)2}
(34.41)

Let X1 (t) denote clock phase deviation, let X2 (t) denote the random walk
component of clock frequency deviation, and in part, let X3 (t) denote clock
frequency drift (aging). Then

X (t) =

 X1 (t)
X2 (t)
X3 (t)

 (34.42)

Denote initial conditions with

X (0) =

 X1 (0)
X2 (0)
X3 (0)

 =

 c1
c2
c3

 (34.43)

Let µ1 denote the constant initial frequency offset, let a denote deterministic
constant frequency drift, let µ2 = a − c3 denote the constant deterministic
frequency aging, and let µ3 denote the linear coefficient of the time variation
of the frequency drift a. The ZT three-state clock model is defined by the
stochastic differential equation (ZT [105] Eq. (1)) dX1 (t)

dX2 (t)
dX3 (t)

 =

 [X2 (t) + µ1] dt+ σ1dW1 (t)
[X3 (t) + µ2] dt+ σ2dW2 (t)

µ3dt+ σ3dW3 (t)

 (34.44)

where t ≥ 0 andW1 (t), W2 (t), andW3 (t) are three independent one-dimensional
standard Wiener processes. The closed form solution is given by ZT ([105] Equa-
tion 5, page 290)

X (t) = Φ (t, t0)X (t0) +G (t) (34.45)

where

Φ (t, t0) =

 1 t− t0 (t− t0)
2
/2

0 1 t− t0
0 0 1

 (34.46)

G (t) =

 σ1W1 (t) + σ2

∫ t
0

(t− s) dW2 (t) + σ3

∫ t
0

(
(t− s)2

/2
)
dW3 (s)

σ2W2 (t) + σ3

∫ t
0

(t− s) dW3 (s)
σ3W3 (t)


(34.47)
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B (t) =

 t t2/2 t3/6
0 t t2/2
0 0 t

 (34.48)

The error covariance matrix associated with X (t) was presented in Equation
34.6 (given initially by ZT ([105] Equation (9) page 290))

Qk+1,k =

 σ2
1τ + σ2

2
τ3

3 + σ2
3
τ5

20 σ2
2
τ2

2 + σ2
3
τ4

8 σ2
3
τ3

6

σ2
2
τ2

2 + σ2
3
τ4

8 σ2
2τ + σ2

3
τ3

3 σ2
3
τ2

2

σ2
3
τ3

6 σ2
3
τ2

2 σ2
3τ

 (34.49)

ZT derived the Allan Variance σ2
y (tk, τ) of Equation 34.50 (or ZT [105] Equation

35) from the Equations above to find that the Allan Variance is a function of
tk as well as τ

σ2
y (tk, τ) =

[
σ2

1

τ
+
σ2

2τ

3
+
σ2

3τ
3

20

]
+ σ2

3

[
τ3

3
+
τ2tk

2

]
+
τ2

2
[c3 + µ3 [τ + tk]]

2

(34.50)
The estimation of X3 (t) absorbs µ3 and c3. In this sense µ3 and c3 are ignorable
for filter-smoother estimation, and Equation 34.50 becomes

σ2
y (tk, τ) =

σ2
1

τ
+
σ2

2τ

3
+

23σ2
3τ

3

60
+
σ2

3τ
2tk

2
(34.51)

But σ2
y (tk, τ), according to Equation 34.51, goes infinite with increasing tk > 0.

ZT have demonstrated that σ2
y (tk, τ) is a useless measure of clock Ci fractional

frequency stability when σ3 > 0. In this case one can use the Hadamard vari-
ance, defined in ZT Equation (44) and demonstrated to be free of tk in ZT
Equation (45), for assessment of clock Ci fractional frequency stability.

The ODTK filter-smoother estimates the 3× 1 matrix clock state X (t) for
each clock Ci according to Equations 34.42 through 34.49, where Qk+1,k is used
for clock Ci filter process noise covariance, and the estimation of X3 (t) (aging)
is user optional. Allan parameter values for a0, a−2, and ZT diffusion coefficient
σ3 are input to the filter by the user. Allan parameter values for a0 and a−2 can
be determined by the user by inspection of user Allan variance diagram for each
clock Ci. The mapping between ZT diffusion coefficients, Allan parameters, and
GEONS parameters is presented in Table 34.1. The GEONS[32] deterministic
relativistic clock phase drift ∆dnRRe l

for each satellite clock is modeled in ODTK
with user option selection.
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Chapter 35

LS Inputs

35.1 Input Values

Let yj denote a K × 1 column matrix of new measurement values yij , with
K measurement types i ∈ {1, 2, . . . ,K}, at measurement time tj , where j ∈
{1, 2, . . . ,M}. Thus:

yj =


y1
j

y2
j
...
yKj

 (35.1)

Let y denote a KM × 1 column matrix with matrix elements yj :

y =


y1

y2

...
yM

 (35.2)

Let Wj denote a K × K diagonal matrix of measurement weights at time tj ,
where again, superscripts denote measurement types:

Wj =


W 1
j 0

W 2
j

. . .

0 WK
j

 (35.3)

where:

W i
j =

1(
σij
)2 (35.4)
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and where σij is the error sigma on measurement type i at time tj . Let W denote
a KM ×KM diagonal matrix with diagonal matrix elements Wj :

W =


W1 0

W2

. . .

0 WM

 (35.5)

Let X̂0|m denote the a priori n×1 matrix state estimate at epoch time t0, where
m denotes the time tm of last measurement used, and the state estimate size
is n ≥ 6. If t0 = tm, then X̂0|m = X̂m|m = X̂0|0. Since one can always make
this happen with a state estimate propagation there is no loss of generality in
assuming it is true. The state estimate X̂0|0 always contains a 6×1 matrix orbit

estimate Ẑ0|0.

We are given numerical values for the initial state estimate matrix X̂0|0,
measurement matrix y, and measurement weight matrices W . Note: It is oper-
ationally conventional to specify Wj as a constant for all tj .

35.2 Initial Calculated Values

35.2.1 Measurement Residuals

Let yi
(
X̂j|0

)
denote the nonlinear scalar measurement representation for mea-

surement type i at measurement time tj . Let y
(
X̂j|0

)
denote a K × 1 column

matrix of measurement representations yi
(
X̂j|0

)
at time tj :

y
(
X̂j|0

)
=


y1
(
X̂j|0

)
y2
(
X̂j|0

)
...

yK
(
X̂j|0

)

 (35.6)

Let ∆y
(
X̂j|0

)
denote the K × 1 column matrix of measurement residuals for

time tj defined by:

∆y
(
X̂j|0

)
= yj − y

(
X̂j|0

)
(35.7)

and adopt the notation:

∆yj = ∆y
(
X̂j|0

)
(35.8)
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Let ∆y denote the KM × 1 matrix with matrix elements ∆yj :

∆y =


∆y1

∆y2

...
∆yM

 (35.9)

35.2.2 Partial Derivatives

Let Hi
j denote the 1 × n measurement-state Jacobian of partial derivatives for

time tj and measurement type i:

Hi
j =

∂yij
∂Xj

(35.10)

Let Φj,0 denote the n×n state-transition matrix Jacobian of partial derivatives
for times t0 and tj :

Φj,0 =
∂Xj

∂X0
(35.11)

Define the 1× n matrix Aij :

Aij = Hi
jΦj,0 (35.12)

Form the K × n matrix Aj :

Aj =


A1
j

A2
j

...
AKj

 (35.13)

Form the KM × n matrix A:

A =


A1

A2

...
AM

 (35.14)
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Chapter 36

Least Squares Solutions

36.1 LS Normal Equation and Solution

Let X0 denote the true unknown state, let y (X0) denote the unknown measure-
ment representation of y as a function of X0, and define a performance function
J :

J = (y − y (X0))
T
W (y − y (X0)) . (36.1)

Expand y (X0) about the known state estimate X̂0|0 in a multi-dimensional
Taylor’s series:

y (X0) = y
(
X̂0|0

)
+

[
∂y (X)

∂X

]
X̂0|0

(
X0 − X̂0|0

)
+ {higher order terms} (36.2)

Define:

A =

[
∂y (X)

∂X

]
X̂0|0

(36.3)

∆X0 =
[
X0 − X̂0|0

]
(36.4)

36.1.1 Linearization

Insert Eq. 36.2 into Eq. 36.1, ignoring higher order terms, to get:

J =
([
y − y

(
X̂0|0

)]
−A∆X0

)T
W
([
y − y

(
X̂0|0

)]
−A∆X0

)
(36.5)

Define:

∆y =
[
y − y

(
X̂0|0

)]
(36.6)

to write:

J (∆X0) = (∆y −A∆X0)
T
W (∆y −A∆X0) . (36.7)
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Differentiate J with respect to ∆X0:

∂J

∂∆X0
= 2

(
ATWA ∆X0 −ATW∆y

)
(36.8)

and set the gradient ∂J/∂∆X0 equal to zero to find extrema. This yields:

ATWA ∆X̂0|M = ATW∆y, (36.9)

where the use of ∆X̂0|M denotes the value of ∆X0 that extremalizes J (∆X0).

See Appendix A for details on calculation of the derivative ∂J̃/∂∆X0. Eq. 36.9
is called the least squares normal equation. If ATWA is non-singular, the least
squares solution is obtained by solving Eq. 36.9 for ∆X̂0|M , and adding ∆X̂0|M

to X̂0|0. Thus:

∆X̂0|M =
(
ATWA

)−1 (
ATW∆y

)
(36.10)

X̂0|M = X̂0|0 + ∆X̂0|M (36.11)

36.2 Remove the Squaring Operation

Let W 1/2 denote the square root matrix to the diagonal matrix W . That is:
W = W 1/2W 1/2. Define B = W 1/2A, and b = W 1/2∆y. Then Eq. 36.9 can be
written: (

BTB
)

∆X̂0|M = BT b (36.12)

Consider the equation:
B ∆X̂0|M = b (36.13)

Notice that Eq. 36.12 is rigorously derived from Eq. 36.13 by multiplication
with BT . These equations are theoretically equivalent. But given a fixed length
computer mantissa, they are not numerically equivalent. This is because the

squaring operation BTB halves the significance of ∆X̂0|M

(
=
(
BTB

)−1
BT b

)
relative to the fixed length computer mantissa. A solution of Eq. 36.13 directly
for ∆X̂0|M can recover the lost numerical significance.

36.3 Solution by Triangularization of B

The least squares equation:

B ∆X̂0|M = b (36.14)

must be solved for ∆X̂0|M , where B is a KM×n matrix with rank n, KM ≥ n,
and b is an KM × 1 matrix. The solution seems trivial when KM = n:

∆X̂0|M = B−1b (36.15)
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For KM > n, the solution of Eq. 36.14 with greatest numerical stability requires
the use of orthogonal Householder transformations (Lawson & Hanson [66], page
121) for triangularization of matrix B. Our problem is to calculate an acceptable
solution of Eq. 36.14 when KM > n.

36.3.1 Solution Overview

A KM × KM orthogonal matrix T is calculated such that the upper n × n
matrix of the KM × n matrix TB is upper triangular. Then:

TB ∆X̂0|M = Tb (36.16)

is easily solved for ∆X̂0|M with back substitutions because TB is upper trian-
gular.
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Chapter 37

Least Squares Inadequacies

37.1 LS Measurement Residuals

A fundamental hypothesis for the least squares algorithm says that measurement
residuals are white noise. This is desirable because white noise residuals demon-
strate the extraction of all information from the measurements. But anyone
performing orbit determination who has examined least squares measurement
residuals due to processing real data knows that they are serially correlated,
not white. This glaring contradiction demonstrates the inadequacy of the least
squares algorithm for performing orbit determination.

37.2 Incomplete LS Model

The LS model equation has no structure to account for serially correlated ran-
dom gravity modeling errors, serially correlated random air-drag modeling er-
rors, and serially correlated random solar pressure modeling errors. These er-
rors are absent in the LS state error transition function. The least squares state
estimate structure is necessarily incomplete because least squares cannot ac-
commodate random state errors (Bucy and Joseph [10], page 140); e.g., the LS
estimated drag coefficient and range bias parameters are necessarily modeled as
time constants.

37.3 Least Squares State Error Covariance

The LS state error covariance matrix
(
ATWA

)−1
is a function only of the

measurement error covariance matrix W−1. There is no structure here for force
modeling errors.
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Fit Span T

Position Error

Fit Span T

Position Error

Figure 37.1: Position Error vs Least Squares Fit Span

37.4 Batch Simultaneity

Physically, the alternating effects of force modeling errors on the state estimate
and the collection of measurement information for the state estimate evolves
sequentially with time. But the least squares algorithm maps measurement
information at distinct times simultaneously to the state estimate. This provides
no time-sequential structure to accommodate force modeling errors.

37.5 Schmidt’s Analysis of Least Squares

Figure 37.1 illustrates Stan Schmidt’s[100] analysis of the ephemeris predicted
position error magnitude in one position component (e.g., intrack), at an arbi-
trarily selected fixed prediction time, due to variations in the least squares fit
span T (units time). The green colored function (always decreasing with LS fit
span) is due to measurement error, the red colored function (always increasing
with LS fit span) is due to force model error, and the heavy black function
(superposition) is due to the sum of measurement error and force model error.

37.5.1 A Practical Experiment

Figure 37.1 has practical utility. A sample superposition function can be con-
structed using real data. Let tBD and tED denote the times of beginning and
end of the tracking data span, let tED be the fixed least squares epoch, and let
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tP denote a fixed prediction time, where tBD < tED < tP . With tED fixed the
propagation time tP − tED is also fixed. The fit span T = tED− tBD is variable,
and thus tBD is variable.

First perform a least squares fit with conjectured fit span TC centered on
fixed time tP , and save the resulting ephemeris across time tP . Call this the
reference ephemeris. Then perform a sequence j ∈ {1, 2, 3, . . .} of least squares
fits where each fit span Tj is distinct, but terminates at the fixed time tED.
For each fit propagate an ephemeris across tP , and difference the propagated
ephemeris with the reference ephemeris at time tP . Graph the magnitude of
this difference as a function of Tj to form the superposition from measurement
errors and force modeling errors. If variations in Tj are sufficiently small and
sufficiently large, the implied superposition function will have negative slope to
the left and positive slope to the right with a unique minimum. Let TBEST
denote the fit span associated with the superposition minimum. Now replace
TC with TBEST and repeat the experiment. Operationally, one must identify
the superposition minimum in order to ”optimize” least squares performance
for operational use. The final reference ephemeris will have errors, but their
magnitudes will be small, relative to the errors in the ephemerides used to
determine the ”optimal” fit span, if tP − tED is sufficiently long.

All three functions (red, green, and black) can be graphed quantitatively
using realistic simulated tracking data.

An Unwanted Surprise

Least squares orbit determination has the surprising property that when one
adds more information (after the resultant superposition minimum) the LS ac-
curacy performance gets worse! Generally, LS accuracy performance depends
on both data span and data density with time. Performance will also suffer due
to non-uniform data density with time! Recall Eqs. 36.7, 36.8, and 36.9: Least
squares chooses a state estimate that minimizes the sum of squares of weighted
tracking data residuals. It would be preferable to minimize state estimate error
variances.

37.6 Gibb’s Effect

Our presentation of the Gibbs’ effect1 is mentioned here so as to distinguish
it from Stan Schmidt’s analysis. Consider fitting any engineering data with
uniform density and uniform weight to any appropriate smooth approximating
function using a least squares curve fit, where the number of data points is
greater than the number of degrees of freedom in the smooth function.

Willard Gibbs noticed that the expected curve fit error magnitudes inside
the data span are always greatest near both ends of the data span. That is,
data neighborhoods containing the points of initiation and termination of data

1An appropriate discussion of the Gibbs Effect relating to least squares estimation is pre-
sented in a paper by Foster and Richards[25].
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produce degraded estimates as compared to data neighborhoods interior to the
data span. The best least squares estimate is at the center of the data span.
The least squares signed error envelope can be visualized as a bow tie. The
Gibbs’ effect contains no notion of force model, and no notion of an arbitrarily
selected fixed prediction point.

This is useful for least squares error analysis, but should not be confused
with Stan Schmidt’s analysis. Schmidt refers to a fixed prediction time for least
squares orbit determination, and compares the effects of measurement error and
force model error due to data span length at that fixed prediction time.



Chapter 38

Tracking Data Editing

One of the most difficult problems in the use of iterated least squares corrections
for operational orbit determination derives from outliers in the tracking data.
Thus tracking data editing is particularly a least squares related problem. Any
least squares measurement residual variance is useless for tracking data editing
because the state estimate error variance contribution is always significantly
too small – due to the absence of a mechanism to represent spacecraft force
modeling error covariance.

Refined least squares tracking data editing is typified by an algorithm to
identify measurement residual magnitudes that are large with respect to the
root mean square (RMS) on the total collection of measurement residuals used
in the least squares batch. This approach is effective when most of the data
are not outliers and when the a priori orbit estimate error magnitudes are suf-
ficiently small to enable iterative reduction in the residual RMS. Iterated least
squares corrections are intended to cope simultaneously with nonlinearities (i.e.,
large error magnitudes in the a priori orbit estimate) and with tracking data
editing. When the iterative relative RMS ratio magnitude is reduced to below
an a priori defined epsilon, then the iteration is terminated – some say con-
verged. But when tracking data are removed from the batch, the residual RMS
is redefined together with the effective editing policy. Thus the effective editing
policy is redefined on each iteration. It is thus not surprising that operational
least squares methods employ a capability to terminate the iterative corrections
arbitrarily after an a priori defined maximum iteration count.

Democracy rules: e.g., Given a batch of measurements where seventy per
cent of the data are biased outliers, the RMS residual editor will throw out the
good data to derive a least squares fit to the outliers.

We shall use the iterative least squares RMS editing method for least squares
orbit determination, but only after the application of every other effective data
editor. We should note that our autonomous optimal filter editor should be used
in preference to the iterative least squares RMS editor. Unfortunately, we only
use the least squares estimate as a bridge between IOD and filter initialization.
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38.1 Tracking Data Editor Identification

Editors are applied to each station pass. Let m denote the number of data
sets initially given in the station pass, each at a distinct time, say tk, k ∈
{1, 2, 3, . . .m}. Each editor will potentially reduce the value of m as outliers are
discarded. In order to complete the station pass editing, a minimum number of
measurement sets must survive initial editors.

In order to support a successful least squares correction the measurements
must span a particular orbit-period dependent time span. For otherwise, the
orbit estimate will be unobservable to the batch of measurements used.

The editors identified below are to be applied in the order given.

1. Minimum Number of Data Sets Editor

2. Minimum Time Span Editor

3. Tracking Loop Flag Editor

4. Repeat: Minimum Number of Data Sets Editor

5. Repeat: Minimum Time Span Editor

6. Gross Raw Data Editor

7. Repeat: Minimum Number of Data Sets Editor

8. Repeat: Minimum Time Span Editor

9. Minimum Elevation Editor

10. Repeat: Minimum Number of Data Sets Editor

11. Repeat: Minimum Time Span Editor

12. Sliding Raw Data Polynomial Editor

13. Repeat: Minimum Number of Data Sets Editor

14. Repeat: Minimum Time Span Editor

15. IOD Sliding Fit Kepler Element Editor

16. Repeat: Minimum Time Span Editor

17. Second Difference Editor Using IOD

18. Repeat: Minimum Time Span Editor

19. Residual RMS Editor Criterion Using IOD

20. Repeat: Minimum Time Span Editor

21. Least Squares Solution Attempt
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22. Iterative RMS convergence

23. Exceed Maximum Iteration Count Editor

24. Manual Editor

25. Select A New Station Pass

26. Measurement Bias Estimate/Guess

27. Call an Orbit Analyst

28. Call AGI

38.2 Minimum Number of Data Sets Editor

Let Tm denote the minimum number of measurement data sets required per
station pass. Let m denote the number of data sets surviving for the station
pass, each at a distinct time, say tk, where k ∈ {1, 2, 3, . . .m}.

If m < Tm, (default 3) then discard the given station pass, select another,
and begin editing again.

38.3 Minimum Time Span Editor

With some measurement sets the least squares orbit solution is not observable
without measurements that span a time interval defined by multiple orbit pe-
riods. Provide a user defined constant TMT for minimum time span associated
with each measurement type and assumed orbit class.

Let [tB , tE ] denote the measurement batch time-span currently available. If
|tE − tB | < TMT , acquire more tracking data so as to satisfy the requirement:
|tE − tB | ≥ TMT .

Note that multiple station passes will probably be required to satisfy this
requirement.

38.4 Tracking Loop Flag Editor

If the measurement file includes a tracking loop flag that is set FALSE by sensor
hardware, then discard the measurement.

38.5 Gross Raw Data Editor

Let η denote a measurement value of a particular type from a particular mea-
surement set. An orbit class, tracking system, and scale factor value Sη > 1 are
selected by the user for input to the gross editor algorithm. The gross editor
algorithm uses these inputs to define a gross threshold value Tη > 0 for each
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measurement type η. Let η̄f > 0 denote the class dependent, tracking system
dependent, and measurement type dependent upper bound for the error-free
component of η. The white noise and bias on η are negligible as compared to
η̄f . Then Tη is defined by:

Tη = Sη η̄f

Edit Test: Compare each measurement value magnitude |η| with Tη. If |η| < Tη,
accept measurement η (t). Otherwise discard η (t) and the entire measurement
set associated with η (t) at time t.

Example: Let η (t) = ρ (t) denote a range measurement for the AFSCN
tracking system and a LEO spacecraft. Then ρ (t) is a two-way range. If the
orbit class is LEO and the spacecraft position vector length rLEO < 1.3er, then
ρ̄f = 2

√
1.32 − 12er = 1.66er. If Sη = 1.1, then Tρ = 1.1 × 1.66er = 1.826er.

Edit test: Given a range measurement ρ (t), if |ρ (t)| < 1.826er, accept range
value ρ (t) for processing, otherwise discard ρ (t) and associated measurements
at time t.

Redefine m to denote the number of surviving data sets.

38.6 Minimum Elevation Editor

If elevation values Ej are given in the raw data, then reject all surviving mea-
surement sets for which Ej < TEL, where

TEL is a user defined quantity. Default: TEL = 15 deg.

38.7 Sliding Raw Data Polynomial Editor

Provide user defined constants for polynomial order OP , minimum number of
measurements Nm, and RMS epsilon εRMSpoly. Perform a linear least squares fit
of an N th order polynomial to an overlapping sliding batch of Nm measurements
for each measurement type. Calculate a polynomial residual ∆yj RMS for
each measurement of each fit, then discard each measurement whose residual
magnitude exceeds εRMSpoly. See definitions for the polynomial least squares
method in the IOD section herein.

38.8 Kepler Element Editor

Perform an IOD sliding fit to all m surviving measurement sets, with each set
associated with a time, say tk, k ∈ {1, 2, 3, . . .m}.

Example: If IOD is Herrick-Gibbs, then three measurement sets of range,
azimuth, and elevation are required, say at times tj , tj+1, and tj+2, for each
solution. The first Herrick-Gibbs solution for position and velocity components
at time t2 use measurement sets at times t1, t2, and t3. The second Herrick-
Gibbs solution for position and velocity components at time t3 use measurement
sets at times t2, t3, and t4. The jth Herrick-Gibbs solution for position and
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velocity components at time tj+1 use measurement sets at times tj , tj+1, and
tj+2. And the mth Herrick-Gibbs solution for position and velocity components
at time tm−1 use measurement sets at times tm−2, tm−1, and tm.

Transform each solution for position and velocity to Kepler elements.

38.8.1 Kepler Element Bounds Criterion

Check each IOD solution to see that each Kepler element within each solution
is within its formal bound. The following orbit bound definitions values should
be made consistent with the existing orbit class definitions.

LEO 
1.01er ≤ a < 1.30er

0 ≤ e < 0.1
0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg


MEO 

1.3er ≤ a < 4.0er
0 ≤ e ≤ 0.1

0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg


GPS 

4.0er ≤ a < 4.4er
0 ≤ e ≤ 0.1

0 deg ≤ v < 360 deg
53 deg ≤ i ≤ 57 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg


SUB-GEO 

4.0er ≤ a < 6.4er
0 ≤ e ≤ 0.1

0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg
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GEO 
6.4er ≤ a ≤ 6.8er

0 ≤ e ≤ 0.1
0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg



SUPER-GEO 
6.8er ≤ a ≤ 1000er

0 ≤ e ≤ 0.1
0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg



MOLNIYA


4.0er ≤ a ≤ 4.4er
0.65 ≤ e ≤ 0.75

0 deg ≤ v < 360 deg
62 deg ≤ i ≤ 66 deg
0 deg ≤ Ω < 360 deg

260 deg ≤ ω < 280 deg


HEO 

1.3er ≤ a ≤ 5.0er
0.1 ≤ e ≤ 0.999

0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg


OTHER 

?er ≤ a ≤?er
? ≤ e ≤?

0 deg ≤ v < 360 deg
0 deg ≤ i ≤ 180 deg
0 deg ≤ Ω < 360 deg
0 deg ≤ ω < 360 deg
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Measurement Set Selection

Continuing with the Herrick-Gibbs example, Let m ≥ 3 denote a given num-
ber of measurement sets within the same tracking station pass, where each set
consists of range, azimuth, and elevation measurements, and each set is asso-
ciated with a distinct time tag. Each execution of the Herrick-Gibbs method
requires the input of three distinct sets of range, azimuth, elevation, and time
tag. Transform each solution from position and velocity components to Kepler
elements.

38.8.2 m = M = 3

Calculate one Herrick-Gibbs solution for the Kepler element bounds check.

38.8.3 m = M = 4

With m = 4, we can calculate exactly 4 distinct Herrick-Gibbs solutions:(
4
3

)
=

4!

3! (4− 3)!
= 4

Notice that all four solutions are correlated because at least one of the mea-
surement sets used in each solution is also contained in each of the other three
solutions. Name the four measurement sets a, b, c, d, and identify the four solu-
tions with: 

S1 abc
S2 bcd
S3 abd
S4 acd


Each measurement set occurs in exactly three solutions. It is logically impossi-
ble that three solutions could succeed and one solution could fail, or that two
solutions could succeed and two solutions could fail. For if two solutions succeed,
then measurement sets a, b, c, d are good.

Given that all four solutions succeed, then all four measurement sets are
accepted. If exactly three solutions succeed and one solution fails, then reject
all four measurement sets. If exactly two solutions succeed and two fail, then
reject all four measurement sets.

Given that one solution succeeds but the other three fail, then three of the
four measurement sets are accepted and one set is discarded. Example: Suppose
no bound is violated for solution S1, but violations are incurred for solutions
S2, S3, and S4. Then measurement sets a, b, and c are accepted, and d is
discarded.

38.8.4 m = M = 5

With m = 5, we can calculate exactly 10 distinct Herrick-Gibbs solutions:(
5
3

)
=

5!

3! (5− 3)!
= 10



278 CHAPTER 38. TRACKING DATA EDITING

Name the five measurement sets a, b, c, d, e, and identify the ten solutions with:

S1 abc
S2 abd
S3 abe
S4 acd
S5 ace
S6 ade
S7 bcd
S8 bce
S9 bde
S10 cde


Each measurement set occurs in exactly six solutions. Given that all ten

solutions succeed, then all ten measurement sets are accepted. Given that four
solutions succeed and six solutions fail, then the one measurement set common
to the six failures is discarded, and the other four measurement sets are ac-
cepted. Given that one solution succeeds and nine fail, then accept the three
measurement sets associated with the successful solution and reject the other
two measurement sets. For any other combination of success and failures, reject
all five measurement sets.

38.8.5 m ≥ 6

Process all measurement sets in an overlapping sliding group of five, using the
last procedure for M = 5.

Note: We could generalize the combinatorials for any finite integer m, but
this might be an unusual expense in programming and CPU.

38.8.6 Kepler Element Statistics Criterion

Provide user inputs for constant thresholds Ta, Te, and Ti, with default val-
ues set to 3. Consider the measurement sets that survive the Kepler Element
Bounds Criterion. For each station pass calculate the sample mean µβ and sam-
ple variance σ2

β about the mean for Kepler orbit elements β ∈ {a, e, i}. Compare
each element value difference magnitude |β − µβ | with the product of its thresh-
old with σβ . If |β − µβ | < Tβσβ , then retain the measurement set associated
with β, where β ∈ {a, e, i}. Otherwise discard the measurement set associated
with β. Use the same logic for identification of the measurement set to discard
as used for the Kepler Element Bounds Criterion .

38.9 Second Difference Editor Using IOD

Calculate measurement residuals (first differences) using one orbit estimate from
IOD. See Attachment A for second difference editing.
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38.10 Convergence Criteria

38.10.1 Residual RMS Convergence Criterion Using IOD

Provide two user defined small positive constants: εRMS (epsilon for root mean
square) and εRRMS (epsilon for relative root mean square).

Given measurements yj , j ∈ {1, 2, 3, . . . ,m}, calculate measurement residu-

als ∆yj by propagating one IOD orbit estimate X̂
(0)
0 from t0 to tj to get X̂

(0)
j for

each j, by calculating the measurement representation y
(
X̂

(0)
j

)
, and by forming

the differences ∆yj = yj − y
(
X̂

(0)
j

)
. Define:

Aj =
∂yj
∂Xj

∂Xj

∂X0
=

∂yj
∂Xj

Φj,0

where theoretically:

∆Xj =
∂Xj

∂X0
∆X0

and define:

∆y =


∆y1

∆y2

...
∆ym



A =


A1

A2

...
Am


Then the root mean square (RMS(k)) on the measurement residuals for iteration
k, k ∈ {1, 2, . . . , L}, is defined with:

RMS(k) =
1

m

(
∆yT∆y

)1/2
=

1√
m

 m∑
j=1

∆y2
j

1/2

Using least squares, an orbit estimate correction ∆X̂
(k)
0 is derived for iteration

k. Given the orbit estimate correction ∆X̂
(k)
0 , the predicted root mean square

(PRMS) for iteration k = 1 is defined by:

PRMS(k) =
1√
m

((
∆X̂

(k)
0

)T
ATA

(
∆X̂

(k)
0

)
+ ∆yT

(
∆y − 2A∆X̂

(k)
0

))1/2

If: ∣∣PRMS(k) −RMS(k)
∣∣

RMS(k)
< εRRMS
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or if:
RMS(k) < εRMS

define convergence. Otherwise, iterate.

PRMS Derivation

The least squares solution for an iterative linear correction ∆X̂0 is derived from
the approximation:

A∆X̂0
∼= ∆y

which has an error δy:
δy = ∆y −A∆X̂0

Define the conditional variance on δy:

σ2
δy = E

{(
δy|∆X̂0

)T (
δy|∆X̂0

)}
to get:

σ2
δy =

1

m

[(
∆X̂0

)T
ATA

(
∆X̂0

)
+ ∆yT

(
∆y − 2A∆X̂0

)]
and assign:

PRMS = σδy

38.10.2 Residual RMS Convergence Criterion After First
Correction

If: ∣∣RMS(k+1) −RMS(k)
∣∣

RMS(k)
< εRRMS

or if:
RMS(k+1) < εRMS

define convergence. Otherwise, keep iterating.

38.11 Residual Editor

Compare the magnitude of each measurement residual |∆yj | to the product of
a scale factor N (default N = 3) with its unweighted RMS. If:

|∆yj | < N RMS, accept the measurement

|∆yj | ≥ N RMS, reject the measurement

The RMS is used for editing prior to making each iterative least squares cor-
rection.
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38.12 Least Squares Solution

Given the application of Editors (1) through (12), attempt a least squares so-
lution with RMS residual editing.

38.12.1 Exceed Maximum Iteration Count Editor

Provide a user defined positive constant integer Nmax, to define maximum it-
eration count. If the least squares iterations exceed Nmax, then terminate the
iterations and invoke the manual editor.

38.13 Manual Editor

Present the user with a graphical display of measurement residuals, and a ca-
pability to manually discard each associated measurement.

38.14 Select A New Station Pass

Provide a user defined positive constant integer Pmax. Having attempted every
useful tracking data editing algorithm with subsequent failure in a least squares
attempt on a particular station pass, it is time to discard the entire station pass,
select a new station pass, and try again. Discontinue after Pmax station pass
failures.

38.15 Measurement Biases

It is possible that all measurements of a particular type are significantly biased;
e.g., range transponder bias. If there is a resource available from which to obtain
a bias estimate, try that. If not, guess a bias estimate, and try again. Finally,
call an orbit analyst for help.
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Part IX

Initial Orbit Determination
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Chapter 39

IOD Methods

Existing validated initial orbit determination (IOD) methods are typically de-
pendent on three measurement subsets at three distinct times, where each sub-
set contains the same measurement types. From the measurement type set
{range, range-rate, azimuth , elevation}, where azimuth and elevation never
occur separately, there are two subsets of three measurement types: {range,
azimuth, elevation}, {range-rate, azimuth, elevation}; there are two subsets of
two measurement types: {azimuth, elevation}, {range, range-rate}; and there
are two subsets of one measurement type: {range} and {range-rate}. For opera-
tional geocentric orbits, validated methods exist for {range, azimuth, elevation},
{range-rate, azimuth, elevation}, and {azimuth, elevation}. Two methods are
proposed for {range} with six range values. There exist no methods for {range-
rate}.

Two successfully tested methods are available in ODTK: The Herrick-Gibbs
IOD method[33] for three sets of {range, azimuth, elevation}, and Robert Good-
ing’s method[30] for three sets of {azimuth, elevation}.

39.1 Common Modeling Limitations

39.1.1 Two-Body Dynamics

In common, all IOD problems are six-dimensional and nonlinear, and all IOD
solutions use two-body gravitational accelerations for orbit propagation. If the
measurement error magnitudes are significant, then the orbit estimate derived
therefrom with two-body dynamics may be poor.

39.1.2 Measurement Outliers

IOD methods present a measurement editing problem. Gross editing is per-
formed on raw tracking data, but exposure to data outliers remains. Effective
and refined measurement editing depends on the use of an existing orbit esti-
mate, and that does not exist. Thus measurement residuals cannot be formed,

285
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and measurement residual editing is not possible. The success of IOD can be
judged by the success of a subsequent least squares attempt for differential cor-
rection to the IOD estimate. Fortunately, with multiple data time points and
multiple IOD data sets, the user is able to attempt an IOD solution many times
with independent data sets. IOD editing requires manual interaction between
program response and the user.

39.2 Common Equations for IOD

39.2.1 Equation of Motion

The two-body vector equation of motion is given by:

r̈ = − µ
r3

r (39.1)

39.2.2 Triangle Geometry

Let us denote the Earth-centered tracking station vector with s. Define the
instantaneous range vector ρ with the vector triangle:

ρ = r− s (39.2)

define its length ρ with:
ρ =
√
ρ · ρ (39.3)

and define the instantaneous unit range vector L with:

L = ρ/ρ (39.4)

Then:
r =ρL + s (39.5)

and:
r · r =r2 = ρ2 + 2ρL · s + s2 (39.6)



Chapter 40

Herrick-Gibbs

Given three distinct sets of range, azimuth and elevation measurements, space-
craft position and velocity vectors are calculated according to the method of
Gibbs as extended by Herrick [33].

40.1 Position Vectors

Unit range vectors Li with their times ti, for i {1, 2, 3}, are derived directly from
the three sets of azimuth and elevation measurements, as in the section herein
on station kinematics. Use Eq. 39.5 to form three spacecraft position vectors ri
from measured range measurements ρi, station position vectors si, and the Li.

40.1.1 Taylor’s Series

Treat time t2 as fixed so that r2, ṙ2,. . . are vector time constants. Expand r1

and r3 in Taylor’s series about r2:

rj = r2+ṙ2 (tj − t2)+
1

2
r̈2 (tj − t2)

2
+

1

3!

...
r 2 (tj − t2)

3
+

1

4!

....
r 2 (tj − t2)

4
+O

(
(tj − t2)

5
)

(40.1)

where j ∈ {1, 3}. Ignore O
(

(tj − t2)
5
)

to write:

rj = r2 + ṙ2 (tj − t2)+
1

2
r̈2 (tj − t2)

2
+

1

3!

...
r 2 (tj − t2)

3
+

1

4!

....
r 2 (tj − t2)

4
(40.2)

where j ∈ {1, 3}. Differentiate Eq. 40.2 twice with respect to tj :

r̈j = r̈2 +
...
r 2 (tj − t2) +

1

2

....
r 2 (tj − t2)

2
(40.3)

Insert Eq. 39.1 twice into Eq. 40.3:

− µrj
r3
j

= −µr2

r3
2

+
...
r 2 (tj − t2) +

1

2

....
r 2 (tj − t2)

2
(40.4)
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where j ∈ {1, 3}. Solve these two vector equations for
...
r 2 and

....
r 2:[ ...

r 2....
r 2

]
=
µ

∆

[
(t3 − t2)

2
/2 − (t1 − t2)

2
/2

− (t3 − t2) (t1 − t2)

] [
r2/r

3
2 − r1/r

3
1

r2/r
3
2 − r3/r

3
3

]
(40.5)

where:
∆ = (t1 − t2) (t3 − t2) (t3 − t1) /2 (40.6)

Insert Eq. 40.5 into Eq. 40.2 to solve for ṙ2 and r̈2 in terms of ri for i ∈ {1, 2, 3}.
Evaluate the two equations of 40.2 (in terms of ṙ2, r̈2,

...
r 2, and

....
r 2) as functions

of ri for i ∈ {1, 2, 3}. Add these two equations appropriately to get:

r2 = c1r1 + c3r3 (40.7)

ṙ2 = −d1r1 + d2r2 + d3r3 (40.8)

where:
cj = Aj

(
1 +Bj/r

3
j

)
/
(
1−B2/r

3
2

)
, j ∈ {1, 3} (40.9)

A1 =
t23

t13
, A3 =

t12

t13
(40.10)

B1 = µ
(
t212 + t12t23 − t223

)
/12 (40.11)

B2 = µ
(
t212 + 3t12t23 + t223

)
/12 (40.12)

B3 = µ
(
−t212 + t12t23 + t223

)
/12 (40.13)

t12 = t2 − t1, t13 = t3 − t1, t23 = t3 − t2 (40.14)

and where:
di = Gi +Hi/r

3
i , i ∈ {1, 2, 3} (40.15)

G1 =
t223

t12t23t13
, G3 =

t212

t12t23t13
, G2 = G1 −G3 (40.16)

H1 = µt23/12, H3 = µt12/12, H2 = H1 −H3 (40.17)

Note: we use r2 as initially derived from Eq. 39.5, rather than from Eq. 40.7.
This proves to be successful for radar range measurements and geocentric orbits.
Herrick argues that r1, r2, r3 must be forced to be coplanar according to Eq.
40.7. Of course r1, r2, r3 are not coplanar due to non two-body perturbative
forces.
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Gooding

41.1 Description

41.1.1 Guess Range Values

Given tracking platform positions, Gooding IOD calculates orbit solutions that
complete the first and third unit range vectors for which pairs of angles are
known but ranges are missing. From each such solution the inertial components
of position and velocity are automatically implied.

Components of unambiguous unit range vector estimates L1, L2 and L3 are
calculated directly from measured angles pairs at times t1, t2, and t3. Unit
vectors Lj , j ∈ {1, 2, 3}, are accurate three-dimensional direction pointers from
tracking platform to spacecraft, but values for the lengths (ranges) ρj of the

range vectors ρj = ρjLj are unknown. Initial guesses ρ
(0)
1 and ρ

(0)
3 are defined

by the user, or by program default. Vectors L1 and L3 are then multiplied

by initial range value guesses ρ
(0)
1 and ρ

(0)
3 respectively to derive range vector

estimates ρ
(0)
1 and ρ

(0)
3 at times t1 and t3. Vectors ρ

(0)
1 and ρ

(0)
3 are correctly

directed, but their length estimates may be poor. Vectors ρ
(0)
1 and ρ

(0)
3 are

added to known and accurate platform position vectors s1 and s3 respectively

at times t1 and t3 to provide spacecraft position vector estimates r
(0)
1 = s1 +ρ

(0)
1

and r
(0)
3 = s3 + ρ

(0)
3 at times t1 and t3. Errors in the spacecraft position vector

estimates r
(0)
1 and r

(0)
3 may be large, in both direction and size. Even so, we

have two spacecraft position vector estimates r
(0)
1 and r

(0)
3 at two distinct times

t1 and t3.

41.1.2 Lambert

The unknown central angle θ between true position vectors r1 and r3, in the
plane of r1 and r3, is related to the orbit period P , and measurement time-tag
difference (t3 − t1). For each value of θ, and for integers k ∈ {0, 1, 2, 3, . . .},
define k such that (k)π < θ ≤ (k + 1)π.
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Examples: When 0 < θ ≤ π, then k = 0, and the central angle θ is com-
pletely contained within the first one-half orbit. When π < θ ≤ 2π, then k = 1,
and the central angle θ is completely contained within one orbit. Thus k is the
number of half-orbits for which the central angle θ, between position vectors r1

and r3, is completely contained. When the orbit is circular, the relation between
(t3 − t1), orbit period P , and k is simple, and the user can make a good guess
for k (see Table 41.2). But when the orbit is highly eccentric, this relation is
not obvious.

Lambert Problem

Given values for components of any two distinct spacecraft position vectors r1

and r3, and their times t1 and t3, calculate the spacecraft velocity ṙ1 at time
t1, or calculate the spacecraft velocity ṙ3 at time t3.

Multiple Solutions

When k = 0 or k = 1, Lambert’s Problem has exactly one solution, but when
k ≥ 2, Lambert’s Problem, like a quadratic equation, has two solutions, no
solution, or one solution in a limiting case that occurs with probability zero.
Indicator i = 0 if k ∈ {0, 1}, but i ∈ {0, 1} if k ≥ 2. This Indicates which of two
Lambert solutions are to be used, if there are two.

Universal Variables

Gooding’s implementation of the Lambert Problem solution is an accurate, two-
iteration universal one, valid for all conic orbits: ellipse, parabola, and hyper-
bola.

41.1.3 Gooding

The Gooding IOD algorithm submits r
(0)
1 and r

(0)
3 , with times t1 and t3, to the

Lambert algorithm to calculate velocity ṙ
(0)
1 . Although the velocity vector ṙ

(0)
1

is likely a poor estimate of ṙ1, at least we have a complete orbit estimate from

r
(0)
1 and ṙ

(0)
1 . This enables the propagation of r

(0)
1 and ṙ

(0)
1 to time t2 to obtain

estimates r
(0)
2 (and ṙ

(0)
2 ). Calculate ρ

(0)
2 = r

(0)
2 − s2, an erroneous estimate of

the true range vector ρ2. Recall that L2 (from angles data) is a good estimate

of the unit range vector at time t2, so project ρ
(0)
2 onto a plane orthogonal to

L2 to define two components of the error in ρ
(0)
2 . Now correct ρ

(0)
1 and ρ

(0)
3 to

reduce the two components of error in ρ
(0)
2 , and generate improved estimates

ρ
(1)
1 and ρ

(1)
3 of range, thereby also calculating improved estimates r

(1)
1 and ṙ

(1)
1

of position and velocity. This procedure is iterated on integer i so as to drive

the two components of error in ρ
(i)
2 to zero, thereby deriving best estimates of

ρ1, ρ3, r2, and ṙ2.
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When the embedded Lambert algorithm provides a solution for the space-
craft velocity ṙ1 at time t1, then Gooding IOD converges to a local solution for

r2 and ṙ2. But the price for extraordinary initial errors in ρ
(0)
1 and ρ

(0)
3 is that

the local solution for r2 and ṙ2 may not be useful.

Multiple Solutions

When k = 0, there do formally exist either 0, 1, 2, or 3 distinct solutions to the
Gooding IOD problem. Unfortunately, there is no sure technique to identify the
number of distinct solutions a priori. When there are 2 or 3 distinct solutions,
only one of them is useful, but we have found that in the large majority of cases
tested, that one is found. When there are formally 3 distinct solutions, two of
them may be complex, and will not be found, because the algorithm is restricted
to the real domain.

As k is increased, the number of solutions also increases, though only up to
some maximum value. If the value of k is not known in advance, therefore, the
search for the useful solution can get increasingly complicated.

41.2 A Priori Orbit Information

When there are multiple distinct solutions, only one of them will be useful –
associated with the true orbit. It is necessary to correctly couple the selections
of the three measurement pair time-tags t1, t2, and t3 with the HalfRevEstimate
= k from the set {0, 1, 2, 3, . . .} in order to find the useful solution. One way to
do this is to search through k ∈ {0, 1, 2, 3, . . .} beginning with k = 0. But when
the user has useful a priori information (e.g., orbit class LEO, MEO, GEO,
HEO, orbit period P , semi-major axis a, or eccentricity e), then the search for
the useful solution may be simplified. Table 41.1 correlates orbit class roughly
with P (min), P (sec), a (km), and e.

Orbit Class P (min) P (sec) a (km) e
LEO 100 6000 7137 0.000 < e < 0.050
GEO 1436 86169 42163 0.000 < e < 0.001
GPS (MEO) 718 43080 26560 0.000 < e < 0.001
HEO 718 43080 26561 0.7 (Molniya)

Table 41.1: Mean Orbit Period vs Orbit Class

41.2.1 Near-Circular Orbits

With eccentricity zero (or near zero), any uniform partition of orbit period P
maps uniformly (or almost uniformly) to increments in central angle – true
argument of latitude differences. This enables association of orbit period P
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with the measurement time-tag difference t3− t1 and the HalfRevEstimate = k.
For single-station IOD1, the simplest approach is to choose k = 0, then select
measurements such that 0 < t3 − t1 < P/2, but such that as much of the
interval [t1, t3] is used as possible in this selection so as to attenuate the effects
of measurement white noise. Table 41.2 correlates k with P and t3 − t1.

t3 − t1 vs P k
0 < t3 − t1 < P/2 0
P/2 < t3 − t1 < P 1
P < t3 − t1 < (3/2)P 2
(3/2)P < t3 − t1 < 2P 3
...

...

Table 41.2: Orbit Period Relations

41.2.2 High Eccentricity Orbits

Given an a priori estimate for orbit period P , and knowing that the eccentricity
e is large (e.g., e > 0.7), one may choose time-tags t1, t2, and t3 such that
0 < t3− t1 < P . Then one must perform two sets of tests with HalfRevEstimate
= k, for k = 0, and for k = 1.

41.3 White Noise

Gauss[26] discovered white noise2 on telescopic angles measurements in right as-
cension and declination in 1795, while performing orbit determination. All real
angles measurements have white noise3 that degrades all algorithms4 for angles-
only IOD. For single-station single-pass LEO tracking Gooding IOD overcomes
the white-noise problem when t3 − t1 > 0 is sufficiently large. For two-station
LEO tracking, Gooding IOD significantly reduces position and velocity errors
due to white-noise, relative to single-station tracking, if all measurements are
selected from a common six minute time interval and t3 − t1 = 1 min approxi-
mately.

1Double-station IOD is preferred for accuracy.
2Gauss[26] invoked the normal density function to model white noise, and invented the

iterative least squares algorithm (1795) to perform orbit determination on an overdetermined
set of telescopic measurements in right ascension and declination.

3Practically, a realizable white noise time sequence may be visualized as a random normal
sequence where every component is independent of all others (no serial correlation), and where
the ensemble variance is finite.

4The classical LaPlace IOD method is destroyed by white noise if its RMS is significant,
when applied to geocentric orbits .
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41.4 Tropospheric Effects

Degrading effects of the troposphere, from ground based platforms, can be sig-
nificantly reduced by selecting measurements whose elevations are greater than
10 deg.

41.5 Inspection of Kepler Orbit Element Values

Given a priori information regarding the orbit, and given multiple solutions from
the same measurement set, the user can frequently eliminate useless solutions
by inspection of the Kepler orbit elements, particularly the semi-major axis and
eccentricity.

41.6 Multiple Solutions from Each Set of Dis-
tinct Measurement Sets

Comparison of sets of multiple solutions from distinct measurement sets may,
or may not, identify the useful solution.

41.7 Least Squares

Given multiple solutions from the same measurement set, the user can test each
solution by running least squares on it with an overdetermined set (more than
three) of angles measurements. Least squares will converge only on the useful
solution.
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Chapter 42

TDRSS Range and Doppler

Simultaneous orbit determination of multiple TDRS (GEO) orbits and multi-
ple LEOs and/or MEOs is enabled with the implementation of capabilities to
process four-legged range and five legged Doppler measurements for NASA’s
Telemetry and Data Relay Satellite System (TDRSS). NASA’s associated Bi-
lateral Ranging Transponder System (BRTS) range and Doppler measurements
can also be processed to perform orbit determination on each TDRS separately,
or on all TDRS’ simultaneously by fusing BRTS measurements with TDRSS
measurements. Radio signals for measurements in the same round-trip link
are all generated by the same atomic ground clock, and are said to be coher-
ent because the effects of clock phenomenology and relativity are subtracted
out. That is, the four-legged range and five legged Doppler measurements are
two-way measurements.

Both of the two time-varying transponder biases in the four legged range link
may be estimated, separately1 or simultaneously, with ground station range
biases. Also, time-varying range-sum biases can be estimated to include the
summed effects of transponder biases and ground station biases.

42.1 TDRSS Range Vectors

TDRS refers to a Tracking and Data Relay Satellite. The Tracking and Data
Relay Satellite System (TDRSS) consists of a constellation of geosynchronous
TDRS, a constellation of LEO spacecraft, the White Sands Ground Terminal
(WSGT), associated hardware and software, and personnel. Fig. 42.1 depicts
the Earth centered positions of the WSGT at times t0 and t4 with position
vectors S0 and S4. Consider a radio plane wave that is emitted from the WSGT
at time t0, received and retransmitted by a TDRS transponder at time t1,
received and retransmitted by a LEO spacecraft transponder at time t2, received
and retransmitted by the TDRS transponder at time t3, and received by the

1Time-constant values for the two transponder biases in the four legged range link were
shown to be simultaneously observable when ground station range biases are known a priori.
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t0 t4

t2

t1t3

C

ρ34

ρ12

ρ23

ρ01

S0
S4

Figure 42.1: Four TDRSS Range Vectors

WSGT at time t4. Fig. 42.1 identifies associated range vectors ρ01, ρ12, ρ23,
and ρ34. Let us denote TDRS position vectors by Rj at tj , and LEO spacecraft
position vectors by rj at tj , for j ∈ {1, 2, 3}. Define spacecraft position vectors:

R1 = S0 + ρ01 (42.1)

r2 = R1 + ρ12 (42.2)

R3 = r2 + ρ23 (42.3)

and the WSGT vector constraint:

S4 = R3 + ρ34 (42.4)

42.2 Range Sum

The following construction assumes that all range effects associated with cable
delay, electromagnetic phase center, Faraday rotation, relative rotation between
antennas, transponders, troposphere, and ionosphere are addressed elsewhere.

42.2.1 Range Elements

Define:
t(j)(j+1) = tj+1 − tj , tj < tj+1, j ∈ {0, 1, 2, 3} (42.5)
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Define range elements:

ρ01 =
√
ρ01 · ρ01 = ct01 (42.6)

ρ12 =
√
ρ12 · ρ12 = ct12 (42.7)

ρ23 =
√
ρ23 · ρ23 = ct23 (42.8)

ρ34 =
√
ρ34 · ρ34 = ct34 (42.9)

Each range element is defined by two expressions, a geometric expression and a
radio wave propagation time delay expression.

42.2.2 Range Sum Definition

Let us denote the two-way range sum with ρ0L, and define it with:

ρ0L = ρ01 + ρ12 + ρ23 + ρ34 = ct0L (42.10)

where:
L = 4 (42.11)

42.2.3 Range Sum Time Tag

The range sum time tag is defined by tL = t4.

42.2.4 Construction of the Range Sum Representation

Range Iterations

Given the time-tag tL = t4, we wish to calculate a first approximation ρ̃34 for
ρ34. Evaluate S4 at tL = t4. Let us denote a first approximation for time
difference t34 with t̃34 and set t̃34 = 0.133s. Then from Eq. 42.5:

t̃3 = t4 − t̃34

Evaluate R̃3 at t̃3. Rearrange Eq. 42.4 to approximate the range vector ρ34:

ρ̃34 = S4 − R̃3

Use Eq. 42.9 to calculate the range approximation:

ρ̃34 =
√
ρ̃34 · ρ̃34

and use Eq. 42.9 again to calculate a second approximation for t3,4:

t̄3,4 = ρ̃34/c
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Set t̃3,4 = t̄3,4 and iterate on the above sequence until:∣∣t̃3,4 − t̄3,4∣∣ < ε3,4

to yield t3, t34, and ρ34. Three iterations are usually sufficient.
Given the time t3, calculate t2, t23, and ρ23 as above. Given the time t2,

calculate t1, t12, and ρ12 as above. Given the time t1, calculate t0, t01, and ρ01

as above.

Range Sum

Now use Eq. 42.10 to calculate the range sum ρ0L.

42.3 Range Sum Partial Derivatives

42.3.1 Eliminate Light-Time

Simple and sufficient measurement to state partial derivative approximations
are achieved by eliminating light-time effects:

ρ1 ≡ ρ01 = −ρ34 (42.12)

ρ2 ≡ ρ12 = −ρ23 (42.13)

S ≡ S0 = S4 (42.14)

R ≡ R1 = R3 (42.15)

r ≡ r2 (42.16)

ρ1 =
√
ρ1 · ρ1 (42.17)

ρ2 =
√
ρ2 · ρ2 (42.18)

all defined at the same epoch t = t4.

42.3.2 Simplified Expressions

Then:
r = S + ρ1 + ρ2 = R + ρ2 (42.19)

R = S + ρ1 (42.20)

Define the one-way range sum approximation with:

ρ = ρ1 + ρ2 =
√
ρ1 · ρ1 +

√
ρ2 · ρ2 (42.21)
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42.3.3 Differentials

Differentiate Eqs. 42.19 and 42.20:

δr = δS + δρ1 + δρ2 = δR + δρ2 (42.22)

δR = δS + δρ1 (42.23)

Differentiate Eq. 42.21:

δρ = ρ̂1 · δρ1 + ρ̂2 · δρ2 (42.24)

where:

ρ̂1 = ρ1/ρ1 (42.25)

ρ̂2 = ρ2/ρ2 (42.26)

42.3.4 LEO Satellite Range Sum Partials

Vary r, but with S and R held fixed. Then:

δS =δR = 0 (42.27)

And from Eq. 42.23:

δρ1 = 0 (42.28)

According to Eq. 42.22:

δr = δρ2 (42.29)

and from Eq. 42.24:

δρ = ρ̂2 · δr (42.30)

Now δr has the decomposition on the inertial frame:

δr =

3∑
j=1

(δr · ij) ij =

3∑
j=1

δzjij (42.31)

where:

δzj = δr · ij (42.32)

Note that:

δρ =

3∑
j=1

∂ρ

∂zj
δzj (42.33)

So insert Eq. 42.31 into Eq. 42.30:

δρ =

3∑
j=1

(ρ̂2 · ij) δzj =

3∑
j=1

∂ρ

∂zj
δzj (42.34)
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from which:
∂ρ

∂zj
= ρ̂2 · ij , j ∈ {1, 2, 3} (42.35)

The LEO position partials are just the inertial components of the unit range
vector ρ̂2, where from Eq. 42.19:

ρ2 = r−R (42.36)

ρ̂2 = ρ2/ρ2 (42.37)

Define the 1× 3 matrix ∂ρ/∂z:

∂ρ

∂z
=
[

∂ρ
∂z1

∂ρ
∂z2

∂ρ
∂z3

]
(42.38)

Instantaneously, variations in ṙ leave r invariant, thus:

∂ρ

∂ż
= 01×3 (42.39)

For LEO, define:

Z =

[
z
ż

]
(42.40)

Then the 1 × 6 matrix of range sum with respect to LEO ECI position and
velocity partials is defined by:

∂ρ

∂Z
=
[
∂ρ
∂z

∂ρ
∂ż

]
(42.41)

42.3.5 TDRS Range Sum Partials

Vary R, but with S and r held fixed. Then:

δS =δr = 0 (42.42)

and from Eq. 42.23:
δρ1=δR (42.43)

From Eq. 42.22:
δρ2=− δρ1 (42.44)

So:
δρ2=− δR (42.45)

Then from Eq. 42.24:
δρ = (ρ̂1 − ρ̂2) · δR (42.46)

Now δR has the decomposition on the inertial frame:

δR =

3∑
j=1

(δR · ij) ij =

3∑
j=1

δz
′

jij (42.47)
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where:

δz
′

j = δR · ij (42.48)

Note that:

δρ =

3∑
j=1

∂ρ

∂z
′
j

δz
′

j (42.49)

So insert Eq. 42.47 into Eq. 42.46:

δρ =

3∑
j=1

[(ρ̂1 − ρ̂2) · ij ] δz
′

j =

3∑
j=1

∂ρ

∂z
′
j

δz
′

j (42.50)

from which:
∂ρ

∂z
′
j

= (ρ̂1 − ρ̂2) · ij , j ∈ {1, 2, 3} (42.51)

The TDRS position partials are just the inertial components of the range vector
difference (ρ̂1 − ρ̂2). Define the 1× 3 matrix ∂ρ/∂z

′
:

∂ρ

∂z′
=
[

∂ρ

∂z
′
1

∂ρ

∂z
′
2

∂ρ

∂z
′
3

]
(42.52)

Instantaneously, variations in Ṙ leave R invariant, thus:

∂ρ

∂ż′
= 01×3 (42.53)

For TDRS, define:

Z
′

=

[
z
′

ż
′

]
(42.54)

Then the 1 × 6 matrix of range sum with respect to TDRS ECI position and
velocity partials is defined by:

∂ρ

∂Z ′
=
[

∂ρ

∂z′
∂ρ

∂ż′

]
(42.55)

42.4 Doppler Measurements

Define symbols:

The Doppler frequency fD extracted from the TDRSS receiver hardware has
the form:

fD = −1

c

fT 4∑
j=1

ρ̇(j−1)(j) + fP ρ̇P

 (42.56)
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fT reference transmit frequency
fD instantaneous Doppler frequency
fP pilot tone frequency
c speed of light in vacuum
ρ̇01 leg 1 instantaneous range-rate
ρ̇12 leg 2 instantaneous range-rate
ρ̇23 leg 3 instantaneous range-rate
ρ̇34 leg 4 instantaneous range-rate
ρ̇P instantaneous pilot tone range-rate

Table 42.1: Doppler Measurement Symbol Definitions

Integrate Eq. 42.56 across the carrier phase integration interval [tL, tL+1], then
divide through by (tL+1 − tL), to define the TDRSS Doppler measurement rep-
resentation f̄D:

f̄D ≡ −
1

tL+1 − tL

∫ tL+1

tL

fDdt

= − 1

c (tL+1 − tL)

fT 4∑
j=1

∫ tL+1

tL

ρ̇(j−1)(j)dt+ fP

∫ tL+1

tL

ρ̇P dt

 (42.57)

Each integral on the right hand side has the form:∫ tL+1

tL

ρ̇dt =

∫ tL+1

tL

dρ = ρ (tL+1)− ρ (tL) (42.58)

With these integrations, the TDRSS Doppler measurement representation f̄D
(Eq. 42.57) becomes:

f̄D = − 1

c (tL+1 − tL)

fT 4∑
j=1

∆ρ(j−1)(j) + fP∆ρP

 (42.59)

where:
∆ρ(j−1)(j) = ρ(j−1)(j) (tL+1)− ρ(j−1)(j) (tL) (42.60)

∆ρP = ρp (tL+1)− ρp (tL) (42.61)

42.5 Doppler Partials

The time tags for Doppler measurements are at tL+1, and the orbit estimate:

Z (tL+1) =

[
z (tL+1)
ż (tL+1)

]



42.5. DOPPLER PARTIALS 305

will sit nominally at tL+1. Thus the first term in the first and second terms of
Eqs. 42.63 and 42.64 is already calculated for range sum partials. The second
term in the first and second terms of Eqs. 42.63 and 42.64 will require the use
of the linear transition function Φ (tL, tL+1) to move the calculation of the 1×6
matrix ∂ρ (tL) /∂Z (tL) from time tL to time tL+1:

∂ρ (tL)

∂Z (tL+1)
=
∂ρ (tL)

∂Z (tL)

∂Z (tL)

∂Z (tL+1)
=
∂ρ (tL)

∂Z (tL)
Φ (tL, tL+1) (42.62)

42.5.1 LEO Satellite Doppler Partials

Differentiate Eq. 42.59:

∂f̄D
∂z

= − 1

c (tL+1 − tL)

fT 4∑
j=1

∂ρ(j−1)(j) (tL+1)− ρ(j−1)(j) (tL)

∂z (tL+1)
+ fP

∂ρp (tL+1)− ρp (tL)

∂z (tL+1)


(42.63)

42.5.2 TDRS Doppler Partials

Differentiate Eq. 42.59:
∂f̄D
∂z′

=

− 1

c (tL+1 − tL)

fT 4∑
j=1

∂ρ(j−1)(j) (tL+1)− ρ(j−1)(j) (tL)

∂z′ (tL+1)
+ fP

∂ρp (tL+1)− ρp (tL)

∂z′ (tL+1)


(42.64)



306 CHAPTER 42. TDRSS RANGE AND DOPPLER



Chapter 43

One-Way Return-Link
Doppler

The TDRSS one-way return-link three-legged Doppler measurement filter capa-
bility has been implemented according to GSFC documentation.
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Part XI

Global Positioning System
(GPS) Low Earth Orbit

(LEO) Receivers
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Chapter 44

Pseudo-Range Filtering

44.1 Introduction

The USER spacecraft pseudo-range measurement representation chain (Eq. 44.1)
is adopted from JPL[132], but the components in that chain are inappropriate,
in part, due to JPL modeling of the USER clock as a ground fixed clock. Also,
the JPL document does not derive relativistic expressions from first principles.
This makes it difficult to validate the JPL equations. We have derived appropri-
ate expressions from the Schwarzschild metric that enable the reader to validate
the equations we have provided.

Measurement-to-state analytical partial derivative approximations for USER
GPS pseudo-range measurements are derived and given by Eqs. 44.81 through
44.86.

The USER stochastic clock model is derived from Allan[1]. From this clock
model, the filter GPS USER clock propagation, transition, covariance propaga-
tion, and process noise covariance functions are derived and given in Eqs. 34.35,
34.36, 34.37, and 34.38 respectively.

The synchronization of USER spacecraft clock to NAVSTAR SV clock is
discussed.

44.1.1 Pseudo-Range Option

“A properly equipped receiver will detect amplitude, pseudo-range and phase
measurements for each of the C/A, L1 P-code (P1) and L2 P-code (P2) sig-
nals. The C/A and P1 measurements essentially contain identical information,
however C/A is preferred over P1 because its power is stronger by 3 dB and
is not encrypted. Therefore, the basic observables used during an occultation
experiment are the C/A phase and the P2 phase measurements between the low-
Earth orbit (LEO) satellite and the occulting GPS satellite” (Kursinski [57]).
This conclusion applies as well to orbit determination. Therefore, we should
provide an option to remove ionosphere with either {P1,P2} or {C/A,P2}.
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44.2 USER GPS Pseudo-Range

44.2.1 Pseudo-Range

Let us denote the pseudo-range measurement representation by ρ, and define it
with:

ρ = c
[(
T 3 − τ3

)
+
(
τ3 − t3

)
+
(
t3 − t2

)
+
(
t2 − τ2

)
+
(
τ2 − T 2

)]
+ β

= c
[
T 3 − T 2

]
+ β (44.1)

where c is speed of light in vacuum, β is a stored constant (range bias), and
time notations are identified below.

44.2.2 Range Measurement Time Notation

T 3 receiver time tag
τ3 receiver proper time
t3 receiver coordinate time (TDT)
t2 transmitter coordinate time (TDT)
τ2 transmitter proper time
T 2 transmitter time tag

44.2.3 Time Differences

T 3 − τ3 receiver clock error (user spacecraft clock)
τ3 − t3 receiver proper time - receiver coordinate time
t3 − t2 receiver coordinate time - transmitter coordinate time
t2 − τ2 transmitter coordinate time - transmitter proper time
τ2 − T 2 transmitter clock error (GPS NAVSTAR clock)

44.2.4 Receiver Clock Errors

The receiver clock error T 3 − τ3 will be composed of two additive components:
a stored constant bias scalar βx and a clock phase state estimate parameter
x, defined by Eqs. 34.23 and 34.13. The generalized derivative y = dx/dt,
defined by Eqs. 34.29 and 34.13, will also be estimated, and is associated with
an additive constant bias scalar βy. The coupled errors in the two-parameter
clock state estimate will be accounted for with a 2x2 state estimate clock error
covariance. The 2x2 clock transition matrix function is defined by Eq. 34.36,
and the 2x2 clock process error covariance matrix function is defined by Eq.
34.37.

Any long term estimated constant biases (e.g., clock synchronization error
and drift) in x and y will be transferred manually to the unestimated parameters
βx and βy.

The state estimate is composed of clock modeling effects, and non-clock
modeling effects – non-separable from clock modeling effects.



44.2. USER GPS PSEUDO-RANGE 313

Clock modeling effects

� Synchronization error between receiver clock and transmitter clock (as-
sumed here to be due to the receiver clock)

� Stochastic phenomenology of the receiver clock (assumed here to be infe-
rior to the NAVSTAR clock)

� NAVSTAR transmitter clock error due to modeling and propagation errors
in the coefficients downlinked in the navigation message

Non-clock modeling effects due to modeling errors

� NAVSTAR propagation errors in position

� Antenna multipath (spacecraft body specific)

� Antenna phase center location

� Mutual rotations of transmitting and receiving antennas

� Troposphere

� Ionosphere

� Faraday rotation

� Unmodeled cable lengths in the hardware

44.2.5 Receiver Proper Time less Receiver Coordinate Time
(User Spacecraft)

For this subsection we shall drop the superscript 3 that identifies the receiver
and add a subscript j that distinguishes time. Thus: τ3 = τj and t3 = tj , for
j ∈ {k, k + 1}. From 44.28, define the sequential filter time-update calculation:

(τk+1 − tk+1) = (τk − tk)− (tk+1 − tk)
3µ

2ac2
− 2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.2)

where k ∈ {0, 1, 2, . . .}. The relation between τ0 and t0 is arbitrary. For initial-
ization1 we choose to define:

τ0 = t0 (44.3)

The relativistic constant clock phase bias, in the User spacecraft clock, is con-
tained in its proper time τ0 at initialization of sequential orbit determination.
This is of course relevant only for receivers that do not perform clock steering.
For in this case, GPS range measurements from different receiver channels must
be differenced at the same instant to remove the effects of clock steering, and
thus remove all User clock effects for orbit determination.

1The JPL initialization convention is defined by:

τ0 − t0 = − [(TAI − UTC) + (TDT − TAI)]
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44.2.6 Coordinate Time Difference

Coordinate times are in TDT. The coordinate time difference
(
t3 − t2

)
is asso-

ciated with the positional coordinate differences of ECI ICRF ephemerides, and
is given:

t3 − t2 =
r32

c
+

2µ

c3
ln

(
r3 + r2 + r32

r3 + r2 − r32

)
(44.4)

This light-time equation is due to Holdridge[37]. The unknown quantity t2

(coordinate time of transmission) can be calculated by Newton-Raphson ([132]
Eq. 4.2.3.1.19 – note mislabel here):

t2(i+1) = t2(i)+

[
t3 − t2(i) −

(
2µ

c3
ln

(
r3 + r

(i)
2 + r

(i)
32

r3 + r
(i)
2 − r

(i)
32

))]
/
[
1− r

(i)
32 · ṙ

(i)
2 /

(
cr

(i)
32

)]
(44.5)

where for i = 0, and t2(i) = t2(0):

t2(0) = t3

44.2.7 Transmitter Coordinate Time less Transmitter Proper
Time (NAVSTAR)

For this subsection we shall drop the superscript 2 that identifies the transmitter
and add a subscript j that distinguishes time. Thus: τ2 = τj and t2 = tj , for
j ∈ {k, k + 1}. The following equations (derived below) are equivalent:

(tk+1 − τk+1) = (tk − τk) + (τk+1 − τk)
3µ

2ac2
+

2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.6)

(tk+1 − τk+1) = (tk − τk) + (τk+1 − τk)
3µ

2ac2
+

2e
√
µa

c2
(sinEk+1 − sinEk)

(44.7)
The constant clock rate 3µ/

(
2ac2

)
is accounted for by offsetting the frequency

of the onboard NAVSTAR oscillator. So set:

(τk+1 − τk)
3µ

2ac2
= 0 (44.8)

44.2.8 Transmitter Clock Error

This section identifies the term
(
τ2 − T 2

)
for the range representation defined

by Eq. 44.1.
Each NAVSTAR Space Vehicle (SV) keeps its own SV Time with its own

SV clock. SV Time is a proper time. According to ICD-GPS-200C, paragraph
20.3.3.3.3.1, page 88, the user transforms SV Time to GPS Time2 t using equa-
tions given there, together with clock values given in each HANU message. GPS

2The ICD uses t for GPS Time. I use t for TDT Time. Distinguish them by context.
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Time t is a coordinate time. Given the evaluation of ICD Eq. (1):

t = tSV −∆t (44.9)

and ICD Eq. (2):

∆tSV = af0 + af1 (t− t0c) + af2 (t− t0c)2
+ ∆tr (44.10)

then time of radio wave front emission from the NAVSTAR SV in coordinate
time is t (GPS Time). There are two significant facts to note here: (i) SV Time
is a NAVSTAR clock proper time, and (ii) GPS Time is a relativistic coordinate
time. Note that there are no leap seconds in GPS Time. As noted in the ICD,
ICD Eqs. (1) and (2) are coupled: Approximate t by tSV in ICD Eq. (2).
ICD-GPS-200C, presents three relativistic expressions:

∆tr = Fe
(
A1/2

)
sinEk (44.11)

F =
−2µ1/2

c2
(44.12)

∆tr = −2~R · ~V
c2

(44.13)

The right-hand side of Eq. 44.11, using Eq. 44.12, is found in the derivation
of Eqs. 44.30 and 44.32. The right-hand side of Eq. 44.13, is found in the
derivation of Eqs. 44.28 and 44.29. Thus the use of ∆tr converts SV Time (a
proper time) to GPS Time (a coordinate time). Therefore use Eq. 44.29 or
Eq. 44.31 to explain the conversion of NAVSTAR proper time to NAVSTAR
coordinate time. It is clear that the ICD expressions must be applied twice: at
tk and at tk+1. ICD-GPS-208, Section 20.1, presents a related discussion for
the HANU.

The frequency of each NAVSTAR SV clock is physically offset to negate
the effect of the rate 3µ/

(
2ac2

)
in the term (τk+1 − τk)

(
3µ/

(
2ac2

))
in Eqs.

44.29 and 44.31. ICD-GPS-200C, Section 20.3.3.3.3.1, page 11, states that the
NAVSTAR transmitted frequency is biased (for general relativity) by ∆f/f =
−4.464 × 10−10 with ∆f = −4.5674 × 10−3Hz so that the nominal frequency
to a user on the ground is 10.23MHz. Note: Each NAVSTAR orbit has
aNAV STAR = 4.2er. If the bias is designed for the USER at aUSER = 1.0er,
there is an obvious error for a USER orbit with a > 1.0er. But this will perfectly
alias into the phase rate estimate.

44.3 Schwarzschild Metric

Einstein’s gravitational field equation (1916):

Gµν = 8πTµν
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with second order tensors Gµν and Tµν , is a simple and beautiful expression
to physicists, but is difficult to apply to solutions of real problems – by math-
ematicians and engineers. Time and space are coupled on a four-dimensional
hypersurface (manifold). After selection of coordinates, this equation generates
a second order nonlinear partial differential equation in four dimensions. To
apply this equation, one must find an appropriate metric that is consistent with
it. Two exact metric solutions (line elements) have been found, one by Karl
Schwarzschild (1916) and one by Roy Kerr (1963), and a host of approximate
solutions, referred to as Post-Newtonian approximations, are in use. Each metric
is a scalar nonlinear ordinary first order differential equation. The Schwarzschild
metric refers to a static non-rotating mass distributed in spherical concentric
layers3. The Kerr metric refers to a rotating mass, and models its quadrapole
(J2). There exists a small group of relativists who have been seeking other exact
solutions for many years. The Schwarzschild metric is sufficient (TBR) for our
modeling of GPS clocks.

The Schwarzschild metric can be found multiple times with a WEB search,
and is given by several authors of books on general relativity; e.g., Moller[84],
Moller Eqs 11.83 and 11.88. The Schwarzschild metric can be written in several
forms, one of which is:

ds2 =

[
1− 2µ

c2r

]
c2dt2 −

[
1− 2µ

c2r

]−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(44.14)

where:

c speed of light
µ gravitational constant
ds interval in 4d (like distance in 3d)
dt coordinate time interval
dτ proper time interval
r radial distance from Earth CM to clock
θ codeclination of clock
ϕ right ascension of clock

ds = cdτ (44.15)

and the 3×1 matrix of inertial Earth centered position components for the clock
are defined:  x1

x2

x3

 =

 r sin θ cosϕ
r sin θ sinϕ
r cos θ

 (44.16)

44.3.1 Proper Time vs Coordinate Time

Define clock speed squared with ṡ2:

ṡ2 =

3∑
j=1

ẋ2
j (44.17)

3This is a crude model for our earth.
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to find:
ṡ2 = ṙ2 + r2

(
θ̇2 + ϕ̇2 sin2 θ

)
(44.18)

Expand
[
1− 2µ/

(
c2r
)]−1

, retain terms to O(c−2), and insert into Eq. 44.14:

ds = cdt

[
1− 1

c2

(
2µ

r
+ ṙ2 + r2

(
θ̇2 + ϕ̇2 sin2 θ

))]1/2

(44.19)

Insert Eqs. 44.15 and 44.18 into Eq. 44.19:

dτ = dt

√
1− 1

c2

(
2µ

r
+ ṡ2

)
(44.20)

Expand the radical and truncate to order O
(
c−4
)

to get:

dτ = dt

(
1− 1

c2

(
µ

r
+
ṡ2

2

))
(44.21)

dt = dτ

(
1 +

1

c2

(
µ

r
+
ṡ2

2

))
(44.22)

Potential energy µ/r captures general relativity, and kinetic energy ṡ2/2 cap-
tures special relativity, according to the Schwarzschild metric.

44.3.2 Time Integrals

Definite time integrals of Eqs. 44.21 and 44.22 provide transformations be-
tween proper time τ and coordinate time t. Our use of tk and tk+1 refers to
our ODTK filter time-update function. For implementation, we require state
estimate values at both tk and tk+1, in coordinate time TDT. Thus:

(τk+1 − τk) = (tk+1 − tk)

[
1− 3µ

2ac2

]
−

2e
√
µa

c2
(sinEk+1 − sinEk) (44.23)

(tk+1 − tk) = (τk+1 − τk)

[
1 +

3µ

2ac2

]
+

2e
√
µa

c2
(sinEk+1 − sinEk) (44.24)

where classical expressions from two-body astrodynamics have been used:

r = a (1− e cosE)

M = M0 + n (t− t0) = E − e sinE

Ṁ = n = Ė (1− e cosE)



318 CHAPTER 44. PSEUDO-RANGE FILTERING

dt =

[
a3/2

√
µ

]
(1− e cosE) dE

n2a3 = µ

Since:
√
µae sinE = rṙ = r · ṙ (44.25)

then equivalently:

(τk+1 − τk) = (tk+1 − tk)

[
1− 3µ

2ac2

]
− 2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.26)

(tk+1 − tk) = (τk+1 − τk)

[
1 +

3µ

2ac2

]
+

2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.27)

Rearrange the last two equations:

(τk+1 − tk+1) = (τk − tk)− (tk+1 − tk)
3µ

2ac2
− 2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.28)

(tk+1 − τk+1) = (tk − τk) + (τk+1 − τk)
3µ

2ac2
+

2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.29)

or, using Eq. 44.25 again:

(τk+1 − tk+1) = (τk − tk)− (tk+1 − tk)
3µ

2ac2
−

2e
√
µa

c2
(sinEk+1 − sinEk)

(44.30)

(tk+1 − τk+1) = (tk − τk) + (τk+1 − τk)
3µ

2ac2
+

2e
√
µa

c2
(sinEk+1 − sinEk)

(44.31)
Add (tk+1 − τk+1), according to Eqs. 44.29 or 44.31, to proper time τk+1 to get
coordinate time tk+1. Add (τk+1 − tk+1), according to Eqs. 44.28 or 44.30, to
coordinate time tk+1 to get proper time τk+1.

Run a minus sign through Eq. 44.28:

(tk+1 − τk+1) = (tk − τk) + (tk+1 − tk)
3µ

2ac2
+

2

c2
(
rk+1ṙk+1

− rkṙk
)

(44.32)

and compare Eq. 44.32 to Eq. 44.29. They are different; i.e., we have implicitly
assumed that (tk+1 − tk) 3µ

2ac2 is negligibly different than (τk+1 − τk) 3µ
2ac2 . This

is due to the above truncation to order O
(
c−4
)

(TBR).
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44.3.3 JPL Model

Comparison of the equations above to those of JPL[132] enables identification
of terms for a USER ground clock in the JPL document, inappropriate for a
USER spacecraft clock in free-fall.

44.4 Group Delay Differential

From paragraph 3.3.1.7.2 of the ICD-GPS-200C[41], there exists a NAVSTAR
dependent group delay differential between the radiated L1 and L2 signals whose
magnitude can be as large as 15ns; i.e., 15ft. From paragraph 20.3.3.3.1.8:
”Bits 17 through 24 of word seven contain the L1-L2 correction term, TGD, for
the benefit of ”L1 only” or ”L2 only” users. The related user algorithm is given
in paragraph 20.3.3.3.

The NAVSTAR dependent group delay differential between the radiated L1

and L2 signals should be applied for both cases; i.e., for users of both L1 and
L2, and for the benefit of ”L1 only” or ”L2 only” users (TBR).

44.5 Remove Ionospheric Range

Let ρ (t) denote GPS pseudo-range at time-tag t, free of (first-order) ionospheric
delay. Given P-Code pseudo-range values ρ1 (t) and ρ2 (t) on L1 and L2, then
according to Section 20.3.3.3.3.3 of ICD-GPS-200C[41]:

ρ (t) =
ρ2 (t)− γρ1 (t)

1− γ
(44.33)

where:
γ = (f1/f2)

2
(44.34)

and f1 and f2 are carrier frequencies for L1 and L2.
ICD-GPS-200C is short on definition. What is meant by ρ (t), free of first-

order ionospheric delay? Let i denote frequency for Li, where i ∈ {1, 2}. Then
for ρ1 (t) and ρ2 (t) on L1 and L2:

ρi (t) = ρR (t) + ρIi (t) + ρO (t) (44.35)

where ρR (t) is due to relativistic time delay, ρIi (t) is the frequency dependent
ionospheric range, ρO (t) is due to all range components other than ρR (t) and
ρIi (t), and:

ρIi (t) =
aNT
f2
i

, where a is a constant (44.36)

NT = TEC, Total Electron Content (44.37)

Then by definition:
ρ (t) = ρR (t) + ρO (t) (44.38)
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44.5.1 Proof

ICD-GPS-200 does not provide a proof, so here is mine. Start with the numer-
ator on the right-hand side of Eq. 44.33:

ρ2 (t)− γρ1 (t) =
[
ρR (t) + ρI2 (t) + ρO (t)

]
−
(
f2

1

f2
2

)[
ρR (t) + ρI1 (t) + ρO (t)

]

=
[
ρR (t) + ρO (t)

]
(1− γ) +

aNT
f2

2

− aNT
f2

2

(44.39)

So:
ρ2 (t)− γρ1 (t)

(1− γ)
= ρR (t) + ρO (t) = ρ (t) (44.40)

satisfies the defining Eq. 44.38.

44.5.2 Phase Count

Run a differential operator through Eq. 44.33 to get:

∆ρ (t) =
∆ρ2 (t)− γ∆ρ1 (t)

1− γ
(44.41)

and interpret ∆ρ1 (t), ∆ρ2 (t), and ∆ρ (t) as range differences. If ionospheric
range differences can be related linearly to phase count, then Eq. 44.41 provides
a convenient mechanism to convert values of frequency dependent phase counts
to a phase count with first order ionosphere removed.

44.6 GPS Range First-Differences

44.6.1 Notation

44.6.2 C/A Code Range Representation

The one-way GPS C/A code range representation ρui (t) from NAVSTAR trans-
mitting antenna phase center to USER receiving antenna phase center is defined
here by:

ρui (t) = ρRui (t) + ρXi (t) + ρIui (t) + c∆tu (t)− c∆ti (t) +wu (t)−wi (t) (44.42)

where:

∆ti (t) = ti − t̂i

∆tu (t) = tu − t̂u



44.6. GPS RANGE FIRST-DIFFERENCES 321

i NAVSTAR SV subscript index: i ∈ {1, 2, . . . , 27}
u USER spacecraft subscript identifier
t coordinate time (TDT)
ti coordinate time (TDT) of radio wave front transmission from NAVSTAR i
t̂i erroneous estimate of ti by NAVSTAR SV clock
tu coordinate time (TDT) of radio wave front reception at USER user u
t̂u erroneous estimate of tu by USER clock
c speed of light in vacuum

ρui (t) one-way GPS range representation: NAVSTAR to USER
ρRui (t) relativistic range (geometric range): NAVSTAR to USER
ρXi (t) range variation incurred due to orbit propagation error for NAVSTAR i
ρIui (t) ionospheric range: NAVSTAR to USER
∆ti (t) NAVSTAR SV clock error
∆tu (t) USER clock error
wu (t) sum of other USER dependent range errors
wi (t) sum of other NAVSTAR SV dependent range errors

Ẑ (t) 6x1 USER orbit estimate
∆ρij (t) range difference between ranges from NAVSTAR SVs i and j at time t

Table 44.1: Notation

44.6.3 First Difference

Assume the USER spacecraft uses a JPL designed GPS BlackJack receiver.
The GPS BlackJack receiver clock is autonomously steered, using BlackJack
on-board navigation solutions, to within 1µs (300m) (Montenbruck[86]) of GPS
time. GPS time is also a coordinate time, distinct from TDT. Apparently,
this clock steering is never turned off. Woodburn has demonstrated that the
BlackJack clock steering errors are eliminated by forming range difference mea-
surements for distinct NAVSTAR SVs from the C/A code range measurements.
Define the difference ∆ρij (t) for distinct SVs i and j at time t:

∆ρij (t) = ρui (t)− ρuj (t) (44.43)

Apply Eq. 44.42 to get:

∆ρij (t) =
[
ρRui (t)− ρRuj (t)

]
+
[
ρXi (t)− ρXj (t)

]
+
[
ρIui (t)− ρIuj (t)

]
− c [∆ti (t)−∆tj (t)]− [wi (t)− wj (t)] (44.44)

where the USER clock error c∆tu (t), and sum of other USER-dependent range
errors wu (t), have been differenced out. The term

[
ρRui (t)− ρRuj (t)

]
contains

the orbit information we wish to extract from the range measurement difference
to calculate the USER orbit estimate Ẑ (t).

The other terms in Eq. 44.44 will degrade the USER orbit estimate Ẑ (t) if
the state estimate has no parameters to absorb them. The term

[
ρXi (t)− ρXj (t)

]
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is due to NAVSTAR orbit estimation and propagation errors for SVs i and j, the
term

[
ρIui (t)− ρIuj (t)

]
is due to ionospheric perturbation to the range measure-

ments, the term c [∆ti (t)−∆tj (t)] is due to NAVSTAR clock estimation and
propagation errors for SVs i and j, and the term [wi (t)− wj (t)] is due to other
NAVSTAR-dependent effects for SVs i and j, or NAVSTAR/USER-dependent
effects.

44.7 Partial Derivatives for HANU

44.7.1 ICD-GPS-208 18 April 1983

Refer to ICD-GPS-208 18 April 1983[42].
Let us denote the 8x8 HANU covariance as P , and the 8x8 upper triangular

ECSRM as R. According to page I-10 Table 10.1-6, R provides covariance square
root position and velocity in RIC components in units meters and seconds, and
then covariance square root clock bias (sec) and drift (sec/sec (unitless)), where:

P = RRT (44.45)

44.7.2 Partials

Differentiate Eq. 44.43:

∂∆ρij (t)

∂Z (t)
=
∂ρui (t)

∂Z (t)
− ∂ρuj (t)

∂Z (t)
(44.46)

The right-hand terms are given elsewhere.

44.7.3 Map HANU Covariance P to GPS Measurement
Covariance Py

Let ∆y denote a 2x1 matrix on USER-NAVSTAR pseudo-range and pseudo-
range-rate measurement errors. Let Py denote a 2x2 covariance matrix on ∆y.
Let ∆X denote a 3×1 matrix for NAVSTAR position error in inertial compo-
nents, and let ∆Ẋ denote a 3×1 matrix for NAVSTAR velocity error in inertial
components. Let ∆τ denote NAVSTAR clock phase error, and let ∆τ̇ denote
NAVSTAR clock drift error. And let ∆H denote an 8x1 matrix for the NAVS-
TAR orbit and clock error:

∆H =


∆X

∆Ẋ
∆τ
∆τ̇

 (44.47)

Let ∂y/∂H denote a 2x8 Jacobian matrix on partial derivatives to map NAVS-
TAR orbit and clock error ∆H to pseudo-range and pseudo-range-rate measure-
ment error ∆y :

∆y =

[
∂y

∂H

]
∆H (44.48)
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Then:

Py =

[
∂y

∂H

]
P

[
∂y

∂H

]T
(44.49)

where: [
∂y

∂H

]
=

[
∂ρ
∂X

∂ρ

∂Ẋ

∂ρ
∂τ

∂ρ
∂τ̇

∂ρ̇
∂X

∂ρ̇

∂Ẋ

∂ρ̇
∂τ

∂ρ̇
∂τ̇

]
(44.50)

Calculate the partials in ∂y/∂H according to Eqs. 44.89 through 44.88.

R

ρ

r

Earth CM

NAVSTAR

USER

Figure 44.1: Earth-USER-NAVSTAR Vector Triangle

Instantaneous vector relations are sufficient for analytic measurement partial
derivatives.

Let r denote the USER spacecraft position vector with 3×1 matrix of inertial
components x, R denote the NAVSTAR position vector with 3×1 matrix of
inertial components X, and ρ denote the NAVSTAR to USER range vector, all
at the same time t. Define:

r = R + ρ (44.51)
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in agreement with Fig. 44.1. Differentiate with time to get inertial velocity ṙ:

ṙ = Ṙ + ρ̇ (44.52)

44.7.4 Initial Differential Equations for Variations in Range
and Range-Rate

Take total differentials of Eqs. 44.51 and 44.52 (virtual displacements (La-
grange)) to get:

∆r = ∆R + ∆ρ (44.53)

∆ṙ = ∆Ṙ + ∆ρ̇ (44.54)

Rearrange equations:
ρ = r−R (44.55)

ρ̇ = ṙ− Ṙ (44.56)

∆ρ =∆r−∆R (44.57)

∆ρ̇ =∆ṙ−∆Ṙ (44.58)

Define the instantaneous range ρ (length of vector ρ) with:

ρ =
√
ρ · ρ (44.59)

Define the instantaneous unit range vector L with:

ρ = ρL (44.60)

Differentiate with time to get:

ρ̇ =ρ̇L + ρL̇ (44.61)

Also, take total differentials to get:

∆ρ = ∆ρL+ρ∆L (44.62)

where ρ̇ is the instantaneous range-rate. Then:

ρ = L · ρ (44.63)

ρ̇ = L · ρ̇ (44.64)

because L · L =1 and L · L̇ = 0. Also:

ρρ̇ = ρ · ρ̇ (44.65)
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Take total differentials of Eq. 44.65 for:

∆ρρ̇+ ρ∆ρ̇ = ∆ρ · ρ̇+ ρ·∆ρ̇

from which:
ρ∆ρ̇ = ρ̇·∆ρ+ ρ·∆ρ̇−∆ρρ̇ (44.66)

Take total differentials of Eq. 44.63 to get:

∆ρ = L·∆ρ (44.67)

because ∆L· (ρL) = 0. Insert Eq. 44.57 into Eq. 44.67 to get:

∆ρ = L·∆r− L ·∆R (44.68)

Insert Eqs. 44.68, 44.57, and 44.58 into Eq. 44.66 to show:

ρ∆ρ̇ = ρ̇· (∆r−∆R)−ρ̇ (L·∆r− L ·∆R) +ρ·
(

∆ṙ−∆Ṙ
)

= (ρ̇−ρ̇L) ·∆r + ρ·∆ṙ− (ρ̇−ρ̇L) ·∆R− ρ ·∆Ṙ

from which:
∆ρ̇ = ρ̃ ·∆r + L·∆ṙ− ρ̃ ·∆R− L ·∆Ṙ (44.69)

where:
ρ̃ = (ρ̇−ρ̇L) /ρ (44.70)

Eqs. 44.68 and 44.69 are my initial vector differential equations for variations
in instantaneous range and range-rate.

44.7.5 Position and Velocity Variations in Inertial Com-
ponent Matrices

Let x and X denote the 3×1 matrices of inertial components of the USER posi-
tion vector r and NAVSTAR position vector R. Let [i] denote the conventional
3×1 matrix of orthonormal inertial vectors. Then:

L = LT [i] (44.71)

ρ̃ = ρ̃T [i] (44.72)

∆r = [i]
T

∆x (44.73)

∆ṙ = [i]
T

∆ẋ (44.74)

∆R = [i]
T

∆X (44.75)

∆Ṙ = [i]
T

∆Ẋ (44.76)



326 CHAPTER 44. PSEUDO-RANGE FILTERING

44.7.6 Partials

Insert Eqs. 44.73, 44.74, 44.75, 44.76, 44.71, and 44.72 into Eqs. 44.68 and
44.69 to get:

∆ρ =
[
LT
]

∆x+
[
−LT

]
∆X (44.77)

∆ρ̇ =
[
ρ̃T
]

∆x+
[
LT
]

∆ẋ+
[
−ρ̃T

]
∆X +

[
−LT

]
∆Ẋ (44.78)

The above two expressions are complete due to use of total differentials. For-
mally:

∆ρ =

[
∂ρ

∂x

]
∆x+

[
∂ρ

∂ẋ

]
∆ẋ+

[
∂ρ

∂X

]
∆X +

[
∂ρ

∂Ẋ

]
∆Ẋ (44.79)

∆ρ̇ =

[
∂ρ̇

∂x

]
∆x+

[
∂ρ̇

∂ẋ

]
∆ẋ+

[
∂ρ̇

∂X

]
∆X +

[
∂ρ̇

∂Ẋ

]
∆Ẋ (44.80)

Compare terms to derive the desired 1x3 matrices of partial derivative Jacobians:

∂ρ

∂x
= LT , range with respect to USER position (44.81)

∂ρ

∂ẋ
= 01x3, range with respect to USER velocity (44.82)

∂ρ̇

∂x
= ρ̃T , range-rate with respect to USER position (44.83)

∂ρ̇

∂ẋ
= LT , range-rate with respect to USER velocity (44.84)

∂ρ

∂τ
= c, range with respect to USER clock phase (light speed) (44.85)

∂ρ

∂τ̇
= 0, range with respect to USER clock drift (44.86)

∂ρ̇

∂τ
= 0, range-rate with respect to USER clock phase (44.87)

∂ρ̇

∂τ̇
= 1, range-rate with respect to USER clock drift (44.88)

∂ρ

∂X
= −LT , range with respect to NAVSTAR position (44.89)
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∂ρ

∂Ẋ
= 01x3, range with respect to NAVSTAR velocity (44.90)

∂ρ̇

∂X
= −ρ̃T , range-rate with respect to NAVSTAR position (44.91)

∂ρ̇

∂Ẋ
= −LT , range-rate with respect to NAVSTAR velocity (44.92)

where ρ̃T is the 1x3 row matrix of inertial components of vector ρ̃ = (ρ̇−ρ̇L) /ρ.
The subset of partials referred to the USER position and velocity may be checked
against those given by Koskela (page 138). The NAVSTAR partials could have
been derived from the USER partials by skew-symmetry. But we feel more
secure to explicitly derive them all.
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Chapter 45

GPS Carrier Phase Count

45.1 Introduction

My purpose here is to derive and present:

� a representation for the GPS Doppler phase count measurement for a
generic USER spacecraft GPS receiver

� instructions for implementation of GPS Doppler phase count measure-
ments

� state parameters to be estimated

� expressions for required partial derivatives

Optimal orbit determination requires the identification and estimation of all
observable unknown serially-correlated stochastic variables. The USER space-
craft GPS receiver clock produces an observable unknown serially-correlated
stochastic variable; viz, the frequency random walk variable identified by Allan[1].
Eqs. 45.11, 45.12, and 45.13 explicitly define this variable δfUn , and its rela-
tion to the GPS Doppler phase count measurement representation. An explicit
representation of δfUn is required for phase count measurement simulation, for
sequential filter design, for construction and analysis of a measurement first
difference model, and for the associated optimal orbit determination from real
data.

Eqs. 45.72 and 45.73, together with the sequence of bullets that follow,
present the frequency dependent Doppler phase count measurement representa-
tion Nni

j for a particular USER-NAVSTAR pair. These equations are inclusive
of an ionosphere model, rigorously derived, that requires the evaluation of TEC
at beginning and end of the phase count time interval.

Eq. 45.86 defines construction of the ionosphere-free measurement NEi
j , and

its proof follows immediately. The single difference ∆NE
j defined by Eq. 45.118

is shown to cancel all USER clock effects.

329
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45.1.1 BlackJack GPS Receiver

Cal Tech’s BlackJack GPS receiver1 recovers a modified form of both L1 P-code
(P1) and L2 P-code (P2) ranging2, in addition to C/A ranging, and provides
carrier phase-count measurements on L1, L2, and C/A. According to Kerric Hill
(Bruce Haines (JPL)):

� The BlackJack clock frequency is steered so that its phase is always within
1µs of GPS time.

� The BlackJack GPS receiver does not provide P1 and P2 pseudo-range
measurements directly, but rather, provides measurements that have been
”smoothed” using the phase count measurements.

We are not in possession of the BlackJack clock frequency steering algo-
rithm. Unfortunately, all measurements are corrupted by the frequency steer-
ing. Constructed first difference measurements, referred to distinct NAVSTARs,
are required to remove the effects of USER BlackJack clock frequency steering
on both range and phase count measurements.

The BlackJack pseudo-range measurements are significantly improved due to
phase count measurement ”polynomial smoothing”; i.e., the BlackJack P1 and
P2 pseudo-range measurements are superpositions of pseudo-range and phase
count Doppler. But this generates a problem for those who would process both
sets of measurements: Pseudo-range ”measurements” are correlated with the
phase count measurements, and this destroys the ability to model their statistics
appropriately. A Hofmann-Wellenhof et. al. smoothing algorithm is presented
at http://www.gmat.unsw.edu.au/snap/gps/gps survey/chap6/6411.htm. We
cannot confirm that this is the BlackJack algorithm.

45.2 Implementation

45.2.1 Estimation of Clock Parameters

The sampled frequency sequence of every clock contains both additive white
noise and additive random walk sequences. The generalized integrals INij and

IUij defined by Eqs. 45.27 and 45.28 contain both integral white noise (random
walk) and integral random walk sequences. Thus the sampled phase sequence of
every clock contains both random walk and integral random walk sequences. In
addition, the sampled phase sequence of every clock contains a flicker noise se-
quence. Flicker noise is important for NAVSTAR atomic clocks, but is relatively
unimportant for USER crystal clocks.

An option is required to estimate two clock parameters, phase and frequency,
for each NAVSTAR clock with every GPS measurement combination. An option
is required to estimate two clock parameters, phase and frequency, for each

1BlackJack is available commercially from Spectrum Astro.
2US Patent 6,061,390, CIT, Meehan, Thomas, Brooks, Young, and Lawrence, May 9, 2000.
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USER spacecraft when single measurement differencing is not used. The existing
stochastic crystal clock model is to be used for both NAVSTAR clocks and USER
clocks. A flicker noise model will be added later for NAVSTAR atomic clocks.
Estimate random walk and integral random walk sequences in phase according
to Eqs. 45.172 through 45.175 in the filter implementation.

45.2.2 L1 Phase Count Measurements

Eq. 45.73 presents the frequency-dependent NAVSTAR-dependent Doppler
phase count representation Nni

j in final form, at time tag tj .

45.2.3 L1, L2 Phase Count Measurements

Remove Ionosphere Perturbations

The Doppler phase count measurement representation NEi
j over [tj −∆t, tj ] is

given by Eq. 45.86, where γ is defined by Eq. ??. This measurement repre-
sentation combines the two phase-count measurements N1i

j and N2i
j to remove

first order ionosphere effects. USER clock effects and NAVSTAR clock effects
remain.

Single Differenced Phase Count Measurements

Given simultaneous phase count measurements NEp
j and NEq

j on independent
receiver channels, where p and q refer to distinct NAVSTARS, they can be
differenced to form ∆NE

j = NEp
j −NEq

j , according to Eq. 45.118. The derived

measurement ∆NE
j is then free of all USER clock effects, as demonstrated.

45.2.4 Partial Derivatives

See Section 45.4.7 for orbit partials, and Section 45.10 for non-orbit partials.
The phase count measurement has a range difference representation, so partials
of phase count with respect to position and velocity are reduced to the difference
of partials of range with respect to position and velocity.

45.3 Notation

45.3.1 Time

Proper Time τ refers to the phase of some clock, or to the mean phase of an
ensemble of clocks. Coordinate Time t is the fourth relativistic coordinate,
where the first three coordinates are used to denote a clock position referred to
an inertial frame. Proper time and coordinate time are related approximately
with the differential equation:

dτ = dt

√
1−

[
2µ

c2r
+
ṡ2

c2

]
(45.1)
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derived from the Schwarzschild metric, where µ refers to the two-body geocentric
gravitational constant, r and ṡ are spacecraft position and velocity magnitudes,
and c is the speed of light in vacuum. Proper Time is associated with clocks,
and Coordinate Time is associated with spacecraft position and velocity. Eq.
45.1 provides the bridge. Given an epoch, say t0, where the relation between
τ0 and t0 is estimated or otherwise known, then Eq. 45.1 can be integrated to
propagate the relation.

45.3.2 Oscillator and Clock

Every clock is an artifact with two parts, an oscillator and a counter of oscil-
lations or phase referred an origin. Some clocks employ ”gears” to transform
phase count to hours, minutes, and seconds.

The TAI (International Atomic Time) second is defined: 1 secTAI = 9, 192, 631, 770
cycles3 between two hyperfine levels of the ground state of cesium at geoid mean
sea level. The number of seconds after any origin refers to an associated number
of oscillator cycles after that origin. So time refers to the accumulated phase
(number of cycles) of a clock.

The phase of one oscillator can be physically compared and differenced with
that of another oscillator. Phase is physically measurable only in this sense,
but frequency is not physically measurable in any sense. Frequency is derived
by calculating the change in phase with time, where time is the phase of an
independent clock.

45.3.3 Generalized Integral

Stochastic sequences cannot be differentiated4 or integrated, but they can be
differenced and summed. We will refer to these differences and sums as gener-
alized derivatives and generalized integrals5, or just derivatives and integrals.

45.3.4 Doppler Phase Count

The symbol Nni
j denotes the Doppler phase count measurement representation:

� referred to the USER spacecraft oscillator

� over time interval [tj −∆t, tj ]

� with time tag at tj

� on L-BAND frequency Ln, n ∈ {1, 2}

� for NAVSTAR i, i ∈ {1, 2, . . . , 27}
3The mean value from an ensemble of oscillators is used.
4By definition, the derivative requires application of a limit that does not exist for stochastic

sequences.
5My use of generalized integral is conventional.
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Nni
j is inclusive of:

� an integral on Doppler frequency

� an integral on random USER clock effects

� an integral on random NAVSTAR clock effects

� USER receiver PLL (Phase Lock Loop) thermal noise

� ionospheric effects

When there is no need to identify frequency fn or NAVSTAR i, we shall
replace Nni

j with Nj .

45.3.5 Two Types of Phase Count Error

We are interested here in distinguishing phase count measurement errors ac-
cording to two types.

Type 1 Error

Let us denote a Type 1 error in Nk with random variable δN
(1)
k , for k ∈

{1, 2, 3, . . .}. According to Kaplan[50], Type 1 errors are dominated by ther-
mal noise. Then Type 1 errors are dominantly Gaussian white noise6, are not
observable from Doppler phase count measurements, cannot be estimated, but
must be accounted for statistically in the sequential filter for orbit determina-
tion.

Type 2 Error

Let us denote a Type 2 error in Nk with random variable δN
(2)
k , for k ∈

{1, 2, 3, . . .}. Let us denote USER receiver clock time with tj , and USER receiver
clock timing error with random variable δtk, for k ∈ {1, 2, 3, . . .}.

Define:

δN
(2)
k = fkδtk (45.2)

Both δtk and δN
(2)
k are composed of sequences in random walk and integral

random walk. Hence they are serially correlated. Therefore the observable part

of δN
(2)
k must be estimated and removed.

6All thermal noise is Gaussian and white[16].



334 CHAPTER 45. GPS CARRIER PHASE COUNT

45.4 Receiver Doppler Algorithm

45.4.1 NAVSTAR Frequencies

Nominal GPS NAVSTAR L-BAND frequencies f̄Nn , n ∈ {1, 2}, are defined by:

L1 : f̄N1 = (154) f̄N0 (45.3)

L2 : f̄N2 = (120) f̄N0 (45.4)

where7:
f̄N0 = (10.23 MHz)

(
1− 4.4647× 10−10

)
(45.5)

The transmitter on each GPS NAVSTAR emits radio signals:

fN1 = f̄N1 + δfN1 = (154) fN0 (45.6)

fN2 = f̄N2 + δfN2 = (120) fN0 (45.7)

where:
fN0 = f̄N0 + δfN0 (45.8)

δfN1 = (154) δfN0 (45.9)

δfN2 = (120) δfN0 (45.10)

where fN0 is generated by the NAVSTAR oscillator, and where δfN0 is a random
perturbation on the nominal frequency f̄N0 .

45.4.2 Doppler Frequency

A USER spacecraft receives a Doppler shifted NAVSTAR signal, contaminated
by additive ionospheric effects, with frequency8 βijf

N
n + δf IONn , where βij and

δf IONn denote Doppler shift and ionospheric effect. This is subtracted9 from
frequency fUn , generated by the USER spacecraft oscillator, to define the in-
stantaneous Doppler frequency fDn :

fDn = fUn −
(
βijf

N
n + δf IONn

)
(45.11)

7The perturbation is defined such that a ground receiver will believe that the fundamental
frequency f0 = 10.23 MHz.

8The received carrier frequency is not directly measured. Rather, the GPS receiver mea-
sures phase, and derives frequency as the change in phase with time, according to the USER
clock. The phase measurement is performed using closed-loop feedback control systems, re-
ferred to as frequency locked loop (FLL) and Costas Phase Locked Loop (PLL). On signal
acquisition[50], an FLL is employed with carrier tracking loop bandwidth wide, followed by a
PLL with carrier tracking loop bandwidth as narrow as possible.

9The subtraction order is defined by each actual receiver, and so my representation here
may need a sign change for some receivers.
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NAVSTAR clock phenomenology is embedded in fNn , and USER clock phe-
nomenology is embedded in fUn . USER clock phenomenology is assumed to
dominate NAVSTAR clock phenomenology. Then the difference

(
fUn − fNn

)
,

captures USER clock phenomenology most significantly:

δfUn = fUn − fNn (45.12)

Solve Eq. 45.12 for fUn , and insert into Eq. 45.11 to get:

fDn = fNn (1− βij) + δfUn − δf IONn (45.13)

Eqs. 45.6 and 45.7 can be written:

fNn = f̄Nn + δfNn (45.14)

where f̄Nn is known and defined by Eqs. 45.3 and 45.4. δfNn is due to unknown
NAVSTAR clock phenomenology. Insert Eq. 45.14 into Eq. 45.13 to get:

fDn =
(
f̄Nn + δfNn

)
(1− βij) + δfUn − δf IONn (45.15)

Eq. 45.15 presents the USER clock phenomenology term δfUn unscaled by
the Doppler shift βij , and the NAVSTAR clock phenomenology δfNn scaled
by (1− βij). The product δfNn (1− βij) is a very complicated random function
of time. The random frequency scalar δf on every clock has two significant
additive components, white noise and random walk.

45.4.3 Define Phase Count

Positive zero crossings (cycles) of fDn are counted and accumulated (integrated)
by the USER receiver, inclusive of a partial cycle, across a USER defined phase
count interval10 [tj −∆t, tj ], to construct a rational phase count number Nni

j ,

time-tag tj for j ∈ {1, 2, . . .}, NAVSTAR i ∈ {1, 2, . . . , 27}. Nni
j consists of

the sum of an integer number of cycles and a partial cycle. The GPS receiver
Costas Phase Lock Loop (PLL) incurs thermal noise[50] δNni

j , independent for

each NAVSTAR link i. Thus Nni
j has the representation with the generalized

integral:

Nni
j =

∫ tj

tj−∆t

fDn dt+ δNni
j (45.16)

When fDn has units cycles/s, and t has units s, then Nni
j has units cycles.

Begin

Questions:

� Are thermal noise phase components δN1i
j and δN2i

j frequency dependent?

10tj is a relativistic coordinate time; e.g., TCG or GPS Time.
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� Does there exist δN0
j in the GPS receiver such that we can write:

δN1i
j = 154 δN0

j

δN2i
j = 120 δN0

j

where in the NAVSTAR GPS transmitter we know:

fN1 = (154) fN0

fN2 = (120) fN0

End

45.4.4 Doppler Shift

Consider an L-BAND wave front emitted from a NAVSTAR spacecraft at time
ti and received by the USER spacecraft at time tj > ti. The unitless Doppler
shift β can be approximated11 to order O

(
c−3
)

with:

βij = 1− 1

c
ρ̇ij +

µ

c2

[
1

rj
− 1

Ri

]
+

1

2c2

[
ṡ2
j − Ṡ2

i

]
(45.17)

where:

� c is speed of light in vacuum

� µ is the geocentric two-body gravitational constant

� rj and ṡj are magnitudes of USER spacecraft position and velocity vectors
at time tj

� Ri and Ṡi are magnitudes of NAVSTAR spacecraft position and velocity
vectors at time ti

� ρ̇ij is the range-rate ρ̇ij = dρij/dt at time t = tj

� ρij is the range between NAVSTAR spacecraft at time ti and USER space-
craft at time tj

Approximately: ∫ tj

tj−∆t

ρ̇ijdt = ρij (tj)− ρij (tj −∆t) (45.18)

Define:
∆ρij = ρij (tj)− ρij (tj −∆t) (45.19)

11This approximation derives from the use of the Schwarzschild metric, derived from Eq. ??.
Appendix D herein provides a derivation of this expression, given the Schwarzschild metric.
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χij =

∫ tj

tj−∆t

{
µ

c2

[
1

rj
− 1

Ri

]
+

1

2c2

[
ṡ2
j − Ṡ2

i

]}
dt (45.20)

ζij = ∆ρij/c− χij (45.21)

where ∆ρij has distance units, χij has time units, and ζij has time units. Then:

ζij =

∫ tj

tj−∆t

(1− β) dt (45.22)

Relativity

Eq. 45.17 has two relativistic terms: µ
c2

[
1
rj
− 1

Ri

]
is due to general relativity and

1
2c2

[
ṡ2
j − Ṡ2

i

]
is due to special relativity. This is important for one-way Doppler

measurements. Position magnitudes Ri and rj refer to NAVSTAR and USER

spacecraft clock positions. Since Ri 6= rj , then µ
c2

[
1
rj
− 1

Ri

]
must be modeled.

Velocity magnitudes Ṡi and ṡj refer to NAVSTAR and USER spacecraft clock

inertial speeds. Since Ṡi 6= ṡj , then 1
2c2

[
ṡ2
j − Ṡ2

i

]
must be modeled. On the

other hand, if the same ground-fixed clock is used for transmitter and receiver
in a two-way Doppler measurement, then Ri = rj and Ṡi = ṡj , and relativity
vanishes.

45.4.5 Phase Count Representation

Insert Eq. 45.15 into Eq. 45.16 to get:

Nni
j =

∫ tj

tj−∆t

[(
f̄Nn + δfNn

)
(1− βij) + δfUn − δf IONn

]
dt+ δNni

j (45.23)

The nominal frequency f̄Nn is a time constant. Then:

Nni
j = f̄Nn

∫ tj

tj−∆t

(1− βij) dt+
∫ tj

tj−∆t

δfNn (1− βij) dt+
∫ tj

tj−∆t

δfUn dt−
∫ tj

tj−∆t

δf IONn dt+δNni
j

(45.24)
Let us denote clock phase phenomenology of NAVSTAR and USER clocks with
InNij and IUj , with time-tags tj , where InNij is referred to NAVSTAR i. Define

InNij and IUj with:∫ tj

tj−∆t

δfNn (1− βij) dt = f̄Nn

∫ tj

tj−∆t

[
δfNn
f̄Nn

]
(1− βij) dt = f̄Nn I

nNi
j (45.25)

∫ tj

tj−∆t

δfUn dt = f̄Un

∫ tj

tj−∆t

[
δfUn
f̄Un

]
dt = f̄Un I

nU
j (45.26)



338 CHAPTER 45. GPS CARRIER PHASE COUNT

That is:

InNij =

∫ tj

tj−∆t

[
δfNn
f̄Nn

]
(1− βij) dt (45.27)

InUj =

∫ tj

tj−∆t

[
δfUn
f̄Un

]
dt (45.28)

where δfNn /f̄
N
n and δfUn /f̄

U
n are fractional frequencies on NAVSTAR and USER

clocks. Eq. 45.24 becomes:

Nni
j = f̄Nn

∫ tj

tj−∆t

(1− βij) dt+ f̄Nn I
nNi
j + f̄Un I

nU
j −

∫ tj

tj−∆t

δf IONn dt+ δNni
j

(45.29)
Insert Eq. 45.22 into Eq. 45.29:

Nni
j = f̄Nn ζij + f̄Nn I

nNi
j + f̄Un I

nU
j −

∫ tj

tj−∆t

δf IONn dt+ δNni
j (45.30)

45.4.6 Approximations for χij

The integral for Eq. 45.20 can be approximated. Define:

η =
µ

c2

[
1

rj
− 1

Ri

]
+

1

2c2

[
ṡ2
j − Ṡ2

i

]
(45.31)

ηUSER =
µ

c2rj
+

ṡ2
j

2c2
(45.32)

ηNAV =
µ

c2Ri
+
Ṡ2
i

2c2
(45.33)

Then:

η = ηUSER + ηNAV (45.34)

Define:

χUSERij =

∫ tj

tj−∆t

{
µ

c2rj
+

ṡ2
j

2c2

}
dt (45.35)

χNAVij = −
∫ tj

tj−∆t

{
µ

c2Ri
+
Ṡ2
i

2c2

}
dt (45.36)

Then:

χij = χUSERij + χNAVij (45.37)

Use the symbol over-bar to denote mean values: η̄USER, η̄NAV , η̄, χ̄USERij ,

χ̄NAVij , and χ̄ij . Then:

η̄ = η̄USER + η̄NAV (45.38)
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χ̄ij = χ̄USERij + χ̄NAVij (45.39)

NAVSTAR orbits are near circular, so mean values can be used for Ri, Ṡi, η
NAV

and χNAVij . When USER spacecraft orbits are near circular, mean values for rj ,

ṡj , η
USER, and χUSERij can be used. Then from Eq. 45.20:

χ̄ij = η̄∆t (45.40)

When the USER orbit is eccentric, then a running approximation χ̂USERij for

χUSERij is required to calculate χ̄ij :

χ̄ij = χ̂USERij + χ̄NAVij (45.41)

45.4.7 USER Orbit Partial Derivatives

From Eqs. 45.19 and 45.21:

ζij = [ρij (tj)− ρij (tj −∆t)] /c− χij (45.42)

where ζij has time tag-tag at tj . Differentiate ζij with respect to z and ż, the
USER spacecraft position and velocity 3× 1 component matrices:

∂ζij
∂zj

=
∂ρij (tj)

∂zj
− ∂ρij (tj −∆t)

∂zj
− ∂χij

∂zj
(45.43)

∂ζij
∂żj

=
∂ρij (tj)

∂żj
− ∂ρij (tj −∆t)

∂żj
− ∂χij

∂żj
(45.44)

where ∂ζij/∂zj and ∂ζij/∂żj are 1× 3 matrices, and where:

∂ρij (tj −∆t)

∂zj
=
∂ρij (tj −∆t)

∂z (tj −∆t)

∂z (tj −∆t)

∂z (tj)
(45.45)

∂ρij (tj −∆t)

∂żj
=
∂ρij (tj −∆t)

∂ż (tj −∆t)

∂ż (tj −∆t)

∂ż (tj)
(45.46)

The transition matrix Φ (tj −∆t, tj) on Z = (z, ż)
T

has the form:

Φ (tj −∆t, tj) =

[
∂z(tj−∆t)
∂z(tj)

∂z(tj−∆t)
∂ż(tj)

∂ż(tj−∆t)
∂z(tj)

∂ż(tj−∆t)
∂ż(tj)

]
(45.47)

so calculate Φ (tj −∆t, tj), then extract ∂z (tj −∆t) /∂z (tj) and ∂ż (tj −∆t) /∂ż (tj)
as needed. The range partials algorithm is available from the GPS range algo-
rithm document. The χij partials can probably be ignored due to their deweight-
ing by c−2:

∂χij
∂zj

=

∫ tj

tj−∆t

1

c2

{
µ

[
∂r−1
j

∂zj

]
+

1

2

[
∂ṡ2
j

∂zj

]}
dt
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∂χij
∂żj

=

∫ tj

tj−∆t

1

c2

{
µ

[
∂r−1
j

∂żj

]
+

1

2

[
∂ṡ2
j

∂żj

]}
dt

The 1× 3 matrices of frequency-dependent phase count partial derivatives with
respect to USER position and velocity are calculated with:

∂Nn
j

∂zj
=
[
fUn − δfUn

] ∂ζij
∂zj

(45.48)

∂Nn
j

∂żj
=
[
fUn − δfUn

] ∂ζij
∂żj

(45.49)

45.5 Ionosphere

45.5.1 Physics

Let us denote the ionospheric refractive index by nPH , the group refractive
index by nGD, radio frequency by f , and electron density (units: number of
electrons/m3) by Ne. From first principles[12], it is shown that:

nPH = 1−A
(
Ne
f2

)
(45.50)

nGD = 1 +A

(
Ne
f2

)
(45.51)

where A is defined by:

A =
e2

8π2ε0me
(45.52)

with constants:

Symbol Name Constant Value
e electron charge 1.6021892× 10−19C
ε0 electric permittivity 8.854187818× 10−12F/m
me electron mass 10−31kg

Table 45.1: Elements of A

Notation for variables:

� NTEC : total electron content

� ρPH : ionospheric phase range
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� ρGD: ionospheric group delay range

� ∆tPH : ionospheric phase advance

� ∆tGD ionospheric group delay

� ϕION : ionospheric phase

From Eq. 45.52:

A = 40.30816
(
m3Hz2/electron

)
(45.53)

45.5.2 Total Electron Content

The total electron content NTEC is the integral of electron density Ne along the
path of the radio signal from transmitter to receiver. NTEC values from ground
to spacecraft are bounded[54]: 1016 electrons/m2 < NTEC < 1019 electrons/m2.
From Eqs. 45.50 and 45.51:

ρPH = −A
(
NTEC
f2

)
(45.54)

ρGD = +A

(
NTEC
f2

)
(45.55)

∆tPH =
ρPH
c

= −A
(
NTEC
cf2

)
(45.56)

∆tGD =
ρGD
c

= +A

(
NTEC
cf2

)
(45.57)

ϕION = f∆tPH = −A
(
NTEC
cf

)
(45.58)

δf ION = dϕ/dt = −
[
A

cf

] [
dNTEC
dt

]
(45.59)

Ionospheric group delay range ρGD, defined by Eq. 45.55, is inversely propor-
tional to frequency-squared f2. But ionospheric phase delay frequency δf ION ,
defined by Eq. 45.59, is inversely proportional to frequency f .

Units

Conventionally, there are two sets of units used in the literature for NTEC :
Natural units TECN:

TECN =
1 electron

m2
(45.60)

in which case:
A = 40.30816

(
(m)(Hz

2
)/TECN

)
(45.61)
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and scaled units TECU:

TECU =
1× 1016 electrons

m2
(45.62)

in which case:

A = 40.30816× 104
(

(m)(MHz
2
)/TECU

)
(45.63)

where 1 MHz = 1× 106 Hz. Then:

∆tGD =
(

40.30816
(

(m)(Hz
2
)/TECN

))(NTEC
cf2

)
(45.64)

∆tGD =
(

40.30816× 104
(

(m)(MHz
2
)/TECU

))(NTEC
cf2

)
(45.65)

ϕION = −
(

40.30816
(

(m)(Hz
2
)/TECN

))(NTEC
cf

)
(45.66)

ϕION = −
(

40.30816× 104
(

(m)(MHz
2
)/TECU

))(NTEC
cf

)
(45.67)

δf ION = −

40.30816
(

(m)(Hz
2
)/TECN

)
cf

[dNTEC
dt

]
(45.68)

δf ION = −

40.30816× 104
(

(m)(MHz
2
)/TECU

)
cf

[dNTEC
dt

]
(45.69)

45.5.3 Validation

Sections 10.8 and 10.9 of The Handbook of Geophysics and the Space Envi-
ronment [54], by Klobuchar, presents expressions for comparison. Validate Eq.
45.64 by comparison to Klobuchar Eq. 10.70.

Insert
(
c = 2.99792458× 108 m/s

)
into Eq. 45.68 to get:

δf ION = −
[

1.344536× 10−7

f

(
(Hz)(cycles)

TECN

)][
dNTEC
dt

]
(45.70)

If f is evaluated in units Hz and dNTEC/dt is evaluated in units TECN/s, then
δf IONn will have units Hz. Validate Eq. 45.70 by comparison to Klobuchar Eq.
10.78, noting Klobuchar’s sign error.
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45.6 Final Forms for Phase Count

Insert Eq. 45.59 into Eq. 45.30 to get:

Nni
j = f̄Nn ζij + f̄Nn I

nNi
j + f̄Un I

nU
j +

[
A

cf̄Nn

] ∫ tj

tj−∆t

[
dNTEC
dt

]
dt+ δNni

j (45.71)

Define:
∆NTEC = NTEC (tj)−NTEC (tj −∆t) (45.72)

Then Eq. 45.71 becomes:

Nni
j = f̄Nn ζij + f̄Nn I

nNi
j + f̄Un I

nU
j +A∆NTEC/

[
cf̄Nn

]
+ δNni

j (45.73)

Eq. 45.73 presents the frequency-dependent NAVSTAR-dependent Doppler
phase count representation Nni

j in final form, at time tag tj . Terms on the
right-hand side can be described:

� f̄Nn ζij is the deterministic phase effect, where ζij = ∆ρij/c− χij , and χij
is the integral of the relativistic expression

� InUj is the random frequency dependent phase phenomenology in the
USER GPS receiver clock

� InNij is the random frequency dependent phase phenomenology in the
NAVSTAR transmitter clock

� A∆NTEC/
[
cf̄Nn

]
is the random frequency dependent ionospheric effect on

phase

� δNni
j is the USER receiver Costas Phase Lock Loop thermal noise, inde-

pendent for each NAVSTAR link i.

45.6.1 Alternate Representation

GPS carrier phase measurements residuals, intrinsically defined in units cycles,
are frequently expressed in the distance units of range; e.g., centimeters or mil-
limeters. There does not exist a mapping from carrier phase to range, but there
does exist a mapping from carrier phase to range difference. But in so doing,
one must be careful to avoid a fundamental change in semantics. Eq. 45.73
defines the phase measurement Nni

j as a sum of noise-free signal f̄Nn ζij , clock

noise f̄Nn I
nNi
j + f̄Un I

nU
j , uncertain ionosphere perturbation A∆NTEC/

[
cf̄Nn

]
,

and thermal noise δNni
j . Eq. 45.75 represents signal component range differ-

ence ∆ρij as a sum of scaled measurement λNn N
ni
j , noise-free signal component

cχij , clock noise f̄Nn I
nNi
j + f̄Un I

nU
j , ionosphere perturbation A∆NTEC/

[
cf̄Nn

]
,

and thermal noise δNni
j . It is clear that range difference ∆ρij is a signal compo-

nent of the measurement Nni
j , and in no way can be identified as a measurement

– without a fundamental change in semantics.
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Let λn denote wave length for carrier frequency f̄Nn . Then:

λnf̄
N
n = c (45.74)

where for L1 and L2:

λ1 = 19.029367
cm

cycle

λ2 = 24.42102
cm

cycle

From Nni
j to ∆ρij

Insert Eqs. 45.74 and 45.21 into Eq. 45.73:

∆ρij = λNn N
ni
j + cχij − c

[
InNij + InUj

]
− A∆NTEC(

f̄Nn
)2 − λNn δNni

j (45.75)

where χij , defined by Eq. 45.20, is the time integral of contributions due to
special and general relativity, and where we have assumed:

λNn c

λUn
= 1 (45.76)

45.7 Ionosphere Removal

Consider every linear weighted combination:

NEi
j = aN1i

j + bN2i
j (45.77)

to find expressions for undetermined unitless constants a and b, such that: (i)
NEi
j is free of the ionospheric term A∆NTEC/

[
cf̄Nn

]
of Eq. 45.73, and (ii) the

sum Sab of measurement weights a and b is unity:

Sab = a+ b = 1 (45.78)

Insert phase count measurement representations N1i
j and N2i

j of Eq. 45.73 into
Eq. 45.77 to get:

NEi
j =

(
af̄N1 + bf̄N2

)
ζij+

(
A∆NTEC

c

)[
a

f̄N1
+

b

f̄N2

]
+(3 other terms) (45.79)

Set: [
a

f̄N1
+

b

f̄N2

]
= 0 (45.80)

to free NEi
j of the ionospheric term A∆NTEC/

[
cf̄Nn

]
in Eq. 45.79 and satisfy

the first constraint on Eq. 45.77. Then Eqs. 45.80 and 45.78 yield:

b = −
(
f̄N2
f̄N1

)
a (45.81)
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and:

Sab =

(
f̄N1 − f̄N2
f̄N1

)
a (45.82)

Then from Eqs. 45.78 and 45.81, expressions for the measurement weights a
and b are found:

a =
f̄N1

f̄N1 − f̄N2
(45.83)

b = − f̄N2
f̄N1 − f̄N2

(45.84)

Then from Eq. 45.77:

NEi
j =

f̄N1 N
1i
j − f̄N2 N2i

j

f̄N1 − f̄N2
(45.85)

or:

NEi
j =

γN1i
j −N2i

j

γ − 1
(45.86)

where:
γ = f̄N1 /f̄

N
2 (45.87)

Refer to NEi
j as the ionosphere-free carrier-phase measurement. Insert Eq. 45.73

into Eq. 45.86 to get the measurement representation N̄Ei
j to be used in the

filter:

N̄Ei
j =

f̄N1 H
1i
j − f̄N2 H2i

j

f̄N1 − f̄N2
(45.88)

where ionosphere effects vanish, and where:

Hni
j = f̄Nn ζij + InNij + InUj + δNni

j (45.89)

Define:
JnNij = f̄Nn ζij + InNij + InUj (45.90)

so that:
Hni
j = JnNij + δNni

j (45.91)

Then the ionosphere-free carrier-phase measurement can be written:

N̄Ei
j = SNij +WNi

j (45.92)

where the measurement signal SNij is given by:

SNij =
f̄N1 J

1Ni
j − f̄N2 J2Ni

j

f̄N1 − f̄N2
(45.93)

and measurement white noise WNi
j is given by:

WNi
j =

f̄N1 δN
1i
j − f̄N2 δN2i

j

f̄N1 − f̄N2
(45.94)



346 CHAPTER 45. GPS CARRIER PHASE COUNT

Define:

F1 =
f̄N1

f̄N1 − f̄N2
(45.95)

F2 =
f̄N2

f̄N1 − f̄N2
(45.96)

45.7.1 Ionosphere-Free White Noise Variance for N̄Ei
j (Cy-

cles)

If L1 is used for aiding instantaneously on L2 in the PLL, it seems possible
that the serial white noise might be instantaneously cross-correlated. Let us
denote the sigma on the initial measurements with σN , and the sigma on the
ionospheric measurement with σW . With linear relation:

σW = KWNσN

it is shown below that:

1.7792208 ≤ KWN ≤ 5.7421528

where the left-hand value assumes maximal cross-correlation, and the right-hand
value assumes zero correlation, between measurement white noise on the two
frequencies.

From Eq. 45.94:

WNi
j = F1δN

1i
j − F2δN

2i
j (45.97)

Square Eq. 45.97 and take expectation:

E
{(
WNi
j

)2}
= F 2

1E
{(
δN1i

j

)2}
+ F 2

2E
{(
δN2i

j

)2}− 2F1F2E
{
δN1i

j δN
2i
j

}
(45.98)

Uncorrelated Thermal Noise with Equal Variances

If:

E
{
δN1i

j δN
2i
j

}
= 0 (45.99)

and:

E
{(
δN2i

j

)2}
= E

{(
δN1i

j

)2}
(45.100)

then:

E
{(
WNi
j

)2}
=
(
F 2

1 + F 2
2

)
E
{(
δN1i

j

)2}
That is, the sigma σW on the ionospheric measurement is given by:

σW =
√
F 2

1 + F 2
2 σN = (5.7421528)σN units: cycles (45.101)
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where σW is defined by:

σW =

√
E
{(
WNi
j

)2}
units: cycles (45.102)

and where σN , the sigma on the initial measurements, is defined by:

σN =

√
E
{(
δN1i

j

)2}
units: cycles (45.103)

Correlated Thermal Noise

Assume there exist δN0
j in the GPS receiver such that:

δN1i
j = 154δN0i

j =

(
f1

f0

)
δN0i

j (45.104)

δN2i
j = 120δN0i

j =

(
f2

f0

)
δN0i

j (45.105)

where in the NAVSTAR GPS transmitter we know:

fN1 = (154) fN0

fN2 = (120) fN0

Then:

δN0i
j =

(
f0

f1

)
δN1i

j =

(
f0

f2

)
δN2i

j

and:

E
{(
WNi
j

)2}
=

(f1 + f2)
2

f2
0

E
{(
δN0i

j

)2}
(45.106)

or:

σW =

(
f1 + f2

f0

)
σN0 units: cycles (45.107)

f1 + f2

f0
= 274

where:

σW =

√
E
{(
WNi
j

)2}
units: cycles

σN0 =

√
E
{(
δN0i

j

)2}
units: cycles

Since:

δN0i
j =

(
f0

f1

)
δN1i

j =

(
f0

f2

)
δN2i

j
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then:√
E
{(
δN0i

j

)2}
=

(
1

154

)√
E
{(
δN1i

j

)2}
=

(
1

120

)√
E
{(
δN2i

j

)2}
Therefore:

σW =
(σN1

154

)
=
(σN2

120

)
units: cycles

where:

σN1 =

√
E
{(
δN1i

j

)2}
units: cycles

σN2 =

√
E
{(
δN2i

j

)2}
units: cycles

45.7.2 Ionosphere-Free White Noise Variance for ∆ρ (cm)

Eq. 45.85 can be written:

NEi
j =

λ2N
1i
j − λ1N

2i
j

λ2 − λ1
(45.108)

where λnfn = c. Insert Eq. 45.75 into Eq. 45.108 to get:

∆ρij = ΛSN
Ei
j +cχij−cΛ1

[
I1Ni
j + I1U

j

]
+cΛ2

[
I2Ni
j + I2U

j

]
−ΛW1δN

1i
j +ΛW2δN

2i
j

(45.109)
where the wave-length coefficients are defined and evaluated:

ΛW1 =
λ1λ

2
2

λ2
2 − λ2

1

= 48.443594 cm/cycle; thermal noise L1 (45.110)

ΛW2 =
λ2

1λ2

λ2
2 − λ2

1

= 37.748257 cm/cycle; thermal noise L2 (45.111)

ΛS =
λ1λ2

λ2 + λ1
= 10.695338 cm/cycle; signal (45.112)

Λ1 =
λ2

2

λ2
2 − λ2

1

= 2.5457281 (unitless); clocks L1 (45.113)

Λ2 =
λ2

1

λ2
2 − λ2

1

= 1.5457281 (unitless); clocks L2 (45.114)

and where ionospheric terms subtract out12. Note that NEi
j and χij are de-

terministic signals. Thermal noises δN2i
j and δN1i

j are independent of clock

12The equation above was derived in mid 2004, and then rederived on 21 Mar 05 – with
same result.
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noises InNij and InUj (derived from oscillators) because thermal noise is white
noise. The sizes of white noise coefficients ΛW1 = 48.443594 cm/cycle and
ΛW2 = 37.748257 cm/cycle, relative to signal ΛS = 10.695338 cm/cycle, are
somewhat alarming.

Define:
W = ΛW2δN

2i
j − ΛW1δN

1i
j (45.115)

Then:

E
{
W 2
}

=

(
λ1λ

2
2

λ2
2 − λ2

1

)2

E
{(
δN1i

j

)2}
+

(
λ2

1λ2

λ2
2 − λ2

1

)2

E
{(
δN2i

j

)2}

− 2

(
λ1λ

2
2

λ2
2 − λ2

1

)(
λ2

1λ2

λ2
2 − λ2

1

)
E
{
δN1i

j δN
2i
j

}
(45.116)

Uncorrelated Thermal Noise with Equal Variances

If:
E
{
δN1i

j δN
2i
j

}
= 0

and:
E
{(
δN2i

j

)2}
= E

{(
δN1i

j

)2}
then:

E
{
W 2
}

=
[
Λ2
W1 + Λ2

W2

]
E
{(
δN1i

j

)2}
and:

σW =
√

Λ2
W1 + Λ2

W2σN√
Λ2
W1 + Λ2

W2 = 61.414271 cm/cycle

where:
σW =

√
E {W 2}

σN =

√
E
{(
δN1i

j

)2}
Correlated Thermal Noise

E
{
W 2
}

=

(
λ1λ

2
2

λ2
2 − λ2

1

)2

E
{(
δN1i

j

)2}
+

(
λ2

1λ2

λ2
2 − λ2

1

)2

E
{(
δN2i

j

)2}
−2

(
λ1λ

2
2

λ2
2 − λ2

1

)(
λ2

1λ2

λ2
2 − λ2

1

)
E
{
δN1i

j δN
2i
j

}
Now δN1i

j and δN2i
j denote thermal noise, in units cycles, on L1 and L2,

and W denotes thermal noise after ionosphere combination in units cm.

W = ΛW2δN
2i
j − ΛW1δN

1i
j
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= ∆ρij −
{

ΛSN
Ei
j + cχij − cΛ1

[
I1Ni
j + I1U

j

]
+ cΛ2

[
I2Ni
j + I2U

j

]}
δN1i

j = 154 δN0
j

δN2i
j = 120 δN0

j

E
{
W 2
}

== λ2
0E
{(
δN0

j

)2}
Thus:

σW = λ0 σN0

where:
λ0 = 2930.522 cm/cycle

σW =
√
E {W 2}

σN0 =

√
E
{(
δN0

j

)2}
Now:

λ0 = 154 λ1 = 120 λ2

and:
δN1i

j = 154 δN0
j

δN2i
j = 120 δN0

j

So:

E
{(
δN0

j

)2}
=

(
1

154

)2

E
{(
δN1i

j

)2}
=

(
1

120

)2

E
{(
δN2i

j

)2}
and: √

E
{(
δN0

j

)2}
=

(
1

154

)√
E
{(
δN1i

j

)2}
=

(
1

120

)√
E
{(
δN2i

j

)2}
σN0 =

(
1

154

)
σN1 =

(
1

120

)
σN2

Therefore:
σW = λ1σN1 = λ2σN2 (45.117)

σW = (19.029367 cm/cycle)σN1 = (24.42102 cm/cycle)σN2

where:

σN1 =

√
E
{(
δN1i

j

)2}
σN2 =

√
E
{(
δN2i

j

)2}
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45.8 First Differences on NEi
j

45.8.1 Remove USER Clock Phase Perturbations

Define:
∆NE

j = NEp
j −NEq

j (45.118)

where p and q refer to distinct NAVSTARS. Insert Eq. 45.88 into Eq. 45.118
to get:(

f̄N1 − f̄N2
)

∆NE
j =

[
f̄N1 H

1p
j − f̄

N
2 H

2p
j

]
−
[
f̄N1 H

1q
j − f̄

N
2 H

2q
j

]
(45.119)

Insert Eq. 45.89 into Eq. 45.119 to get:

∆NE
j = REj + SEj (45.120)

where:

REj =
f̄N1

[
I1Np
j − I1Nq

j

]
− f̄N2

[
I2Np
j − I2Nq

j

]
+ f̄N1

[
δN1p

j − δN
1q
j

]
− f̄N2

[
δN2p

j − δN
2q
j

]
f̄N1 − f̄N2

(45.121)

SEj =
(
f̄N1 + f̄N2

)
[ζpj − ζqj ] (45.122)

and where f̄N1 I
1U
j and f̄N2 I

2U
j are differenced out. That is, USER clock phase

perturbations I1U
j and I2U

j vanish entirely due to first differences ∆NE
j on

ionosphere-free Doppler phase count measurement representations. NAVSTAR
clock phase perturbations I1Np

j , I2Np
j , I1Nq

j , and I2Nq
j all survive, and all USER

receiver PLL thermal noise perturbations δNni
j survive.

45.8.2 Root-Variance Mappings

Since USER receiver PLL thermal white noise is independent for each NAVS-
TAR, all root-variances for singly differenced ionosphere measurements are ob-
tained by multiplication of the root-variances for ionosphere measurements by√

2. Let σ∆ denote white noise root-variance of differenced ionosphere measure-
ments. Thus:

σ∆ =
√

2λ1σN1 =
√

2λ2σN2 (45.123)

σ∆ = (26.911589 cm/cycle)σN1 = (34.536538 cm/cycle)σN2

where:

σN1 =

√
E
{(
δN1i

j

)2}
σN2 =

√
E
{(
δN2i

j

)2}
σ∆ =

√
2E {W 2}
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45.9 Example

Suppose:
σ∆ = 1 cm

Then:

σN1 =
1 cm

26.911589 cm/cycle
= 0.0371587 cycles

σN2 =
1 cm

34.536538 cm/cycle
= 0.0289548 cycles

45.10 Partials and Covariance

In symmetry with Eqs. 45.5 through 45.10, define:

f̄N0 = (10.23 MHz)
(
1− 4.4647× 10−10

)
(45.124)

USER clock frequencies can be sufficiently approximated with:

fU1 = f̄U1 + δfU1 = (154) fU0 (45.125)

fU2 = f̄U2 + δfU2 = (120) fU0 (45.126)

where:
fU0 = f̄U0 + δfU0 (45.127)

δfU1 = (154) δfU0 (45.128)

δfU2 = (120) δfU0 (45.129)

where fU0 is generated by the USER spacecraft oscillator, and where δfU0 is a
random perturbation on the nominal frequency f̄U0 .

45.10.1 Single Frequency

Recall Eq. 45.73:

Nni
j =

(
f̄Nn + δfNn

)
ζij + δfUn ∆t+ δNni

j +A∆NTEC/
[
cfNn

]
Partials

∂Nni
j

∂δfUn
= ∆t (45.130)

∂Nni
j

∂δfNn
= ζij (45.131)
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Covariance

PNni
j

= E
{(
Nni
j

)2}

PNni
j

= (ζij)
2
E
{(
δfNn

)2}
+ (∆t)

2
E
{(
δfUn

)2}
+ E

{(
δNni

j

)2}
(45.132)

45.10.2 Two-Frequency Ionosphere Removal

Insert Eqs. 45.125 and 45.126 into Eq. 45.88, and then use Eq. 45.89 and Eqs.
45.128 and 45.129 to get:

NEi
j =

(
1

34

)[(
(154)

2 − (120)
2
) [

∆tδfU0 +
(
f̄N0 + δfN0

)
ζij
]

+
[
(154) δN1i

j − (120) δN2i
j

]]
(45.133)

Partials

Define unitless constant B:

B =

[
(154)

2 − (120)
2
]

(34)
= 274 (45.134)

Estimate USER clock frequency perturbation δfU0 :

∂NEi
j

∂δfU0
= B∆t (45.135)

Estimate NAVSTAR clock frequency perturbation δfN0 :

∂NEi
j

∂δfN0
= Bζij (45.136)

Covariance

Define:
PEi j = E

{(
NEi
j

)2}
(45.137)

Insert Eq. 45.133 into Eq. 45.137. Then:

PEi j = B2 (∆t)
2
E
{(
δfU0

)2}
+B2ζ2

ijE
{(
δfN0

)2}

+

(
154

34

)2

E
{(
δN1i

j

)2}
+

(
120

34

)2

E
{(
δN2i

j

)2}
(45.138)
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45.10.3 First Differences on NEi
j

∆NE
j =

(
f̄N1 + f̄N2

)
[ζpj − ζqj ] + ∆δEj (45.139)

∆δEj =
(
B [ζpj − ζqj ]

(
δfN0

)
+ ∆WE

j

)
(45.140)

∆WE
j =

(
154

34

)(
δN1p

j − δN
1q
j

)
−
(

120

34

)(
δN2p

j − δN
2q
j

)
(45.141)

Partials

∂∆NE
j

∂δfN0
= B [ζpj − ζqj ] (45.142)

Covariance

E
{(

∆NE
j

)2}
= E

{(
∆δEj

)2}
(45.143)

E
{(

∆δEj
)2}

= B2 [ζpj − ζqj ]2E
{(
δfN0

)2}
+ E

{(
∆WE

j

)2}
(45.144)

E
{(

∆WE
j

)2}
=

(
154

34

)2 [
E

{(
δN1p

j

)2
}

+ E

{(
δN1q

j

)2
}]

+

(
120

34

)2 [
E

{(
δN2p

j

)2
}

+ E

{(
δN2q

j

)2
}]

(45.145)

45.11 Receiver Clock Error Model

We shall assume that the receiver clock is a state-of-the-art oven-controlled
crystal clock.

AGI resources have been applied to simulate and graph appropriate ensem-
bles of clock modeling stochastic sequences in clock phase xj and fractional fre-
quency ȳj , and overlay the graphs with associated two-sigma boundary curves.
Mutual validation of simulations and covariance calculations has been achieved
with a demonstration of consistency between an ensemble of simulations and its
two-sigma boundaries.
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45.11.1 Covariance on Clock Phase

Our physical clock model derives from Allan[1], Table II, page 651. Values for
clock dependent parameter constants a0 and a−2 define selected models for com-
position of the Allan variance σ2

y (τ) according to Eqs. 45.151 and 45.154. We
assume that the receiver clock can be sufficiently characterized13 by frequency
modulated (FM) white noise and frequency modulated random walk. Then
clock phase modulation (PM) will be driven by their generalized integrals.

Let x (t) denote clock time deviation (or clock phase deviation) and let y (t)
denote clock frequency deviation. Formally, Allan[1] presents the (generalized14)
integral:

x (t) =

∫ t

0

y (η) dη (45.146)

Let τ denote clock sample time. The sample Allan variance is defined by:

σ2
y (τ) = lim

n→∞

1

2n

n∑
j=1

(ȳj+1 − ȳj)2
(45.147)

where:

ȳj =
xj+1 − xj

τ
(45.148)

τ = tj+1 − tj (45.149)

xj = x (tj) (45.150)

Frequency White Noise

The physical Allan variance for FM white noise is given by:

σ2
y (τ) = a0τ

−1, FM white noise (45.151)

Compare Eqs. 45.147 and 45.151 to write:

a0τ
−1 = lim

n→∞

1

2n

n∑
j=1

(ȳj+1 − ȳj)2
(45.152)

From this equation derive:

E {x (tk)x (tj)} = (a0) (min [tj , tk]) (45.153)

A candidate value: a0 = 10−23s.

13This assumption is supported by Allan: ”Note that the quadratic D term occurs because
x (t) is the integral of y (t), the fractional frequency, and is often the predominant cause of
time deviation.”

14Allan does not distinguish between integrals and generalized integrals in his paper refer-
enced above. But the standard calculus does not work for the ”integration” of white noise and
random walk sequences. These sequences are summable and differenceable, but they are not
integrable and differentiable. It is nonetheless helpful to communicate the relation between
x and y by analogy to the standard calculus in the absence of measure theory and Lebesgue
integration tools.
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Frequency Random Walk

The physical Allan variance for FM random walk is given by:

σ2
y (τ) = a−2τ , FM random walk (45.154)

Compare Eqs. 45.147 and 45.154 to write:

a−2τ = lim
n→∞

1

2n

n∑
j=1

(ȳj+1 − ȳj)2
(45.155)

Adopt the reset to zero condition:

yj = 0, tj = 0 (45.156)

Then derive:
E
{

(y (t))
2
}

= 3a−2t (45.157)

A candidate value: a−2 =
(
10−25/500

)
s−1.

Superposition

Ignoring FM flicker noise and phase modulated (PM) sequences given by Allan,
then:

σ2
y (τ) = a0τ

−1 + a−2τ (45.158)

45.11.2 Simulations

FM White Noise

Let t0 = 0, τ0 a positive small time increment, x0 a positive small number, and
n an unbounded positive integer. Define:

t = nτ0 > t0 (45.159)

x (t) =

n∑
i=1

xi (45.160)

and adopt the probability statement:

P {xi = x0} = P {xi = −x0} = 0.5 (45.161)

Then [93]:

E
{

(x (t))
2
}

=

(
x2

0

τ0

)
t (45.162)

when the sizes of τ0 and x0 are sufficiently small. From Eq. 45.153:

E
{

(x (t))
2
}

= a0t (45.163)
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Comparison of the latter two equations yields:

x0 =
√
a0τ0 (45.164)

Given t0 = 0, and values for a0 and τ0, derive x0 from Eq. 45.164, and with
the help of a uniform random number generator, simulate the random walk
sequence in clock phase, defined by Eq. 45.160, due to FM white noise. Derive
the corresponding white noise sequence in clock frequency with the help of Eq.
45.148.

FM Random Walk

Let t0 = 0, τ0 a positive small time increment, y0 a positive small number, and
n an unbounded positive integer. Define:

t = nτ0 > t0 (45.165)

y (t) =

n∑
i=1

yi (45.166)

and adopt the probability statement:

P {yi = y0} = P {yi = −y0} = 0.5 (45.167)

Then [93]:

E
{

(y (t))
2
}

=

(
y2

0

τ0

)
t (45.168)

when the sizes of τ0 and y0 are sufficiently small. From Eq. 45.157:

E
{

(y (t))
2
}

= 3a−2t (45.169)

Comparison of the latter two equations yields:

y0 =
√

3a−2τ0 (45.170)

Given t0 = 0, and values for a−2 and τ0, derive y0 from Eq. 45.170, and with
the help of a uniform random number generator, simulate the random walk
sequence in clock frequency y (t), defined by Eq. 45.166, due to FM random
walk.

Clock phase, due to FM random walk is derived by inserting Eq. 45.166 into
Eq. 45.146:

x (t) = y (t) τ0 (45.171)

45.11.3 Filter Time Update for Receiver Clock

Let tk and tk+1 > tk define the time update interval [tk, tk+1]. Let us denote
the receiver clock filter transition function Φk+1,k, and the receiver clock filter
process noise covariance Qk+1,k.
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State Estimate

State estimate propagation for the receiver clock:

Xk+1|k = Φk+1,kXk|k (45.172)

where:

Φk+1,k =

[
1 (tk+1 − tk)
0 1

]
(45.173)

Error Covariance

Error covariance propagation for the receiver clock:

Pk+1|k = Φk+1,kPk|kΦTk+1,k +Qk+1,k (45.174)

where:
Qk+1,k =

[
a0 (tk+1 − tk) + a−2 (tk+1 − tk)

3
3a−2 (tk+1 − tk)

2
/2

3a−2 (tk+1 − tk)
2
/2 3a−2 (tk+1 − tk)

]
(45.175)

Pj|k =

[
P xj|k P xyj|k
P yxj|k P yj|k

]
, j ∈ {k, k + 1} (45.176)

45.11.4 State Estimate Parameters

We shall estimate the fractional frequency y (t) and its generalized integral x (t)
for the user spacecraft clock.



Chapter 46

GPS Navigation Solution

46.1 Introduction

ODTK can convert GPS pseudorange observations into so-called ”navigation
solutions.” A navigation solution is the estimated position and clock offset of a
GPS receiver based on four (4) or more pseudoranges at a single epoch. The
navigation solutions of the USER spacecraft receiver can be used as an alterna-
tive measurement type and are akin to ”normal places” for GPS measurements.
Advantages of navigation solutions are that they are faster and simpler to pro-
cess for orbit determination purposes; disadvantages are that some information
may be inherently lost as a result of the combination and their observational
uncertainty may be harder to characterize.

Bancroft [5] introduced an analytic method of navigation solution that pro-
vides position and clock offset given four (4) pseudoranges at the same time.
Yang and Chen [133] provided an extension to Bancroft’s method so that more
than four pseudoranges may be used. This latter algorithm has been adopted
for use in ODTK.

46.2 Algorithm

Let n ≥ 4 be the number of GPS space-vehicle transmitters observed at the time
of the navigation solution. Let B be a matrix having four columns and n rows.
Let the first three elements of each row of B contain the position of the ith GPS
space vehicle, and let the fourth element contain the corrected pseudorange ρi
(c.f. Eq. (44.1)) corresponding with the ith space vehicle, e.g.,

B =


x1 y1 z1 ρ1

x2 y2 z2 ρ2

x3 y3 z3 ρ3

...
...

...
...

xn yn zn ρn

 . (46.1)
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Define the M matrix as

M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (46.2)

and generally define the Lorentz inner product for two 4-space vectors a and b
as

〈a, b〉 = aTMb = a1b1 + a2b2 + a3b3 − a4b4. (46.3)

Let the USER location and ranging bias of the receiver be represented by

the column vector r =
[
x y z c∆t

]T
, where c is the speed of light and ∆t

is the receiver clock offset relative to GPS system time. The navigation solution
is therefore computed as

r = MB-1 (Λτ + α) , (46.4)

where τ =
[

1 1 1 · · · 1
]T

is a column vector of length n. Each element
of the vector α is computed from the Lorentz inner product (Eq. (46.3)) of each
of the 4-space row vectors in B (Eq. 46.1) with itself, such that

α =
1

2


x1x1 + y1y1 + z1z1 − ρ1ρ1

x2x2 + y2y2 + z2z2 − ρ2ρ2

x3x3 + y3y3 + z3z3 − ρ3ρ3

...
xnxn + ynyn + znzn − ρnρn

 . (46.5)

Finally, the scalar Λ in Eq. 46.4 is a root of the quadratic equation

0 = EΛ2 + 2FΛ +G, (46.6)

where
E =

〈(
BTB

)-1
BTτ,

(
BTB

)-1
BTτ

〉
, (46.7)

F =
〈(
BTB

)-1
BTτ,

(
BTB

)-1
BTα

〉
− 1, (46.8)

G =
〈(
BTB

)-1
BTα,

(
BTB

)-1
BTα

〉
(46.9)

The solution of Λ is therefore

Λ =
−F ±

√
F 2 − 4EG

2E
, (46.10)

However, only one of the two roots results in a correct location. Presently,
ODTK chooses the root that minimizes the magnitude of the computed clock
offset, i.e., |∆t|.

A detailed explanation and justification of the methodology can be found in
[5] and [133].
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Chapter 47

GPS Composite Clock

47.1 GOMA-E

The GPS Composite Clock Model has been implemented in ODTK according
to GOMA-E[110], Section 10.3.2.3.5.10. The GPS clock steering algorithm has
been implemented in ODTK according to GOMA-E, Section 10.3.2.3.5.11. Dis-
tribution of GOMA-E is authorized for US DOD and its contractors only.

The Zucca-Tavella[105] three-state clock model was used in place of the two-
state model referenced in GOMA-E.

47.2 Tutorial

The GPS Composite Clock model derives from a paper by Kenneth Brown[11].
This paper is very difficult to read. Therefore I have prepared a tutorial, derived
from simulations, to aid in understanding the GPS Composite Clock.

47.2.1 Simulation Narrative

Simulate Random Clock Deviations

First three random clock parameter deviation functionals were simulated for
each of four clocks across an eight-day interval using the Zucca-Tavella[105]
clock model. This simulation embedded the evaluation of Wiener processes and
the evaluation of stochastic integrals on Wiener process differentials according
to Zucca-Tavella.

See Fig. 47.1 for an overlay of simulations of clock phase deviations for the
four clocks. Clocks S1 and S2 are GPS ground station clocks, and clocks N1
and N2 are spaceborne GPS NAVSTAR clocks.
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Simulate GPS Range Measurements

Then GPS range1 measurements were simulated using the simulated random
clock phase2 deviation functionals.

Estimate Random Clock Deviations with KF1

I estimated the three random clock parameter deviation functionals from simu-
lated GPS range measurements for each of the four clocks using a Kalman filter,
call it KF1, with a 12 × 1 matrix clock state estimate structure. Also, I simu-
lated filter initial condition errors. See Fig. 47.2 for an overlay of simulated and
estimated phase deviation functionals for the four clocks. Visual inspection of
Fig. 47.2 reveals simulated and estimated phase deviation patterns with definite
symmetries.

The clock parameter deviation functionals are not observable from the GPS
range measurements – after filter initialization. That is, the error variance on
each clock parameter deviation is never reduced due to processing a GPS range
measurement – after filter initialization. See Fig. 47.5 for a demonstration of
non-observability and unboundedness of clock phase deviation for clock S1, and
notice that the phase deviation estimate is consistent with its error covariance.
Related graphs for the other three clocks present the same behavior.

Form Clock Variations

I formed difference time functionals by subtracting the estimated clock param-
eter deviation functionals from the simulated clock parameter deviation func-
tionals. I refer to these differences as clock parameter variations.

47.2.2 Similarity in Clock Parameter Variations

A remarkable phenomenon is observed: The clock parameter variations of each
clock are similar to those of all other clocks in:

� phase

� frequency

� frequency drift

See Figs. 47.3 and 47.4 for a demonstration of clock phase variation similarity
with filter initial condition errors simulated. Identify each of the four clock
parameter variations as an estimate of the Unobserved Variation Common
to all Clocks – the UVCC3. The Kalman filter KF1, applied to simulated GPS
range measurements, has enabled the calculation of four estimates of the UVCC.

1I use GPS range for GPS pseudo-range for clarity in the sequel.
2Phase deviation is the first of the three random clock parameter deviations.
3Ken Brown[11] refers to the UVCC as the Implicit Ensemble Mean (IEM).
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Absence of Filter Initial Condition Errors

Fig. 47.8 presents the four similar estimates of the UVCC in the absence of
simulated filter initial condition errors. Compare Fig. 47.8 to Fig. 47.3 to see
the effect of filter initial condition errors on similar estimates of the UVCC.

47.2.3 Optimal Estimation of the UVCC

Now at each time-tag of each GPS range measurement, sequentially calculate
the mean of the ensemble of UVCC estimates, given the clock variation values in
hand. In other words calculate the conditional mean over the four clock ensemble
treating each 3 × 1 matrix clock variation value at each GPS range time-tag
as a UVCC pseudo-measurement. Invoke Sherman’s Theorem to employ the
Kalman filter a second time to sequentially generate optimal estimates of the
UVCC time function from newly-identified UVCC pseudo-measurements. Refer
to this Kalman filter as KF2.

Here the Kalman filter is functionally equivalent to the method of sequen-
tial least squares because there is no random forcing function driving its state
estimate. One could invoke sequential least squares or batch least squares to
estimate the UVCC. The latter was Ken Brown’s approach[11]. See Figs. 47.6
and 47.7 for a demonstration of Brown’s Transparent Variations.

My proposed improvement is to use the Kalman filter KF2 rather than batch
least squares. Here the UVCC pseudo-measurement size is 3 × 1 rather than
3N × 1 for N clocks, and thus provides a very significant computational ad-
vantage for N ≥ 24 over Ken Brown’s approach with Transparent Variations.
Further, there is no arbitrary add-hoc degree of freedom as in the GOMA-
E pseudo-measurement approach. For my proposed improvement, the UVCC
conditional mean is appropriately calculated at each time-tag of each GPS range
measurement.

Contrast the Two Kalman Filters

KF1 calculates optimal sequential unobservable estimates of the three random
GPS clock parameter deviation functionals from GPS range measurements. KF2
calculates optimal sequential observable estimates of the UVCC from UVCC
pseudo-measurements.

47.2.4 Real World Application

Clock parameter variations are differences between unknown true clock param-
eter values and known estimated clock parameter values. Clock parameter vari-
ations are unknown in the real world because true clock parameter values are
unknown. Thus the UVCC is an unknown clock parameter variation.

The 3N × 3N matrix (12 × 12 here) clock parameter state estimate error
covariance function4 Pk|k for KF1 is known in the real world. The 3× 3 matrix

4Pn|m denotes the covariance function at epoch tn with last measurement processed at
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pseudo-measurement residual covariance function, denoted here by CUV CCk|k , for
each KF2 UVCC pseudo-measurement is given by a 3×3 sub-matrix from Pk|k.
This is all that is required to calculate the 3× 3 state estimate error covariance
PUV CCk|k for the UVCC estimate. Thus PUV CCk|k is also known in the real world.

The evaluation of PUV CCk|k statistically quantifies the difference between each
KF1 estimate of UVCC and the unknown UVCC.

Unbounded eigenvalues of Pk|k would eventually destroy KF1. Simulated
UVCC pseudo-measurements, observable to the KF1 state, could be processed
with GPS range measurements by KF1 so as to produce an appropriately
bounded covariance matrix P̃k|k function for use in KF1. But it is sufficient
to perform the measurement update on the KF1 state estimate error covariance
Pk|k using the pseudo-measurement residual covariance function CUV CCk|k , with-
out actually simulating a UVCC measurement. Recursively applied, this would
generate a bounded P̃k|k for real world application.

Figure 47.1: Sim Phase Dev (units: 1× 10−7s) vs Time (0 - 8) d

time tm.
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Figure 47.2: Sim & Est Phase Dev (units: 1× 10−7s) vs Time (0 - 8) d

Figure 47.3: 4 Similar Phase Var (units: 1× 10−7s) vs Time (0 - 8) d
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Figure 47.4: 4 Similar Phase Var (units: 1× 10−8s) vs Time (0 - 3) d

Figure 47.5: S1 Phase Var & Cov Bounds (units: 1× 10−6s) vs Time (0 - 8) d
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Figure 47.6: S1 Phase Var Reduced Cov (units: 1× 10−7s) vs Time (0 - 8)d

Figure 47.7: S1 Phase Var Reduced Cov (units: 1× 10−9s) vs Time (0 - 8) d
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Figure 47.8: 4 Similar Phase Var no IC (units: 1× 10−8s) vs Time (0 - 8)d



Part XIII

Appendices

371





A. The Least Squares
Quadratic

Given:

J̃ (∆X0) = (∆y −A∆X0)
T
W (∆y −A∆X0)

one can derive:

∂J̃

∂∆X0
= 2

(
ATWA ∆X0 −ATW∆y

)
by differentiating J̃ (∆X0) as though its elements were scalars but inserting the
matrix transpose operator to obtain consistent matrix dimensionality. Note first
that:

∂∆y

∂∆XT
0

= 0m×n

and:

∂∆X0

∂∆XT
0

= In×n.

Then:

∂J̃

∂∆X0
=

(
∂∆y

∂∆XT
0

−A ∂∆X0

∂∆XT
0

)T
W (∆y −A∆X0)+

[
(∆y −A∆X0)

T
W

(
∂∆y

∂∆XT
0

−A ∂∆X0

∂∆XT
0

)]T
= −ATW∆y +ATWA∆X0 +

[
−∆yTWA+ ∆XT

0 A
TWA

]T
= 2

(
ATWA ∆X0 −ATW∆y

)
.
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B. Sequential Least Squares

The sequential least squares algorithm derives from the batch least squares
algorithm, and is essentially equivalent to it given the least squares hypothesis.

We are given an a priori state estimate n×1 matrix X̂0|0 and m measurements
yj , where j ∈ {1, 2, . . . ,m}. The iterative least squares normal equation is given
by Eq. 36.9: (

ATWA
)

∆X̂0|m = ATW∆ŷ (1)

where matrix A is an m×n (m > n) matrix, W is an m x m diagonal matrix of
measurement weights, ∆X̂0|m is an n × 1 state correction estimate at time t0,
and ∆ŷ is an m × 1 matrix of measurement residuals. The subscript notation
0|m denotes epoch at time t0, and the inclusion of measurements through time
tm.

Eq. 1 can also be written: m∑
j=1

ATj WjAj

∆X̂0|m =

 m∑
j=1

ATj Wj∆ŷj

 (2)

To see this, insert:

A =


A1

A2

...
Am



W =


W1 0

W2

. . .

0 Wm



∆ŷ =


∆ŷ1

∆ŷ2

...
∆ŷm


into Eq. 1. Aj is 1 x n, Wj is 1 x 1, and:

∆ŷj = yj − y
(
X̂j|0

)
(3)
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is 1 x 1. yj is a measurement value, and the measurement representation

y
(
X̂j|0

)
is a nonlinear function of X̂j|0. Measurement weight Wj is the re-

ciprocal of white noise measurement error variance σ2
y,j :

σ2
y,j = 1/Wj . (4)

If the n× n matrix ATWA is non-singular (has no zero eigenvalues), then it is
inverted to produce the state correction:

∆X̂0|m =
(
ATWA

)−1 (
ATW∆ŷ

)
(5)

The correction ∆X̂0|m is added to the a priori state estimate X̂0|0 at time t0,
and Eq. 5 is iterated recursively until the sum of squares of weighted measure-
ment residuals ∆ŷTW ∆̂y (weighted RMS squared) is less than some preassigned
positive small number, or until the iterative relative weighted RMS magnitude
on measurement residuals is less than some preassigned positive number. It
is important to note that the least squares algorithm is derived by minimizing
∆yTW∆y.

Matrix Aj is constructed from the product:
where yj is the measurement representation for time tj , and the linear state

error transition matrix Φj,0 moves state information from epoch at time t0 to
time of measurement tj .

It is well known by users of batch least squares orbit determination that
the best accuracy prediction performance is obtained empirically by finding a
batch time interval which is long enough to capture sufficient measurement in-
formation, and is short enough to avoid the effects of random force modeling
errors. Suppose here that m measurements requires an excessive batch measure-
ment time interval, and that p < m measurements does satisfy the time interval
requirement.

Partition the batch of m measurements into two batches of sizes p and q: m
= p + q. Then tq = tm and equation 2 can be written: p∑

j=1

ATj WjAj +

p+q∑
j=p+1

ATj WjAj

∆X̂0|q =

 p∑
j=1

ATj Wj∆yj +

p+q∑
j=p+1

ATj Wj∆yj

 .

(6)
Now suppose in real time that the last measurement we have received is at time
tp. We do not yet have the measurement at time tp+1. The least squares normal
equation can be written: p∑

j=1

ATj WjAj

∆X̂0|p =

 p∑
j=1

ATj Wj∆yj

 , (7)

similar to Eq. 2. The state correction estimate can then be calculated:

∆X̂0|p =

 p∑
j=1

ATj WjAj

−1 p∑
j=1

ATj Wj∆yj

 (8)
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together with the least squares state error covariance matrix:

P0|p =

 p∑
j=1

ATj WjAj

−1

(9)

if the information matrix
(∑p

j=1A
T
j WjAj

)
is non-singular. Iterative differential

corrections are performed as defined above. Now insert Eq. 9 into Eq. 6:P−1
0|p +

p+q∑
j=p+1

ATj WjAj

∆X̂0|q =

 p∑
j=1

ATj Wj∆yj +

p+q∑
j=p+1

ATj Wj∆yj

 .

(10)
Suppose we have just received the second batch of q measurements. How shall
we use Eq. 10? Note that the n × 1 matrix

∑p
j=1A

T
j Wj∆yj is presumably

negligible due to minimizing ∆yTW∆y over the first batch of p measurements.
Then Eq. 10 can be written:P−1

0|p +

p+q∑
j=p+1

ATj WjAj

∆X̂0|q =

 p+q∑
j=p+1

ATj Wj∆yj

 (11)

and the correction:

∆X̂0|q =

P−1
0|p +

p+q∑
j=p+1

ATj WjAj

−1 p+q∑
j=p+1

ATj Wj∆yj

 (12)

can be calculated together with the least squares covariance matrix:

P0|q =

P−1
0|p +

p+q∑
j=p+1

ATj WjAj

−1

(13)

if the least squares information matrix
(
P−1

0|p +
∑p+q
j=p+1A

T
j WjAj

)
is non-singular.

Given the least squares hypothesis, we note that ∆X̂0|q is essentially the same
correction obtained in Eq. 5, but here we have obtained it sequentially in two
measurement batches rather then one.

Important: As Jim Woodburn emphatically notes, ∆X̂0|q is not the same
correction obtained in Eq. 5 when processing real data. This is due to existence
of force modeling errors and the nonlinearity produced by iterative least squares
corrections.

Recall from above we have assumed that the simultaneous processing of m
measurements requires an excessive batch measurement time interval [t1, tm];
i.e., random force modeling errors are hurting us. Then Eq. 13 needs to be
modified to decrease the influence of the a priori information matrix P−1

0|p =
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j=1A

T
j WjAj

)
on the state error correction estimate ∆X̂0|q of Eq. 12.

This is equivalent to increasing variances of the a priori covariance matrix

P0|p =
(∑p

j=1A
T
j WjAj

)−1

. When this is performed the a priori information

matrix P−1
0|p is said to be deweighted and the batch least squares algorithm is

transformed into a batch filter.



C. Ad-Hoc Batch Filter

We have derived the batch least squares algorithm and the sequential least
squares algorithm above. The batch filter algorithm is derived below, ad hoc,
from the sequential least squares algorithm.

Swerling [104] derived a version of the batch filter from the maximum like-
lihood quadratic form in 1958. This unitless quadratic form J has two terms:
J = ∆yTW∆y + ∆XT

0 P
−1
0 ∆X0. The first term is the least squares quadratic

form and the second term is a quadratic form on the difference ∆X0 between the
previous state estimate and the new state estimate, both at fixed epoch t0, and
weighted by an a priori positive definite state error covariance matrix P0. The
maximum likelihood algorithm, derived by minimization of J , can be viewed as
minimizing the sum of squares of measurement residuals while simultaneously
constraining the new state estimate to the previous state estimate. The batch
filter is an intermediate method that has characteristics of both a least squares
algorithm and a filter. From a user perspective, the maximum likelihood algo-
rithm is distinguished from least squares in that it enables the specification of
an a priori state error covariance matrix to constrain the new state estimate to
the previous state estimate. The user typically specifies a positive diagonal a
priori covariance matrix, with large values to free the new state estimate from
the a priori state estimate, and/or small values to bind the new state estimate to
the a priori state estimate. Swerling did not discover Schur’s matrix identities
(inversion lemma, see Meditch [77]), and was thereby blocked from removing
the debilitating n × n matrix inverse with state size n, associated with least
squares and the batch filter. The inversion lemma is required to convert from
simultaneous measurement batch processing to sequential processing without
the n × n matrix inverse. Sequential processing is a necessary condition for
optimal estimation. It was left to Kalman to discover Sherman’s theorem and
thereby introduce a stochastic performance functional for optimal estimation.

Recall Eq. 35.11, and define:

Φj,i =
∂Xj

∂Xi
(14)

for any times ti and tj . Insert Aj = HjΦj,0 and Wj = R−1
j (recall Eqs. 35.13
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and 35.10) into Eqs. 9, 12 and 13 to get:

P0|p =

 p∑
j=1

(HjΦj,0)
T
R−1
j (HjΦj,0)

−1

(15)

∆X̂0|q = P0|q

 p+q∑
j=p+1

(HjΦj,0)
T
R−1
j ∆yj

 (16)

P0|q =

P−1
0|p +

p+q∑
j=p+1

(HjΦj,0)
T
R−1
j (HjΦj,0)

−1

. (17)

Our least squares epoch was arbitrarily selected to be time t0. We could just
as easily have selected time tq for epoch. In this case the above three equations
become:

Pq|p =

 p∑
j=1

(HjΦj,q)
T
R−1
j (HjΦj,q)

−1

(18)

∆X̂q|q = Pq|q

 p+q∑
j=p+1

(HjΦj,q)
T
R−1
j ∆yj

 (19)

and:

Pq|q =

P−1
q|p +

p+q∑
j=p+1

(HjΦj,q)
T
R−1
j (HjΦj,q)

−1

. (20)

Premultiply Eq 18 by Φp,q, post multiply it by ΦTp,q, and use the transitive
property Φr,p = Φr,qΦq,p with r = p and Φp,p = I to get Φp,q = Φ−1

q,p and:

Pp|p =

 p∑
j=1

(HjΦj,p)
T
R−1
j (HjΦj,p)

−1

(21)

to see that Eq. 18 can be written:

Pq|p = Φq,pPp|pΦ
T
q,p. (22)

Eqs. 19, 20, 22, and 21 define the exact same sequential least squares algorithm
derived in Appendix B, but with different epoch placement. With these changes
in epoch placement, the last paragraph of Appendix B reads: Then Eq. 22 needs
to be modified to decrease the influence of the a priori information matrix P−1

p|p

on the state error correction estimate ∆X̂q|q of Eq. 19. This is equivalent to
increasing variances of the a priori covariance matrix Pp|p, embedded in Eq. 22.



381

Thus the conversion of this sequential least squares algorithm to a batch filter
is achieved by replacing, ad hoc, covariance matrix Pq|p = Φq,pPp|pΦ

T
q,p with:

Pq|p = Φq,pPp|pΦ
T
q,p +Qq,p. (23)

For each measurement batch recursion, the batch filter algorithm execution
consists of a time update and a measurement update. Assume that we have
just finished processing the measurement batch at time tp, and that the next

measurement batch time is tq > tp. Given the state estimate X̂p|p at time tp,

it is numerically integrated to time tq to obtain X̂q|p, the state estimate time
update. Then the state error covariance time update is defined by Eq. 23. Then
the state error covariance measurement update is defined by Eq 20. Then the
state estimate measurement update is defined by Eq. 19 and:

X̂q|q = X̂q|p + ∆X̂q|q. (24)

Given the next measurement batch time at tr > tq, then repeat the above
procedure with p→ q and q → r.

The sums
∑p+q
j=p+1 (HjΦj,q)

T
R−1
j ∆yj and

∑p+q
j=p+1 (HjΦj,q)

T
R−1
j (HjΦj,q)

of Eqs. 19 and 20 are processed simultaneously, they define the measurement
batch in ”batch filter”. Simultaneous batch processing is obviously faster than
individual measurement processing.

It must be noted that any optimal physically connected sequential filter pro-
cesses each measurement separately, folding in measurement information ∆yj
and force modeling error covariance Qj sequentially as they occur. The optimal
real time filter does not process any batch of measurements simultaneously, for
this destroys both optimal estimate accuracy and the autonomous measurement
residual editor.

Finally, given a rigorous derivation of an optimal physically connected se-
quential filter from the fundamental theorem of estimation theory [77], one can
”derive” the batch filter from it with a degrading ad-hoc replacement: Ar-
bitrarily replace any sequence of measurement/deweighting calculations with
a simultaneous batch calculation (thereby ignoring all random force modeling
errors between measurement times) and retain deweighting at times between
batches.
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D. Kalman’s Model
Equation

Calculus provides the definition:

dX

dt
= lim

∆t→0

X (t+ ∆t)−X (t)

∆t
= lim

∆t→0

∆X

∆t
(25)

Thus the deterministic linear differential equation:

dX

dt
= A (t)X +B (t)ω (26)

can be written:

lim
∆t→0

∆X

∆t
= A (t)X +B (t)ω (27)

Undo the calculus (remove the limit) to write:

∆X = A (t)X∆t+B (t)ω∆t (28)

Transform this deterministic equation to a stochastic equation with the white
noise assignment:

ω =
∆β

∆t
(29)

according to Eq. 13.95, where β is Brownian motion. Thus:

∆X = A (t)X∆t+B (t) ∆β (30)

provides a well-defined linear ordinary stochastic differential equation where
variations ∆X in the state are driven by independent increments (white noise)
∆β of Brownian motion. See Bucy [10] page 24 Eq. 2.5 for comparison.

.0.5 Measurements at tj = tk+1, tk+2, . . .

In the section Measurement at tj = tk+1 above, replace tk+1 with tk+2 for the
measurement yj = yk+2 at time tj = tk+2. When tj = tk+h, replace tk+1 with
tk+h for the measurement yj = yk+h at time tj = tk+h.

383
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