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1 GPS One-Way Range Measurements

GPS one-way range (and Doppler) measurements are de�ned by two clocks (oscillators), a GPS
NAVSTAR atomic clock (Cesium or Rubidium) and a USER spacecraft clock (usually a temperature
controlled crystal clock). The time of GPS NAVSTAR radio wave front emission is de�ned by a
NAVSTAR clock, and time of USER reception is de�ned by the USER crystal clock. One-way range
is de�ned by the time di¤erence. The fractional frequency stability of the USER crystal clock is
usually inferior to that of every NAVSTAR clock, so the stochastic phenomenology of the USER
crystal clock is exposed by each NAVSTAR clock.
When simultaneous USER-GPS range measurements are di¤erenced, then the stochastic phenom-

enology of the USER crystal clock is di¤erenced out1 , and can be ignored in the orbit determination
using real range measurements. But otherwise, it must be accounted for in the orbit determination.
The stochastic phenomenology of the USER crystal clock should be accounted for in all simulations
of one-way range.
The manufacturer of a clock usually provides an Allan Variance Diagram, for an associated class

of clocks, to describe the fractional frequency stability of that clock. One-way range measurement
errors can be characterized and simulated, in part, using the fractional frequency stability of the
inferior clock. Values for Allan clock parameters a0 and a�2 are required for stochastic clock models
to be used for simulation and orbit determination. The purpose of this note is to describe a method
for derivation of crystal clock values of a0 and a�2 from an Allan Variance Diagram. Then the
simulation of the stochastic phenomenology of a crystal clock can be constructed from values of a0
and a�2.

2 Values of a0 and a�2 from a Simulated Allan Variance Di-
agram

The Allan Variance Diagram presents the logarithm (base 10) of clock sample time � (sec) on the
abscissa (x axis), and the logarithm (base 10) of the square-root �y (�) of the Allan Variance �2y (�)
on the ordinate (y axis). That is, log10 �y (�) is graphed as a function of log10 � .
Fig. 1 (Chuba[2]) presents an ideal simulated Allan Variance Diagram. Abscissa values for Fig. 1

are f0; 1; 2; 3; 4; 5g. I have replaced this set with
�
100; 101; 102; 103; 104; 105

	
, to enable identi�cation

of � (sec) directly from the diagram. Ordinate values for Fig. 1 are f�10;�11;�12;�13;�14g. I
have replaced this set with

�
10�10; 10�11; 10�12; 10�13; 10�14

	
, to enable identi�cation of �y (�)

directly from the diagram.
From Allan[1]:

�2y (�) =

8<: a0�
�1 frequency white noise

a�1�
0 frequency �icker noise

a�2�
1 frequency random walk

(1)

1And relativistic e¤ects are di¤erenced out.
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Figure 1: Simulated Allan Variance Diagram

Thus a0 and a�2 are associated with clock frequency white noise and clock frequency random walk.
For crystal clocks I shall ignore frequency �icker noise2 .
The Allan root-variance graph approximation from Fig. 1 is de�ned by the sum of the two

straight lines. Frequency white noise (for a0) is associated with the straight line with negative slope
(�1=2). Frequency random walk (for a�2) is associated with the straight line with positive slope
(1=2). The wiggly overlaid functions are reconstructions from simulated data �they become poorer
approximations as � increases because the sample ensemble is exhausted (becomes smaller) as �
increases.

2.1 Calculate Values of a0 and a�2
Each of the following examples derives from one point read from Fig. 1.

2.1.1 Examples for a0

a0 = [� ]
�
�2y (�)

�
=
�
1:0� 104 sec

� h�
1:00� 10�13

�2i
= 1:0� 10�22 sec

a0 = [� ]
�
�2y (�)

�
=
�
1:0� 100 sec

� h�
1:00� 10�11

�2i
= 1:0� 10�22 sec

a0 = [� ]
�
�2y (�)

�
=
�
1:0� 101 sec

� h�
3:17� 10�12

�2i
= 1:0� 10�22 sec

2Flicker noise is signi�cant in atomic clocks.
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2.1.2 Examples for a�2

a�2 =
�
��1

� �
�2y (�)

�
=
h�
3:0� 104 sec

��1i h�
1:00� 10�11

�2i
= 3:33� 10�27 sec�1

a�2 =
�
��1

� �
�2y (�)

�
=
h�
1:0� 100 sec

��1i h�
5:77� 10�14

�2i
= 3:33� 10�27 sec�1

3 Appendix A. Graphics with Linear Scales

Figure 2: Random Walk and White Noise

4 Appendix B. Derivation of Allan Root-Variance Diagram
Slopes

De�ne graphics variables:

� = log10 � , � = 10�

f (�) = log10 �y (�) , �y (�) = 10
f(�)

Di¤erentiate f (�):

df (�)

d�
=

1

(loge 10) (�y (�))

d�y (�)

d�
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Figure 3: Random Walk

4.1 White Frequency Noise

�y (�) =
p
a010

��=2

log10 �y (�) = log10
p
a010

��=2

That is:

f (�) = log10
p
a010

��=2

Then:

df (�)

d�
=

1

(loge 10)
�p
a010��=2

� d �pa010��=2�
d�

where:

d
�p
a010

��=2�
d�

= (�1=2) (loge 10)
�p
a010

��=2
�

Then:

df (�)

d�
= �1=2
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Figure 4: Crystal Clock Phase Error

4.2 Random Walk

�y (�) =
p
a�210

�=2

log10 �y (�) = log10
p
a�210

�=2

That is:

f (�) = log10
p
a�210

�=2

Then:

df (�)

d�
=

1

(loge 10)
�p
a�210�=2

� d �pa�210�=2�
d�

where:

d
�p
a�210

�=2
�

d�
= (1=2) (loge 10)

�p
a�210

�=2
�

Then:

df (�)

d�
= 1=2
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