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This thesis is about the tuning and simplification of black-box (direct-search,
derivative-free) optimization methods, which by definition do not use gradient
information to guide their search for an optimum but merely need a fitness
(cost, error, objective) measure for each candidate solution to the optimization
problem. Such optimization methods often have parameters that influence their
behaviour and efficacy. A Meta-Optimization technique is presented here for
tuning the behavioural parameters of an optimization method by employing an
additional layer of optimization. This is used in a number of experiments on
two popular optimization methods, Differential Evolution and Particle Swarm
Optimization, and unveils the true performance capabilities of an optimizer in
different usage scenarios. It is found that state-of-the-art optimizer variants
with their supposedly adaptive behavioural parameters do not have a general
and consistent performance advantage but are outperformed in several cases by
simplified optimizers, if only the behavioural parameters are tuned properly.
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Chapter 1

Introduction

1.1 What is Optimization?

Candidate solutions to some problems are not simply deemed correct or incorrect
but are instead rated in terms of quality and finding the candidate solution with
the highest quality is known as optimization.

Optimization problems arise in many real-world scenarios. Take for example
the spreading of manure on a cornfield, where depending on the species of grain,
the soil quality, expected amount of rain, sunshine and so on, we wish to find
the amount and composition of fertilizer that maximizes the crop, while still
being within the bounds imposed by environmental law.

1.1.1 Formal Definition

To formalize the concept of optimization consider X to be the set of candidate
solutions to the optimization problem. Typically X is n-dimensional over some
domain, for example binary: X = {0, 1}n, or real-valued: X ⊆ Rn. The domain
X is often referred to as the search-space. Let the optimization problem be
defined by the function f , which is called the fitness function (or cost function,
error function, objective function) and rates how well the candidate solutions
in X fare on the given problem:

f : X → R (1.1)

Without lack of generalization this thesis considers minimization problems, that
is, to minimize the fitness function f and hence obtain the candidate solution
that fares best, find x ∈ X so that:

∀y ∈ X : f(x) ≤ f(y)

Such a point x is known as a global minimum for the function f . It is usually
not possible to pinpoint the global minimum exactly in optimization and candi-
date solutions with sufficiently good fitness are deemed acceptable for practical
reasons.

1



Maximization problems can be optimized merely by introducing an auxiliary
function. Suppose f is a fitness function to be maximized, then the analogous
minimization problem can be considered instead, simply by introducing the
function: h(x) = −f(x)

1.2 Challenges

Several challenges arise in optimization. First is the nature of the problem to
be optimized which may have several local optima the optimizer can get stuck
in, the problem may be discontinuous, candidate solutions may yield different
fitness values when evaluated at different times, and there may be constraints
as to what candidate solutions are feasible as actual solutions to the real-world
problem.

1.2.1 Curse of Dimensionality

Furthermore, the large number of candidate solutions to an optimization prob-
lem makes it intractable to consider all candidate solutions in turn, which is the
only way to be completely sure that the global optimum has been found. This
difficulty grows much worse with increasing dimensionality, which is frequently
called the curse of dimensionality, a name that is attributed to Bellman, see
for example [1, preface p. ix]. This phenomenon can be understood by first
considering an n-dimensional binary search-space. Here, adding another dimen-
sion to the problem means a doubling of the number of candidate solutions. So
the number of candidate solutions grows exponentially with increasing dimen-
sionality. The same principle holds for continuous or real-valued search-spaces,
only it is now the volume of the search-space that grows exponentially with
increasing dimensionality. In either case it is therefore of great interest to find
optimization methods which not only perform well in few dimensions, but do
not require an exponential number of fitness evaluations as the dimensionality
grows. Preferably such optimization methods have a linear relationship be-
tween the dimensionality of the problem and the number of candidate solutions
they must evaluate in order to achieve satisfactory results, that is, optimization
methods should ideally have linear time-complexity O(n) in the dimensionality
n of the problem to be optimized.

1.2.2 No Free Lunch

Another challenge in optimization arises from how much or how little is known
about the problem at hand. For example, if the optimization problem is given by
a simple formula then it may be possible to derive the inverse of that formula
and thus find its optimum. Other families of problems have had specialized
methods developed to optimize them efficiently. But when nothing is known
about the optimization problem at hand, then the No Free Lunch (NFL) set of
theorems by Wolpert and Macready [2] state that any one optimization method
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will be as likely as any other to find a satisfactory solution. Or as expressed in
the following quote from the original paper [2, Page 69]:

... if an algorithm performs well on a certain class of problems, then
it necessarily pays for that with degraded performance on the set of
all remaining problems.

This is especially important in deciding what performance goals one should have
when designing new optimization methods, and whether one should attempt to
devise the ultimate optimization method which will adapt to all problems and
perform well. According to the NFL theorems such an optimization method does
not exist and the focus of this thesis will therefore be on the opposite: Simple
optimization methods that perform well for a range of problems of interest.

1.3 Classic Optimization

In numerical optimization an initial guess is made at what the optimum might
be and this candidate solution is then continually refined until some criterion is
met, such as a fitness value that is deemed good enough has been reached, or a
certain number of iterations have been performed.

1.3.1 Newton-Raphson

Perhaps the most classic form of numerical optimization is by way of the Newton-
Raphson iteration (see e.g. [3, p. 81]) which produces a sequence of values x ∈ R
in an attempt to find a root of some single-dimensional function h : R→ R:

x← x− h(x)
h′(x)

(1.2)

with the initial x being some reasonable guess. For some functions h the initial
value x may be chosen sufficiently close to the root, thus guaranteeing the root
is found. Then consider a fitness function f : R → R with a single variable
that must be optimized. This can then be done with the Newton-Raphson
root-finding method by setting h(x) = f ′(x) and finding the roots of f ′:

x← x− f ′(x)
f ′′(x)

(1.3)

A root of f ′ is also called a critical point of f and is either a local optima
of f or a saddle point. Whichever critical point of f that is found (assuming
it has more than one) depends on the starting position of x. This method
requires that f ′ and f ′′ exist, and moreover that f ′′(x) 6= 0 for all x. The
derivative h′ in Eq.(1.2) (or f ′′ in Eq.(1.3)) can also be estimated from close
points by using finite difference approximation and the Newton-Raphson root-
finding method is then called the Secant method. Though using the Secant
method for optimization still requires the first order derivative.
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1.3.2 Quasi-Newton Methods

Generalizing the Newton-Raphson method to multi-dimensional search-spaces,
that is, to fitness functions of the form f : Rn → R and assumed to be twice
differentiable, would change Eq.(1.3) to:

~x← ~x− [Hf(~x)]−1 ∇f(~x)

where ∇f is called the gradient and is the vector of f ’s first order partial deriva-
tives, with the derivative in regards to the variable for the i’th dimension xi
being denoted ∂f/∂xi. Differentiating with regards to the variable for each
dimension the n-dimensional gradient is found thus:

∇f =
[
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

]T
(1.4)

The matrix [Hf(~x)]−1 is the inverse of the Hessian matrix for the fitness function
f , consisting of its second order partial differentials, that is, the ij’th entry of
the Hessian matrix equals: (Hf)ij = ∂2f/∂xi∂xj .

The gradient∇f can be difficult to derive and the Hessian Hf is usually even
more difficult to derive. It is therefore customary to use Quasi-Newton opti-
mization methods which seek to approximate the Hessian in a recurrent manner
during the optimization iterations. One of the earliest quasi-Newton methods is
called the Davidon, Fletcher, and Powell (DFP) formula and is belatedly docu-
mented in [4]. Another similar but perhaps more popular quasi-Newton method
was developed independently by the researchers Broyden [5], Fletcher [6], Gold-
farb [7], and Shanno [8], and called the BFGS method. These quasi-Newton
methods, however, not only require the existence of the gradient in order to
optimize a problem but they are also complex to describe and implement.

1.3.3 Gradient Descent Methods

Instead of approximating the Hessian as done in quasi-Newton methods the
gradient ∇f(~x) can be followed in small steps to approach the optimum since
the gradient points in the direction of steepest ascent for the fitness function
f at the position ~x. For minimization problems the reverse direction must be
followed, that is, the direction of steepest descent, and the optimization method
is hence known as Gradient Descent of which there are numerous variants and
a detailed exposition can be found in [9].

1.4 Black-Box Optimization

When the gradient of an optimization problem is unknown, perhaps because it
cannot be defined due to a partially discontinuous fitness function, or because
the fitness measure changes over time, or perhaps even because the fitness is
undefined for certain regions of the search-space, then another kind of optimiza-
tion method must be used, a kind of method which treats the fitness function
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to be optimized as a black box that merely produces some measure of fitness
given a candidate solution. All that such optimization methods can be guided
by is the fitness value at different positions in the search-space at the time of
evaluation.

The terminology and taxonomy within this field changes with different re-
searchers and should not be considered too rigid. The following are a few exam-
ples of typical but more or less synonymous terms. The terms Derivative-Free,
Direct Search, Black-Box, or Heuristical optimization methods all refer to meth-
ods which do not rely on the gradient of the problem to be optimized in order
to guide their search. Another term frequently used is Meta-Heuristic which is
not used in this thesis however as it collides with the term Meta-Optimization
that has a very different meaning here. Stochastic methods are also sometimes
called Monte Carlo methods, named after the European city and casino because
of the element of random chance in achieving success with such methods.

When an optimization method employs multiple candidate solutions that are
somehow combined to generate new candidate solutions, here often called agents
or individuals, the method may be called multi-agent, population- or swarm-
based, or evolutionary, where the latter typically requires that some kind of
selection or survival of most fit individuals take place. Again, this terminology
should not be considered too rigid.

1.4.1 Altimetric Analogy

Heuristic function minimization can be likened to the discovery of the deepest
point in the deepest valley in a 3-dimensional landscape. Imagine the optimizing
agents being placed in one of Mother Nature’s landscapes with each agent only
being able to do three things: 1) Measure the altitude of its current location, 2)
communicate with the other agents, and 3) move to some other location. That
is, an agent has no vision and therefore does not know the altitude of its nearby
surroundings but only of its current location and possibly also of a finite number
of previous locations that it has visited.

Since there are infinitely many different points where an optimizing agent
can go to, each agent will have to choose its path carefully as it can only visit
a finite number of points in a finite amount of time. The question is then,
what should the agents communicate to each other, and how should they move
around in the landscape?

1.4.2 Genetic Algorithm

An early multi-agent, black-box optimization method is known as the Genetic
Algorithm (GA) and was inspired by evolution of biological individuals which
makes the individuals adapt to their environment through generations; a theory
that was originally proposed by Darwin [10]. The GA for doing numerical
optimization is attributed to several sources, a popular one being Holland [11].
Another, perhaps more practical text on GA is due to Goldberg [12].
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The GA works by selecting individuals from its population, that is, selecting
candidate solutions to the optimization problem from its current pool according
to their relative fitness. Some of these individuals simply survive while others
reproduce to form new individuals. Furthermore, random alterations to the
individuals account for the mutation occurring in Mother Nature. That some
individuals do not make it to the next generation can be likened to the ever-
lasting fight for natural resources and nature’s way of ridding itself from weak
or ill-suited individuals, and eventually entire species.

The GA was originally developed for binary search-spaces (see for example
Goldberg [12]), but optimization over real-valued search-spaces is also possible.
This has been studied primarily for the Evolution Strategies (ES) family of
optimization methods, which uses evolutionary concepts similar to those of the
GA. The original work on ES is in German but an English-languaged survey by
Bäck et al. can be found in [13]. Some experiments with real-valued operators
for the GA have also been made in the literature and a survey by Herrera et al.
can be found in [14].

The abstract GA operators of selection, crossover and mutation can also
be used to optimize in more complex search-spaces for which gradients can
obviously not be derived, such as the set of all possible computer programs.
A popular optimization method for such complex and generic search-spaces is
known as Genetic Programming (GP) and is due to Koza [15].

1.4.3 Differential Evolution & Particle Swarm Optimiza-
tion

This thesis will study variants of two popular optimization methods, the first one
is known as Differential Evolution (DE) and is originally due to Storn and Price
[16] [17]. DE is conceptually similar to GA in its use of evolutionary operators
to guide the search for an optimum, only DE was specifically developed for
real-valued search-spaces from its inception. The other method to be studied
in this thesis is called Particle Swarm Optimization (PSO) and is originally due
to Kennedy, Eberhart and Shi [18] [19], and was originally intended as a model
for social behaviour in a flock of birds, but the algorithm was simplified and it
was realized that it was actually performing optimization. The DE and PSO
methods will be detailed in chapter 2 and studied more rigorously in chapters 4
and 5.

1.4.4 Convergence

It would be preferable to have mathematical proof that a black-box optimizer
converges to the global optimum for e.g. certain classes of continuous functions.
In the literature such proofs are sometimes made in the form of limit-proofs,
in which the optimizer is proven to eventually find an arbitrarily small region
surrounding the optimum, provided the optimizer is given enough iterations, see
for example [20] [21]. But the exact same thing can be proven for completely
random sampling of the search-space, because the probability p of sampling any
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non-empty region surrounding the optimum will be non-zero, that is, p > 0,
and hence the expected number of iterations to reach this region surrounding
the optimum will be 1/p, so the probability for eventually sampling this region
will be 1. Convergence proofs that rely on infinity-limits are therefore of no
practical use. As mentioned previously, the only way to be certain that the
global optimum has indeed been found is to test every single position in the
search-space. For real-valued search-spaces there are infinitely many candidate
solutions in the search-space, but even if a discrete grid is being traversed the
Curse of Dimensionality quickly makes it intractable to perform an exhaustive
search of even modestly sized and dimensioned optimization problems. In de-
veloping heuristical optimizers they should therefore be tested empirically, so
as to instill an adequate degree of confidence in their capabilities in optimizing
new problems.

1.5 Tuning Heuristical Optimization

Optimization methods often have parameters that influence their behaviour and
efficacy in optimizing different problems. These behavioural parameters can be
modified by a practitioner who seeks to improve performance on particular
problems of interest to him. Take for instance GA which has parameters for the
crossover and mutation rates as well as the population size.

Behavioural parameters have traditionally been chosen according to guide-
lines compiled by researchers and practitioners through years of experience, for
advice on setting the behavioural parameters of PSO see e.g. Shi and Eberhart
[22] [23] or the more comprehensive survey by Carlisle and Dozier [24], and for
advice on setting the behavioural parameters of DE see e.g. Storn et al. [17]
[25], and Liu and Lampinen [26]. However, these guidelines are based on human
experience and coarse experiments with combinations of parameter settings,
which are often biased by what the researchers believe makes the heuristical
optimizers work well, often ignoring certain parameter combinations which are
believed a priori to yield poor performance. Several examples of this will be
given in later chapters of this thesis where behavioural parameters that perform
very well are being discovered, but they are in violation of common advice given
in the literature.

Behavioural parameters may also be selected according to mathematical
analysis, see e.g. van den Bergh [27], Trelea [28], and Clerc and Kennedy [29]
for analyses of PSO parameters, or Zaharie [30] for analysis of DE parameters.
But these analyses make many assumptions that limit their validity and their
advice for the selection of behavioural parameters will also be disputed in later
chapters.

1.5.1 Meta-Optimization

Finding a good choice of behavioural parameters can instead be considered a
form of overlaying optimization problem that can be solved in an offline manner,
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by having an overlaying optimizer find behavioural parameters for the base-level
optimizer so as to make it perform well. The behavioural parameters discovered
thus can be used by other practitioners without alterations to the optimization
algorithm. Finding behavioural parameters by use of an overlaying optimizer
is known here as Meta-Optimization, but is also known in the literature as
Meta-Evolution, Super-Optimization, Automated Parameter Calibration, etc.
An early attempt at automatically tuning the behavioural parameters of a GA
by employing another overlaying optimizer is due to Grefenstette [31]. Experi-
ments with tuning the behavioural parameters of PSO have been conducted by
Meissner et al. [32]. A recent comparison of some of the available approaches
to meta-optimization is made by Smit and Eiben [33].

However, a challenge that arises in meta-optimization is the immense amount
of computational resources needed for making repeated optimizations with new
behavioural parameters. This means that past experiments have been of a
limited nature concerning the number of optimization problems for which they
can simultaneously tune the behavioural parameters, and limited concerning the
number of iterations allowed for the meta-optimizer. This has had implications
for the quality of results obtained and for the direct usability of the techniques.
Both these issues will be addressed in chapter 3.

1.5.2 Adaptation of Behavioural Parameters

Another research trend has been to devise optimizer variants that can adapt
their behavioural parameters during optimization in an online manner. Despite
the NFL theorems stating that there does not exist any ultimate optimizer
which can adapt to whatever problem it is posed with, these optimizer variants
appear to be most popular in the research literature.

Adaptation of behavioural parameters has been an integral part of the ES
family of optimization methods [13] where some variants employ a technique
dubbed Self-Adaptation, consisting of adding some or all of the optimizers be-
havioural parameters to the search-space, thus making them subject to opti-
mization along with the problem at hand. This technique is also used for a GA
in [34] and [35].

Another way of trying to adapt the behavioural parameters in an online
manner during optimization can be found in the Fuzzy Adaptive DE (FADE)
by Liu and Lampinen [36], which uses Fuzzy Logic to adapt the DE behavioural
parameters during an optimization run. Fuzzy logic, originally due to Zadeh
[37], provides a means for logical reasoning with uncertainties and is used in
FADE to alter the behavioural parameters according to optimization progress.
Another example of an adaptive DE variant is the Self-adaptive DE (SaDE) due
to Qin and Suganthan [38]. Yet another DE variant with adaptive behavioural
parameters is known as JDE and is due to Brest et al. [39].

Attempts with what might be called Meta-Adaptation also appear in the
literature, in which an overlaying optimizer is trying to tune the parameters of
another optimizer in an online manner during the optimization of a problem.
Different versions of this have been developed, see for example [40, Section 10] for
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adaptation of PSO parameters during optimization by employing an overlaying
DE optimizer.

At a first glance, these schemes may appear to get rid of behavioural param-
eters altogether, but they usually just introduce new parameters the user must
decide upon, such as the endpoints of the adaptive parameter ranges. There
seems to be a belief amongst some researchers that even though there are now
more behavioural parameters to select, they are easier to select by a user be-
cause they have more lenient influence on optimization performance. This will
be disputed in later chapters.

Another belief amongst researchers seems to be that different choices of
parameters are needed at different stages of optimization, so as to adjust between
exploration and exploitation of the search-space. Otherwise the parameters
could just as well be held fixed during optimization. This belief will also be
disputed in later chapters, but it should be noted here that it seems to be
a paradox. Biasing behavioural parameters during optimization towards the
parameters that have been observed to work well seems to be contradictory to
the need of having different parameters at different stages of optimization. If
anything, the behavioural parameters should be changed so as to be dissimilar
to the parameters that have previously worked well during that optimization
run.

Furthermore, there is an array of other questions one must decide upon to
make an implementation of adaptive behavioural parameters, such as: How are
the parameters to be initialized? How many optimization iterations should be
performed between modifying the parameters? How is the quality of a change
in parameters to be rated? Etc. These questions are echoed in [35] whose ex-
perimental results indicate self-adaptation is of little use in a GA. Problematic
issues regarding self-adaptation and indeed adaptation of behavioural param-
eters in general are also noted for the ES family of optimization methods in
[41].

1.6 Simplifying Heuristical Optimization

Another problematic aspect with these so-called adaptive optimizer variants is
that they all increase the algorithmic complexity in an effort to increase adapt-
ability to new optimization problems. This is perhaps a dangerous path to follow
because heuristical optimization methods cannot be proven correct analytically.
A good example of this dilemma is the Stochastic Genetic Algorithm (StGA) by
Tu and Lu [42] which extends and tries to improve upon the basic GA. While
StGA did show performance improvement over other optimizers on a suite of
benchmark problems, it eventually turned out the StGA implementation had
an error that made it strongly biased towards finding the global optima of the
benchmark problems considered [43]. Again, such issues arise from the fact that
a heuristical optimizer cannot be proven correct by analytical means, and the
more complex an optimization method becomes, the harder it gets to describe
the method clearly and hence make a correct implementation.
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Increasing the algorithmic complexity of a heuristical optimizer is also con-
trary to the original idea of Self-Organization as it occurs in nature, in which
simple individuals cooperate and complex collective behaviour emerges. See
for example Hawking’s introductions to modern physics [44] [45] and the works
of Ball [46], Holland [47, 48], Johnson [49], and Hofstadter [50], just to name a
few, on self-organization and emergence in such diverse areas as real ant colonies,
brains and human cities.

In this thesis it will be attempted to simplify the DE and PSO optimizers
without impairing their performance. This is more in vein of the original idea
of self-organization, and also in vein of Occam’s Razor; lex parsimoniae, or the
Law of Parsimony which popularly states that simplicity is usually better.

Simplifying optimizers is not common in the research literature and only a
small number of papers seem to have been published on this topic. For instance,
Kennedy [51] studied simplifications to the PSO method but unfortunately did
not have the tools necessary to make a rigorous comparison with the basic PSO,
something which will be done in this thesis because meta-optimization allows for
the discovery and comparison of core performance capabilities between optimizer
variants. More recent experiments with simplifying PSO are due to Bratton and
Blackwell [52] whose research was done concurrently with the work here and has
therefore not influenced this thesis. They make use of performance landscapes
to study parameter choices for their PSO simplifications and do not employ
meta-optimization to discover good performing parameters, which is done in
this thesis and allows for more extensive studies as much less computation time
is needed.

1.7 Main Contributions

The first contribution of the thesis is found in chapter 3 and is a technique for
doing Meta-Optimization so as to find behavioural parameters for an optimizer
that makes it perform well. The technique is simple to describe and implement,
and is comparatively efficient without sacrificing quality of results.

The other main contribution is found in chapter 4 and comes from using
meta-optimization to make a range of experiments with state-of-the-art DE
variants that either perturb or adapt their behavioural parameters during opti-
mization, which was previously believed to give a performance advantage over
the basic DE. The results show that there does not appear to be a general or
consistent advantage to such parameter adaptation. In fact, a simplified DE is
introduced which sometimes performs better. Chapter 5 has similar experiments
with a simplified PSO variant which turns out to be an overall improvement to
the basic PSO from which it was derived.
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1.8 Thesis Overview

The thesis is structured as follows:

� Chapter 2 details the DE and PSO methods along with other optimization
methods that will be used in the thesis.

� Chapter 3 details the technique for doing Meta-Optimization, that is, the
tuning of an optimizer’s behavioural parameters by employing another
overlaying meta-optimizer in an offline manner.

� Chapter 4 uses meta-optimization to fairly compare DE variants.

� Chapter 5 uses meta-optimization to fairly compare PSO variants.

� Chapter 6 gives an overall conclusion for the thesis along with a number
of ideas for future research.

1.9 Publications & Derived Work

Journal publication:

� Simplifying particle swarm optimization, Applied Soft Computing, 10:618-
628, 2010.

Technical reports:

� Tuning differential evolution for artificial neural networks, Hvass Labs.,
HL0803, 2008.

� Parameter tuning versus adaptation: proof of principle study on differen-
tial evolution., Hvass Labs., HL0802, 2008.

� Local unimodal sampling, Hvass Labs., HL0801, 2008.

Other derived work that can be mentioned:

� The SwarmOps source-code libraries for the C# and ANSI C programming
languages which implement the meta-optimization technique as well as
the optimizers used in the thesis. The libraries are available for download
through the Internet: http://www.hvass-labs.org/

� The LUS optimization method from chapter 2 was used by Pellarin [53]
in his master’s thesis for doing user-rated optimization, in which the fit-
ness function is replaced by a human user who determines which of two
candidate solutions is best.
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Chapter 2

Optimization Methods

2.1 Introduction

This chapter describes the optimization methods that will be studied in this
thesis, as well as the benchmark problems used for empirically evaluating and
comparing the performance of the optimizers.

2.2 Pattern Search

In this section a simple optimization method is presented that samples the
search-space locally from the current position, and decreases its sampling-range
upon failure to improve the fitness. Appendix A gives the motivation for decreas-
ing the sampling-range during optimization, namely that a fixed sampling-range
cannot converge to a local optimum. The optimization method presented here
was unknowingly reinvented during this research, but turned out to belong to
a family of optimizers known under the name Pattern Search (PS). The variant
presented here is slightly simpler, though.

2.2.1 Related Work

An early variant of PS is from the 1950’s and is attributed to the researchers
Fermi and Metropolis at the Los Alamos nuclear laboratory. It is described by
Davidon [4] as follows:

... They varied one theoretical parameter at a time by steps of
the same magnitude, and when no such increase or decrease in any
one parameter further improved the fit to the experimental data,
they halved the step size and repeated the process until the steps
were deemed sufficiently small. ...

A similar idea is described by Hooke and Jeeves [54] who also coined the
name Pattern Search.
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The underlying idea of PS is somewhat related to that of Golden Section
Search (GSS) due to Kiefer [55], which works for one-dimensional search-spaces
by maintaining three separate points, and at each iteration replacing one of
these with an intermediate point that is chosen so as to close in on the optimum
of a unimodal problem. This concept was generalized for multi-dimensional
search-spaces in the Simplex optimization method due to Nelder and Mead [56],
which for n-dimensional search-spaces requires for n+ 1 positions in the search-
space to be maintained. This conceptual idea of closing in around a unimodal
optimum is also the basis for the PS variant presented here, but without the
need for maintaining several positions in the search-space.

Convergence to global optima of certain well-behaved functions is claimed by
Torczon et al. [57] [58] for a family of PS methods. However, the experimental
results towards the end of this chapter suggest that these convergence proofs
are primarily of theoretical interest, as the simple PS variant given here is not
always able to locate the optimum of the benchmark problems.

2.2.2 Sampling

The PS variant given here only samples and changes the value of one dimension
at a time, and is therefore able to ascertain whether that change was directly
responsible for improvement to the fitness or not, hence allowing it to adapt
the sampling range and direction appropriately for just that dimension. The
dimension to be sampled is chosen at random in each iteration, which makes for
a particularly simple implementation.

The other feature particular to the PS variant presented here, is to start
out sampling the full search-space and maintain the sampling direction for each
dimension until it no longer yields improvement to the fitness, upon which the
sampling direction for that dimension is reverted and the range halved.

By combining these two principles the PS method implicitly tries to follow
the gradient of the fitness function in each of its dimensions. The PS method
can therefore be considered a black-box version of Gradient Descent.

When dealing with unimodal problems that have only one local optimum,
then because the sampling range of PS is initially the full search-space, each
iteration of PS will either cause a large improvement to the fitness or it will
decrease the sampling range significantly. Either case means big progress. In its
exponential halving of the search-space the PS method can be said to resemble
a classic bisection algorithm (see for example [59, section 6.2]).

2.2.3 Algorithm

The algorithm for PS is shown in figure 2.1. Note that it is important the
update-rule is strictly greedy, in the sense that a less-than comparison is used
and not a less-than-or-equal comparison. If the latter was used, then PS could
get stuck in the boundaries of the search-space, because PS could continue to
sample and accept the same boundary position as an improvement, thus never
allowing the sampling-range to decrease and the search direction to reverse.
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2.3 Local Unimodal Sampling

In this section a heuristical optimization method called Local Unimodal Sam-
pling (LUS)1 is presented, which can be thought of as an extension of the PS
method in that it samples all dimensions simultaneously, while decreasing its
sampling-range in much the same manner as PS. Again, appendix A gives the
motivation for decreasing the sampling-range during optimization, namely that
a fixed sampling-range has no possibility of converging to a local optimum. LUS
is so named, because it was designed to optimize unimodal problems, which it
is found to do very well indeed, in the experiments on the Sphere benchmark
problem towards the end of this chapter.

As with the PS optimizer above the LUS method was reinvented here and
similar methods from the literature are surveyed towards the end of the section,
when their inner workings can be compared to LUS.

2.3.1 Sampling

For the sampling done by the LUS method, denote by ~y the new potential
position chosen from the neighbourhood of the current position ~x:

~y = ~x+ ~a

where the vector ~a is picked randomly and uniformly:

~a ∼ U
(
−~d, ~d

)
where ~d is the current sampling-range, initially chosen as the full range of the
search-space and decreased during optimization as described next.

2.3.2 Sampling-Range Decrease

When a sample fails to improve the fitness, the sampling-range is decreased for
all dimensions simultaneously. The question is how much this decrease should
be? For the PS method presented above, every dimension of an n-dimensional
search-space would be halved after n failures to improve the fitness. So it seems
reasonable to make LUS have a similar combined effect of halving the sampling-
range for every dimension, after n failures to improve its fitness. The sampling-
range ~d should therefore be multiplied with q for each failure to improve the
fitness:

~d← q · ~d

with q being defined as:
q = n

√
1/2

where n is the dimensionality of the problem to be optimized. However, exper-
iments that will be omitted here suggest that it is necessary to make a small

1Danish for louse.
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adjustment to this halving, so the sampling-range decrease-factor is instead
given by:

q = n/α
√

1/2 ⇔ q = 2−α/n (2.1)

Where 0 < α < 1 causes slower decrease of the sampling-range, and α > 1 causes
more rapid decrease. Note that applying this n times yields a sampling-range
reduction of qn = 1/2α as desired, and for α = 1 this would mean a halving
of the sampling-range for all dimensions. In the experiments here, a value of
α = 1/3 is used because it has been found to yield good performance on a wide
range of problems. The LUS algorithm is shown in figure 2.2.

2.3.3 Related Work

The following is a survey of optimization methods related to LUS. The important
thing to note is that various attempts have been made in the literature at
performing local sampling with adaptation of the sampling range. But LUS
offers an effective yet simple way of doing this, which is one of the reasons why
LUS remains an optimization method of choice for later parts of this thesis.

Surface Sampling

An early form of local sampling of a real-valued optimization problem was sug-
gested in the 1960’s by Rastrigin [60]. Rastrigin’s basic method may be called
Fixed Step Size Random Search (FSSRS). The method samples the new poten-
tial position from the surface of a hypersphere surrounding the current position,
with the diameter of this hypersphere remaining fixed throughout the optimiza-
tion run. Although Rastrigin claims the FSSRS converges faster than gradient
descent towards the optimum of the Sphere function, it should be noted that
the FSSRS will not be able to actually converge to the optimum, due to its use
of a fixed step size, see appendix A.

The Optimum Step Size Random Search (OSSRS) [61] [62] is primarily a
theoretical study of how to optimally adjust the step size of the FSSRS, so as to
allow for speedy convergence to the optimum. But an actual implementation of
the OSSRS needs to approximate this optimal step size by repeated sampling
and is therefore expensive to execute.

Instead, the Adaptive Step Size Random Search (ASSRS) by Schumer and
Steiglitz [62] is a more practical version of the OSSRS, which attempts to heuris-
tically adapt the step size. The algorithm however, is somewhat complicated.

Lawrence and Steiglitz suggest combining the concept of Rastrigin’s hyper-
spherical sampling with a halving of the step size as done in Pattern Search
[63]. But since the new method samples all dimensions simultaneously, they
slow down the decrease in step size by introducing an inner loop to the al-
gorithm. The inner loop performs n individual samples for an n-dimensional
problem, resulting in a halving of the step size only after each of these samples
fail to improve the fitness. This bears a perhaps slightly coarse resemblance to
the underlying idea of LUS.
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It was later realized by Schrack and Choit [64] that the optimal step size
could actually be approximated by a simple exponential decrease. This led to
the Optimized Relative Step Size Random Search (ORSSRS) method. Again, the
exponential decrease of the step size resembles how LUS decreases its sampling-
range. Although, the formula of the ORSSRS for computing its step size de-
crease factor is somewhat complicated – in stark contrast to the simple Eq.(2.1)
for LUS. The LUS method is therefore preferred over the ORSSRS.

Neighbourhood Sampling

The Rastrigin family of optimization methods that were just surveyed, all sam-
ple the surface of a hypersphere surrounding the current position. Another
early kind of local sampling is due to Matyas [20] and uses Gaussian distributed
sampling of the neighbourhood of the current position. Matyas’ method is some-
what similar to the local sampling used in this chapter, with the main difference
being that uniform sampling of the neighbourhood is used here.

Matyas claims his basic form of local sampling converges to the optimum
of the Sphere function; although it may take a very large number of samples.
In fact, Matyas uses a limit-proof which shows convergence to the optimum
is certain to occur if an infinite number of samples are made. But this kind
of proof also works for purely random sampling of the search-space, as it too
will eventually find a position sufficiently close to the optimum (see the brief
discussion in the introductory chapter 1.) Matyas’ claim is therefore purely
theoretical and not practical.

Matyas extends the basic form of local sampling to include adaptation of the
sampling range and direction, so the sampling is continued along a successful
path until it no longer yields improvement to the fitness, at which time another
direction may be sampled. However, the exact algorithm is somewhat intricate,
and Matyas also neglects to supply formulae for determining suitable parameters
of this adaptation.

Mathematical analyses are also conducted by Baba [65] and Solis and Wets
[66] to establish that convergence to a region surrounding the actual optimum is
inevitable for different variants of Matyas’ local sampling method, under some
mild conditions. An estimate on the number of iterations required to approach
the optimum is also derived by Dorea [67]. These analyses, however, are criti-
cized through empirical experiments by Sarma [68], who used the optimization
methods of Baba and Dorea on two real-world problems, showing the optimum
to be approached very slowly, and moreover that the methods were actually
unable to locate a solution of adequate fitness, unless the process was started
sufficiently close to the optimum to begin with.

While it has not been proven whether the LUS method is truly capable of
converging to a local optimum, it has proven effective in practice as will be seen
from the experiments in chapters 3, 4, and 5. As the LUS method is also very
simple, it is preferred over these other variants.
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The Luus-Jaakola Method

The Luus-Jaakola (LJ) method from [69] is conceptually very similar to the LUS
method that was presented here, in that they both sample from a hypercubical
neighbourhood surrounding the current solution, and use a slow exponential
decrease of the size of this hypercube. The LJ method, however, was originally
suggested to be used with a constant decrease factor of q = 0.95, regardless of
the dimensionality n of the problem to be optimized. This fixed choice of q
corresponds roughly to n = 5 dimensions for the LUS method. But recall that
the LUS method varies the factor q with increasing n, so as to slow down the
sampling-range decrease for higher dimensional problems and thereby take into
account the increased difficulty in optimizing such problems.

The issue of using a fixed decrease factor q for the LJ method on higher
dimensional problems was studied using probability theory by Nair [70]. It
was found that for an optimization problem sufficiently resembling the Sphere
function, and for a proper choice of sampling-range decrease factor q, the LJ
method does converge to the optimum of that problem. But the decrease factor
q must vary with increasing dimensionality n, so as to approach the optimum
more slowly for higher dimensional problems. Nair however, does not give ex-
plicit formulae for actually calculating the factor q, but merely provides implicit
conditions that must be met, and the work is therefore less useful in practice.

Several variants of the LJ method have been developed including [71] [72],
and although they all improve on the performance of the original LJ method for
different testbeds of optimization problems, they also increase the complexity
of the optimization method. Since this thesis is concerned with finding ever
simpler and more graceful optimization methods, and the LUS method is in
fact more easy to describe and implement than the recent variants of the LJ
method, while still being able to perform well on optimization problems of widely
ranging topologies and dimensionalities, the LUS method is preferred.

Stochastic Update Rules

In an attempt to make local sampling methods able to escape local optima, some
researchers have tried using stochastic update rules when considering whether
to move to a newly sampled position. One such update rule is originally due
to Metropolis et al. [73] and sometimes goes under the name Stochastic Hill-
Climber (HC) [74]. Another stochastic update rule was originally suggested by
Kirkpatrick et al. [75] and is known as Simulated Annealing (SA). Stochastic
update rules such as these have been used by different researchers for optimiza-
tion over real-valued search-spaces using local sampling, see e.g. [76] [77].

But as proven mathematically in appendix A, the main problem with local
sampling over real-valued search-spaces seems to be in having a fixed sampling-
range. In fact, a stochastic update rule does not provide any real chance of
escaping a local optimum, because it merely means the optimizer will repeatedly
move slightly towards and then slightly away from the local optimum, without
ever being able to fully converge to an optimum, nor fully move away from
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local optima. To see this, let p be the probability of moving to a position
in the search-space having worse fitness. If the sampling-range is such that k
consecutive samples will be needed in order to escape a local optima, then the
probability of this happening is pk, which quickly approaches zero as either p
becomes small and/or k becomes large. This ignored the fact that not all of k
consecutive samples will be away from the local optimum, which means the real
number of samples needed is actually much larger and hence the probability
of moving away from the local optimum is much smaller. Stochastic update
rules should therefore not be expected to improve performance in local sampling
methods, but can actually be expected to worsen the optimization performance,
as many iterations will be spent on dithering around local optima.

2.4 Differential Evolution

The multi-agent heuristical optimization method known as Differential Evolu-
tion (DE) is due to Storn and Price [16] [17], and works by creating a new
potential agent-position by combining the positions of randomly chosen agents
from its population, and updating the agent’s current position in case of im-
provement to its fitness.

2.4.1 Combined Mutation & Crossover

Like GA, the DE method also employs operators that are dubbed crossover and
mutation (albeit with different meanings), and which are typically applied in
turn. In the following, however, these operators have been combined for a more
concise description.

This study will initially use the DE/rand/1/bin variant because it is believed
to be the best performing and hence the most popular of the basic DE variants
[25] [78]. Other DE variants will be surveyed and studied in chapter 4.

Let ~y be the new potential position for an agent whose current position is ~x,
and let ~a, ~b and ~c be the positions of three randomly chosen agents that must
be distinct from each other as well as the agent ~x currently being processed.
The elements of ~y = [y1, · · · , yn] are then computed as follows:

yi =
{
ai + F (bi − ci) , (i = R) or (ri < CR)
xi , else (2.2)

where F ∈ [0, 2] is a behavioural parameter called the differential weight, and
the randomly chosen index R ∈ {1, · · · , n} ensures at least one element differs
from that of the original agent: yR 6= xR, while the rest of the elements are
either chosen from the original position ~x or computed from combining other
agents’ positions according to the so-called crossover probability CR ∈ [0, 1],
and with ri ∼ U(0, 1) being a uniform random number drawn for each use. An
additional behavioural parameter is the number of agents in the population,
which for DE is commonly denoted NP . Once the new potential position ~y
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has been computed, it will replace the agent’s original position ~x in case of
improvement to the fitness.

The DE algorithm is shown in figure 2.3. Although the informal description
above is fairly simple, the actual implementation is somewhat involved.

2.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a multi-agent heuristical optimization
method due to Kennedy and Eberhart [18]. The PSO method was originally
intended for simulating the social behaviour of a bird flock, but the algorithm
was simplified and it was realized that the agents – here typically called particles
– were actually performing black-box optimization. In PSO the population of
particles is typically called a swarm.

In the PSO method the particles are initially placed at random positions
in the search-space, moving in randomly defined directions. The direction of a
particle is then gradually changed so it will start to move in the direction of
the best previous positions of itself and its peers, searching in their vicinity and
potentially discovering even better positions. The following details a basic PSO
and chapter 5 surveys other PSO variants.

2.5.1 Velocity & Position Update

Let the position of a particle be denoted ~x and let ~v be its velocity. Both
are initially chosen randomly and then iteratively updated according to two
formulae. The following formula for updating the particle’s velocity is by Shi
and Eberhart [19]:

~v ← ω~v + φprp(~p− ~x) + φgrg(~g − ~x) (2.3)

where the behavioural parameter ω ∈ R is called the inertia weight. The parti-
cle’s best discovered position is ~p, and ~g is the swarm’s best discovered position
through which the particles communicate implicitly with each other. That is,
~g is the best of all the ~p’s. These are weighted by the stochastic variables
rp, rg ∼ U(0, 1) and the behavioural parameters φp, φg ∈ R. The behavioural
parameters of the PSO method have a significant impact on the method’s ability
to optimize a given problem and will be studied in greater detail in chapter 5.

It is customary to impose limitations on the distance a particle can move in
a single step [79]. This is done by bounding a particle’s velocity ~v to the range
of the search-space, so the particle can at most move from one boundary to the
other in one step.

Adding the velocity to the particle’s current position causes the particle to
move to another position in the search-space, regardless of any improvement to
its fitness. This is the second formula of PSO:

~x← ~x+ ~v (2.4)

The PSO algorithm is shown in figure 2.4.
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2.6 Performance Comparison

It is customary to report the empirical performance of an optimization method
on a number of representative problems, although the NFL theorems warn us
not to conclude too much from such results [2, Page 70]:

... comparisons reporting the performance of a particular algorithm
with a particular parameter setting on a few sample problems are
of limited utility. While such results do indicate behaviour on the
narrow range of problems considered, one should be very wary of
trying to generalize those results to the other problems.

Instead the NFL paper proposes to use performance measures derived from the
probabilistic framework used to prove the NFL theorems [2, Section V.B], but
those probabilistic measures are not used in this thesis for a number of reasons.
Firstly, they are rather complicated and some even involving probabilities that
are impossible to know for black-box fitness functions. Secondly, the measures
are non-standard, thus making it difficult for other researchers and practitioners
to relate the results of this thesis to their own work. Thirdly and perhaps
most important, none of the measures seem to adequately rid themselves of
the dependency on just a single or a few optimization problems without going
into purely theoretical probability analysis. So while one can only agree with
the insufficiencies of the customary way of measuring the performance of an
optimization method, the probabilistic NFL framework does not seem to provide
us with a viable alternative. So despite the pessimism of the NFL theorem,
benchmark problems are often used in the literature when devising and testing
new optimization methods.

2.6.1 Benchmark Problems

A suite of twelve benchmark problems is used here. The benchmark problems
are widely used in the literature and taken from a larger suite collected by
Yao et al. [80]. Some of the benchmark problems have been used for several
decades, see e.g. [81] [82] [83] [84] [85]. The benchmark problems generalize
to higher dimensionalities and they vary from uni-modal problems (one local
optimum which is hence also the global optimum, e.g. the Sphere problem), to
multi-modal problems (several local optima where the optimizer may get stuck,
e.g. the Ackley problem), and from separable problems (the dimensions of the
search-space are independent of each other in their influence on the fitness,
e.g. the Sphere problem), to non-separable problems (the dimensions of the
search-space may be intricately dependent on each other in their influence on
the overall fitness, e.g. the Rosenbrock problem). The QuarticNoise problem
contains stochastic noise, the Step problem is discontinuous, and the Penalized1
and 2 problems have constraints in the form of penalty functions. The formulae
for computing the benchmark problems are shown in table 2.1. These problems
all have an optimal fitness value of zero, although the QuarticNoise problem has
noise added which makes it highly unlikely that a fitness value of zero can ever be
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found. Graphical plots of the benchmark functions have been omitted because
2- and 3-dimensional plots are not representative of higher dimensionalities and
experiments will be conducted for 30-dimensional problems.

Initialization, Search-Space & Displacement

Table 2.2 shows the initialization ranges used when optimizing these benchmark
problems, as well as the search-space boundaries. The asymmetrical initial-
ization ranges are chosen to further increase the difficulty of optimizing these
benchmark problems. Initialization of an optimizing agent is done by making a
uniformly distributed random sample in the designated range. Boundaries are
a particularly simple form of constraints and are enforced by mere saturation to
the boundary values in case an optimizer moves beyond them. Some optimiza-
tion methods require boundaries to bounce off in order to perform well, while
other optimization methods inherently never exceed their boundaries. But for
the sake of simplicity and consistency, all experiments in this thesis are con-
ducted with boundaries being enforced before fitness evaluation takes place.

As mentioned in the introductory chapter 1 the Stochastic GA (StGA) by
Tu and Lu [42] was shown empirically to improve performance on a number
of benchmark problems, but it was later discovered [43] that the StGA was in
fact strongly attracted to the position zero, ~0, and that just happened to be the
location of the global optimum for the benchmark problems on which StGA was
tested. To avoid this issue the global optima of the benchmark problems are
displaced in the search-space. Displacement is also sometimes called shifting
in the literature, see e.g. [86]. The displacement of the optimum for a fitness
function f is achieved simply by using an analogous fitness function h:

h(~x) = f(~x− δ)

where δ is the displacement value defined in table 2.2. These displacement values
are chosen relative to the search-space boundaries for the benchmark problems
and do not have a deep meaning apart from providing such displacement of the
global optimum. Note, however, that some benchmark problems are displaced
with negative values and others with positive values, which is intended to further
diffuse any correlation. Also note that the Penalized1 and 2 problems are not
displaced because they make use of a penalty function that assumes a certain
location of the global optimum.

2.6.2 Measuring Optimization Performance

A basic performance criterion for an iterative optimization method is to mea-
sure the optimization results that can be achieved within a given amount of
computation time. For most optimization problems of interest, the majority of
the computation time is spent in the evaluation of the fitness function. The
computation time is therefore generally measured as a number of evaluations
of the fitness function, so as to keep the measure independent of the actual
implementation and computer hardware.
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Optimization performance will be depicted in a number of ways in this thesis.
The end results of optimization are shown in terms of the mean and standard
deviation of the fitness achieved, as well as the quartiles. This shows the center
and dispersion of results in various ways. Graphical plots are also used to show
the progress of optimization leading up to the end results.

For a series of values ai of length N the mean or average ā and the standard
deviation s are given by:

ā =
1
N

N∑
i=1

ai, s =

√√√√ 1
N

N∑
i=1

(ai − ā)2

Concerning the method employed here for computing the quartiles, first sort
the elements of ai and call the sorted values bi. If there is an odd number of
elements then the median is the center element of the bi series. If there is an
even number of observations then the median is computed as the mean of the
two center elements of the bi series. The lower quartile Q1 is the element bj
with index j = d(1/4)(N + 1)e, and the upper quartile Q3 is the element bk at
index k = b(3/4)(N + 1)c. The best and worst results are also shown.

These measures taken together with the progress plots give a good view of
the performance of an optimizer.

2.7 Experimental Results

This experiment will show the optimization performance that can be achieved
using standard behavioural parameters:

� For the DE method a standard choice of allegedly good behavioural pa-
rameters is found in [16], which is a choice that also satisfies the theoretical
conditions derived by Zaharie [30]. The hand-tuned DE parameters are:

NP = 300, F = 0.5, CR = 0.9

where NP denotes the number of agents in the population.

� For the PSO method, years of accumulated experience is reported in [87],
suggesting the following parameters work well for that method:

S = 50, ω = 0.729, φp = φg = 1.49445 (2.5)

where S denotes the number of particles in the swarm.

� The LUS method is used with its standard choice of parameter: α = 1/3

� The PS method does not have any behavioural parameters.

Using these behavioural parameters and conducting 50 optimization runs on
each of the 12 benchmark problems in 30 dimensions and allowing 60,000 fitness
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evaluations for each optimization run, gives the end results shown in table 2.3.
The optimization progress is compared in terms of the mean fitness in figures 2.5
and 2.6 which are shown individually and in more detail in figures 2.7-2.14. The
first thing to note is that the single-agent PS and LUS methods have rapid
optimization progress in comparison to the multi-agent DE and PSO methods.
Recall that PS and LUS were specifically designed to work well on simple opti-
mization problems, which the results on e.g. the Sphere, Step, and QuarticNoise
problems confirm. What is perhaps more interesting is that PS and LUS also
work comparatively well on many of the harder problems, such as Ackley and
Rastrigin where the DE and PSO methods seem to progress slowly or even stag-
nate. However, PS and LUS have somewhat irregular performance and are not
always able to achieve good results, see for example their performance on the
Ackley and Rosenbrock problems in figures 2.11-2.14. Recall that all benchmark
problems have an optimal fitness value of zero, so from table 2.3 it can be seen
that the LUS and PS methods are able to find near-optimal values for only a
few of the problems within the computation time allowed. From their progress
plots and our knowledge of the inner workings of the LUS and PS methods,
which makes use of an exponentially decreasing sampling-range, it is likely that
they either find a near-optimal solution early in the optimization run, or that
they stagnate. Concerning the DE and PSO methods they are not even able
to find near-optimal solutions for the simple Sphere problem. It is too early,
though, to dismiss DE and PSO as poor optimizers, because the reason for this
deficiency might be that DE and PSO have had their behavioural parameters
hand-tuned for much longer optimization runs, say, when allowed a million or
more fitness evaluations per optimization run. This is something that will be
studied in more detail in chapters 4 and 5 when the behavioural parameters of
DE and PSO will be tuned for a number of scenarios.

2.8 Summary

This chapter introduced two simple optimizers called PS and LUS, which work
by locally sampling the surroundings of a single optimizing agent. Two popular
multi-agent optimization methods from literature were also described, which
work by having several optimizing agents working together in a competitive or
cooperative manner. These were the DE and PSO methods.

On a benchmark suite of 12 optimization problems the PS and LUS meth-
ods were shown to have rapid, although sometimes also irregular optimization
progress. The PS and LUS methods were able to find near-optimal solutions for
some of the benchmark problems, while the DE and PSO methods were unable
to achieve near-optimal solutions to even the simpler benchmark problems. The
cause of this is perhaps that the hand-tuned behavioural parameters for DE and
PSO were intended for much longer optimization runs. This is something that
will be studied in detail in later chapters.
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� Initialize ~x to a random position in the search-space:

~x ∼ U
(
~blo,~bup

)
where ~blo is the lower boundary of the search-space and ~bup is the upper
boundary.

� Set the initial sampling range ~d to cover the entire search-space:

~d← ~bup −~blo

� Until a termination criterion is met, repeat the following:

– Pick an index R ∈ {1, · · · , n} uniformly and randomly.

– Let ~y be the potentially new position in the search-space, which is
exactly the same as the current position ~x, except for the R’th el-
ement yR, which is found from the neighbourhood of xR simply by
adding dR:

yi =
{
xi + di , i = R
xi , else (2.6)

– If (f(~y) < f(~x)) then keep the new position:

~x← ~y

Otherwise update the sampling-range and direction for the R’th di-
mension:

dR ← −
dR
2

Figure 2.1: PS algorithm.
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� Initialize ~x to a random position in the search-space:

~x ∼ U
(
~blo,~bup

)
where ~blo is the lower boundary of the search-space and ~bup is the upper
boundary.

� Set the initial sampling range ~d to cover the entire search-space:

~d← ~bup −~blo

� Until a termination criterion is met, repeat the following:

– Pick a random vector ~a ∼ U
(
−~d, ~d

)
– Add this to the current position ~x, to create the new potential posi-

tion ~y:
~y = ~x+ ~a

– If (f(~y) < f(~x)) then update the position:

~x← ~y

Otherwise decrease the sampling-range by the factor q from Eq.(2.1):

~d← q · ~d

Figure 2.2: LUS algorithm.
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� Initialize the agents with random positions in the search-space.

� Until a termination criterion is met, repeat the following:

– For each agent ~x in the population do the following:

* Pick three agents ~a, ~b and ~c at random, they must be distinct
from each other as well as from agent ~x.

* Pick a random index R ∈ {1, · · · , n}, where the highest possible
value n, is the dimensionality of the problem to be optimized.

* Compute the agent’s potentially new position ~y = [y1, · · · , yn],
by iterating over each i ∈ {1, · · · , n} as follows:

· Pick ri ∼ U(0, 1) for use in a stochastic choice next.
· Compute the i’th element of the potentially new position ~y,

using Eq.(2.2) from above:

yi =
{
ai + F (bi − ci) , if (i = R) or (ri < CR)
xi , else

Where the user-defined behavioural parameters are the dif-
ferential weight F and the crossover probability CR.

* If (f(~y) < f(~x)) then update the agent’s position:

~x← ~y

Figure 2.3: DE algorithm.
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� Initialize the particles with random velocities and random positions in the
search-space.

� Until a termination criterion is met, repeat the following:

– For each particle in the swarm do the following:

* Pick two random numbers: rp, rg ∼ U(0, 1)
* Update the particle’s velocity ~v as follows:

~v ← ω~v + φprp(~p− ~x) + φgrg(~g − ~x)

Where ~g is the swarm’s best known position, ~p is the particle’s
own best known position, and ω, φp, and φg are user-defined
behavioural parameters.

* Move the particle to its new position by adding its velocity:

~x← ~x+ ~v

* If (f(~x) < f(~p)) then update the particle’s best known position:

~p← ~x

* If (f(~x) < f(~g)) then update the swarm’s best known position:

~g ← ~x

Figure 2.4: PSO algorithm.
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Ackley f(~x) = e+ 20− 20 · exp
(
−0.2 ·

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
Griewank f(~x) = 1 + 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)

Penalized1

f(~x) = π
n

(
10 · sin2(πy1)

+
∑n−1
i=1 (yi − 1)2 ·

(
1 + 10 · sin2(πyi+1)

)
+ (yn − 1)2

)
+
∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + (xi + 1)/4

u(xi, a, k,m) =

 k(−xi − a)m , xi < −a
0 ,−a ≤ xi ≤ a
k(xi − a)m , xi > a

Penalized2
f(~x) = 0.1

(
sin2(3πx1) +

∑n−1
i=1 (xi − 1)2 ·

(
1 + sin2(3πxi+1)

)
+(xn − 1)2 ·

(
1 + sin2(2πxn)

) )
+
∑n
i=1 u(xi, 5, 100, 4), with u(·) from above.

QuarticNoise f(~x) =
∑n
i=1(i · x4

i + ri), ri ∼ U(0, 1)
Rastrigin f(~x) =

∑n
i=1

(
x2
i + 10− 10 · cos(2πxi)

)
Rosenbrock f(~x) =

∑n−1
i=1

(
100 · (xi+1 − x2

i )
2 + (xi − 1)2

)
Schwefel1-2 f(~x) =

∑n
i=1

(∑i
j=1 xj

)2

Schwefel2-21 f(~x) = max {|xi| : i ∈ {1, · · · , n}}
Schwefel2-22 f(~x) =

∑n
i=1 |xi|+

∏n
i=1 |xi|

Sphere f(~x) =
∑n
i=1 x

2
i

Step f(~x) =
∑n
i=1 (bxi + 0.5c)2

Table 2.1: Benchmark problems used in this study.

Problem Initialization Search-Space Displacement δ
Ackley [15, 30] [−30, 30] -7.5
Griewank [300, 600] [−600, 600] -150
Penalized1 [5, 50] [−50, 50] 0
Penalized2 [5, 50] [−50, 50] 0
QuarticNoise [0.64, 1.28] [−1.28, 1.28] -0.32
Rastrigin [2.56, 5.12] [−5.12, 5.12] 1.28
Rosenbrock [15, 30] [−100, 100] 25
Schwefel1-2 [50, 100] [−100, 100] -25
Schwefel2-21 [50, 100] [−100, 100] -25
Schwefel2-22 [5, 10] [−10, 10] -2.5
Sphere [50, 100] [−100, 100] 25
Step [50, 100] [−100, 100] 25

Table 2.2: Initialization ranges, search-space boundaries, and displacement val-
ues δ for the benchmark problems. These values are used for all dimensions.
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Figure 2.5: Comparison of optimization progress using hand-tuned be-
havioural parameters. Plots show the mean fitness achieved over 50 optimization
runs.
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Figure 2.6: Comparison of optimization progress using hand-tuned be-
havioural parameters. Plots show the mean fitness achieved over 50 optimization
runs.
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Figure 2.7: DE/rand/1/bin optimization progress using the hand-tuned
behavioural parameters NP = 300, CR = 0.9, F = 0.5. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 2.8: DE/rand/1/bin optimization progress using the hand-tuned
behavioural parameters NP = 300, CR = 0.9, F = 0.5. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 2.9: PSO optimization progress using the hand-tuned behavioural
parameters S = 50, ω = 0.729, φp = φg = 1.49445. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.
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Figure 2.10: PSO optimization progress using the hand-tuned behavioural
parameters S = 50, ω = 0.729, φp = φg = 1.49445. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.

34



1

10

100

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Ackley

LUS

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000
F

it
ne

ss
Iteration

Griewank

LUS

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Penalized1

LUS

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Penalized2

LUS

10

100

1000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

QuarticNoise

LUS

10

100

1000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Rastrigin

LUS

Figure 2.11: LUS optimization progress using its standard behavioural param-
eter α = 1/3. Plots show the mean fitness achieved over 50 optimization runs,
as well as the quartiles at intervals during optimization.
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Figure 2.12: LUS optimization progress using its standard behavioural param-
eter α = 1/3. Plots show the mean fitness achieved over 50 optimization runs,
as well as the quartiles at intervals during optimization.
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Figure 2.13: PS optimization progress. Plots show the mean fitness achieved
over 50 optimization runs, as well as the quartiles at intervals during optimiza-
tion.
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Figure 2.14: PS optimization progress. Plots show the mean fitness achieved
over 50 optimization runs, as well as the quartiles at intervals during optimiza-
tion. Note that a fitness value of zero is reached for the Schwefel 2-22 and Step
problems, which cannot be plotted on a logarithmic scale.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max

D
E

Ackley 9.55 0.74 7.56 9.06 9.58 10.13 11.13
Griewank 12.32 1.86 8.76 11.05 11.95 13.56 17.21
Penalized1 53.98 60.98 19.31 26.24 36.59 45.16 340.07
Penalized2 54440 46576 2104 22245 40992 64051 204258
QuarticNoise 11.83 0.59 10.49 11.52 11.86 12.3 12.95
Rastrigin 223.58 10.81 202.23 211.99 226.44 232.28 239.42
Rosenbrock 4833 1380 2300 3781 4759 5476 7705
Schwefel1-2 18091 2207 12075 16632 18698 19609 22646
Schwefel2-21 43.43 4.88 29.95 39.33 43.97 47.07 53.47
Schwefel2-22 47.84 5.21 34.75 44.83 47.65 50.85 63.64
Sphere 1002 175.23 618.91 855.34 1009 1143 1403
Step 465.86 109.38 272 371 471 557 766

P
SO

Ackley 20.06 0.43 18.3 20.09 20.13 20.22 20.55
Griewank 316.42 121.71 45.25 234.09 313.82 403.39 580.54
Penalized1 8646 27811 17.02 47.07 479.92 2068 170234
Penalized2 398028 696938 182.72 18140 109865 325680 3.06e+6
QuarticNoise 85.05 41.31 10.47 55.94 84.26 109.39 175.27
Rastrigin 189.42 33.58 121.82 166.73 189.75 218.23 258.6
Rosenbrock 2473 2155 253.71 1083 1952 2910 12426
Schwefel1-2 59270 27586 20042 39751 57992 70949 191536
Schwefel2-21 48.05 22.07 21.3 32.53 41.06 56.69 98.46
Schwefel2-22 112.28 24.82 64.53 94.14 115.29 129.49 169.07
Sphere 21537 10375 2118 14225 21095 28210 46502
Step 9194 4814 1055 5357 8803 12810 24547

L
U

S

Ackley 6.57 3.18 2.41 4.17 5.86 7.78 19.16
Griewank 0.01 0.01 4.43e-6 9.78e-4 9.91e-3 0.02 0.06
Penalized1 15.34 6.2 5.74 9.42 15.23 20.17 30.51
Penalized2 47.21 11.43 8.48 41.09 46.36 54.13 72.29
QuarticNoise 14.82 2.53 10.46 13.15 14.73 16.61 20.56
Rastrigin 133.52 33.91 64.67 108.45 133.32 159.19 226.85
Rosenbrock 122074 205881 71.4 514.47 5969 204828 839108
Schwefel1-2 6920 2249 3374 5521 6801 7671 14808
Schwefel2-21 35.3 8.21 17.49 29.02 33.62 42.11 52.17
Schwefel2-22 92.17 27.45 17.74 83.67 98.52 111.57 136.31
Sphere 7.09e-318 0 2.09e-321 1.27e-319 9.87e-319 2.96e-318 1.53e-316
Step 38.36 23.43 6 21 36 48 138

P
S

Ackley 3.7 1.8 1.16 2.32 3.13 4.88 8.99
Griewank 0.09 0.09 0 0.03 0.07 0.14 0.46
Penalized1 0.47 0.54 1.57e-32 0.1 0.3 0.65 3.14
Penalized2 0.38 0.47 3.49e-17 0.05 0.18 0.63 2.05
QuarticNoise 17.55 3.3 11.79 14.97 17.55 19.1 26.47
Rastrigin 69.85 11.92 42.78 61.69 71.14 75.62 104.47
Rosenbrock 2150 2769 30.94 182.27 351.58 4174 7705
Schwefel1-2 16397 3836 8826 13199 16579 18768 24278
Schwefel2-21 90.3 13.41 60.17 80.79 93.87 100.77 113.32
Schwefel2-22 0 0 0 0 0 0 0
Sphere 1.83e-29 1.28e-28 7.88e-85 8.43e-56 1.27e-48 4.48e-44 9.14e-28
Step 1.22 1.04 0 0 1 2 4

Table 2.3: End results on benchmark problems of 30 dimensions each using
hand-tuned behavioural parameters. Results obtained over 50 optimization
runs where the number of fitness evaluations for each run is 60,000.
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Chapter 3

Meta-Optimization

3.1 Introduction

It has been recognized since the inception of DE that different choices of be-
havioural parameters cause it to perform worse or better on particular problems,
and that the selection of good parameters is a challenging art, see for example
Storn et al. [17] [25], Liu and Lampinen [26], and Zaharie [30]. Similarly, select-
ing good behavioural parameters for PSO is also challenging, see e.g. Shi and
Eberhart [22] [23], Carlisle and Dozier [24], van den Bergh [27], Trelea [28], and
Clerc and Kennedy [29].

This chapter considers the task of finding a good choice of behavioural pa-
rameters for an optimizer, as an optimization problem in its own right and
dubs this Meta-Optimization. In other words, the idea is to have a black-box
optimization method act as an overlaying meta-optimizer, trying to find good
performing behavioural parameters for another optimization method, which in
turn is used to optimize a number of problems. This tuning of an optimizer’s
parameters is done in an offline manner and the parameters can therefore be
used by other researchers and practitioners without modifying their own imple-
mentations of the optimization algorithm, but merely replace the behavioural
parameters. The overall concept of meta-optimization is depicted in figure 3.1.

The chapter is organized as follows: First an overview of related work is
given. Then the performance measure of an optimization method is formalized
along with discussions and literature surveys. Experiments are then conducted
to establish which optimization method should be used as the meta-optimizer.

3.1.1 Related Work

The concept of meta-optimization is not new and is also known in the lit-
erature as Meta-Evolution, Super-Optimization, Automated Parameter Cali-
bration, Hyper-Heuristics etc. [31] [88] [89] [32] [90] [91] [92]. In fact, meta-
optimization is reported to have been used back in the late 1970’s by Mercer
and Sampson [93] for finding optimal parameter settings of a GA. Another early
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example of meta-optimizing discrete parameters of a GA is due to Grefenstette
[31], while meta-optimizing both the behavioural parameters and the GA oper-
ators are studied by Bäck [88]. Results with meta-optimizing GA parameters
are also reported by Keane [94]. But meta-optimization is very time-consuming
and it was not until recently that computers had enough processing power to
conduct somewhat more realistic experiments in meta-optimization, see for ex-
ample the experiments by Meissner et al. [32], and the comparison of various
meta-optimization techniques by Smit and Eiben [33].

The approaches to meta-optimization found in the literature differ in a num-
ber of ways from the work in this thesis, including the following:

� Previous approaches to meta-optimization are more complicated, some
even requiring special variants of the optimizers that are being used as
the overlaying meta-optimizer, see for example [88]. The present work on
the other hand, gives a simple framework in which any black-box opti-
mization method can be used as the overlaying meta-optimizer to find the
behavioural parameters of any other optimization method.

� Previous approaches to meta-optimization do not properly address the
issue of reducing computational time without either parallelizing the im-
plementation or reducing the quality of the results. Even with the speed of
modern computers, full-blown experiments in meta-optimization are still
very time-consuming. The time expenditure of meta-optimization is low-
ered significantly in the present work by applying a simple programming
expedient dubbed Preemptive Fitness Evaluation.

� Previous approaches do not use suitable optimization methods as the
overlaying meta-optimizer. The early work all used a GA as the meta-
optimizer, while recent work also use recent black-box optimization meth-
ods, such as a PSO [32] or a state-of-the-art ES variant [33]. But due to the
computational cost involved in meta-optimization only few iterations of
the meta-optimizer can be performed in a reasonable amount of time, yet
GA, PSO, etc. typically require thousands of fitness evaluations to achieve
satisfactory goals. In the work presented here the LUS method from chap-
ter 2 is used as the overlaying meta-optimizer as it often performs very
well, yet only requires a very small number of fitness evaluations. Fur-
thermore, the LUS method is simpler to describe and implement, making
the present work more applicable.

Another recent approach to meta-optimization is called REVAC and is due to
Nannen and Eiben [90], where in addition to tuning the behavioural parameters
a measure of relevance for individual parameters is also made. This allows the
meta-optimizer to focus its effort on the parameters that are most likely to
cause an improvement in the performance of the optimizer, something which
could also prove useful in later chapters of this thesis, where the less relevant
parameters are being eliminated. The REVAC approach also gives a way of
lowering the costly time usage involved in meta-optimization [95]. However,
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the REVAC approach is still significantly more complicated than the approach
to meta-optimization presented here, and it has a significant drawback in that
it treats the behavioural parameters individually and thus ignores how they
influence each other in a non-linear way.

A statistical approach to meta-optimization is due to François and Lavergne
[96], where a statistical model is built from numerical experiments on how the
behavioural parameters of an optimization method influence its performance.
The technique is claimed to have the ability to tune behavioural parameters
so as to generalize well to a class of similar optimization problems, without
incurring additional computational cost during the parameter tuning process.
But the technique and its presentation is mathematical and complicated, thus
lacking the immediacy and grace that made black-box optimization methods
attractive for the average practitioner; something which is the aim of the meta-
optimization technique presented here.

In short, the approach to meta-optimization taken here appears to be sig-
nificantly simpler, less time-consuming, yields better results, and hence seems
to be more applicable than the approaches taken previously in the literature.

3.2 Multi-Objective Optimization

The crux of automatically finding good behavioural parameters for an optimiza-
tion method is to define an appropriate meta-fitness measure, which can be made
the subject of black-box optimization. A simple way of judging the performance
of an optimization method and a specific choice of behavioural parameters, is
to consider the fitness results obtained when optimizing a number of different
benchmark problems for a number of iterations and a number of times. Using
several benchmark functions to judge the quality of an optimization method is
done in an effort to make the behavioural parameters work well on a broader
range of problems. But this results in many different values to be compared,
some of which are better and some worse – and until now, we have relied on
flexible human evaluation to summarize all these benchmark measures, to de-
cide which optimization method was actually better than the other. In essence,
this is what is known as multi-objective optimization for the meta-fitness layer.

3.2.1 Multi-Objective Fitness Function

Multi-objective optimization is now formalized in general terms. Optimization
problems having N objectives are generally modelled by having the fitness func-
tion map a position in the search-space x ∈ X to a vector of N real-valued fitness
measures, each corresponding to an optimization objective:

f : X → RN

This could also be written as a set of N fitness functions, with each fi mapping
from X to R as usual.
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3.2.2 Pareto Optimality

The difficulty with optimizing multiple objectives simultaneously is that the
objectives may be conflicting or contradictory. So when the optimizer improves
the fitness of one objective, it may worsen the fitness of another objective.
To describe this more formally, the mathematical definition of optimality from
chapter 1 must first be extended to the case of multiple objectives.

Domination

A position in the search-space y ∈ X is said to dominate another position x, if
y rates at least as well as x on all objectives, and better than x on at least one
of the objectives. This domination can be denoted by y <p x and defined as:

y <p x ⇔ ∀i : fi(y) ≤ fi(x) ∧ ∃i : fi(y) < fi(x) (3.1)

A position in the search-space x is then said to be Pareto optimal if there does
not exist any y ∈ X that dominates x. In other words, x is Pareto optimal if it
is non-dominated, which can be written as:

x ∈ X is Pareto optimal ⇔ @ y ∈ X : y <p x

An early text on Pareto optimality is [97].

Pareto Decisions

The above definition of Pareto optimality can be used in different ways for
multi-objective optimization. For example, optimization methods which do not
require an actual fitness value, but merely need to decide which of the two
candidate solutions x or y is better in order to guide their optimization, can
use Eq.(3.1) directly in place of their usual fitness comparison. This is used by
Horn et al. [98] for a slightly more sophisticated version of tournament selection
in a GA.

Pareto Ranking

Making simple multi-objective decisions based on Eq.(3.1) will not work for op-
timization methods which require actual fitness values. However, the definition
of Pareto optimality from Eq.(3.1) can still be used to assign singleton fitness
values to candidate solutions and summarizing their mutual rankings on differ-
ent objectives. But this only works for multi-agent optimization methods, as the
idea is to rank the agents in a population according to how many of the other
agents they are dominated by. The agents with the best rank are thus domi-
nated by the least agents and are therefore considered better in the Pareto sense.
This was originally suggested by Goldberg [12] and the ranking algorithm works
by iteratively tagging non-dominated agents from a population. The rank of an
agent is hence determined by the number of iterations that have been performed
so far, and these ranks are used as fitness values during optimization. A slightly
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different approach to this ranking approach is due to Fonseca and Fleming [99],
and yet another variant is the Non-Dominated Sorting GA (NSGA) by Srinivas
and Deb [100]. A more recent but also more complicated improvement to the
latter, called NSGA-II, is due to Deb et al. [101], which among other things
alleviates part of the costly overhead associated with identifying and sorting the
non-dominated agents. The underlying idea of the NSGA-II is combined with
DE to form the NSDE by Iorio and Li [102], which is reported to improve the
performance on rotated optimization problems; which is a more difficult class
of problems because the individual dimensions are non-separable.

Suitability To Meta-Optimization

The above techniques for using the Pareto definition directly are, however, not
suited for meta-optimization. First, because the techniques are more compli-
cated than what is required and, second, because such a precise definition of
multi-objective optimality is probably not desirable in meta-optimization. Here,
it is more important that the behavioural parameters discovered for an optimiza-
tion method also generalize well to other problems and that the performance is
good in an overall manner.

3.2.3 Weighted Sum

One of the simplest approaches to multi-objective optimization is to combine
the individual objectives into a single fitness measure by weighting their sum.
This technique is mentioned in [103, Chapter C4.5] as having been popular for
many years. The weighted-sum approach also works well for meta-optimization,
as it is merely the overall performance that matters, which is closer to how
we as humans have evaluated the performance of optimization methods using
benchmark results.

Formally, to compute the weighted sum of multiple objectives, let h be the
new fitness function that is to be optimized, defined as:

h(x) =
N∑
i=1

wi · fi(x) (3.2)

with weights wi > 0 and assuming that all objectives fi are to be minimized.

3.3 Meta-Fitness Algorithm

This section outlines the computation of the meta-fitness measure that is used in
meta-optimization for rating the performance of an optimizer with a given choice
of behavioural parameters. As argued above, a suitable technique for combining
a number of benchmark performances into a single meta-fitness measure that can
be made the subject of meta-optimization, is a weighted sum of the optimization
results on the individual benchmark problems.
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Evaluating the performance of an optimization method and a particular
choice of behavioural parameters then becomes a matter of iterating through
the different problems, performing a number of optimization runs on each of
them in turn, and adding up the resulting fitness values. This algorithm can be
summarized roughly as in figure 3.2, with N being the number of problems the
optimizer’s behavioural parameters are being tuned for, enumerated as fi, and
M being the number of optimization runs to perform on each of these problems.
The resulting meta-fitness measure is the variable s, which is being accumulated
during the iterations of the algorithm.

3.3.1 Weights & Normalization

Since the benchmark problems can take on very different ranges of fitness values
it seems likely that the meta-fitness measure will be dominated by the opti-
mization results on one or more of the benchmark problems. For this reason
the meta-fitness algorithm in figure 3.2 makes use of weights wi to change the
bias of optimization performance on the problems fi. Selecting these weights
is difficult, however. The immediate idea would be to choose each weight as
the inverse of the maximum fitness value of that benchmark problem, that is,
wi = 1/max(fi), so as to normalize the contribution of each benchmark prob-
lem to the overall meta-fitness sum. But this actually just reverses the bias as
can be demonstrated with a small example.

Consider the Sphere and Rosenbrock problems in 30 dimensions each, and
sample their search-spaces at random 6,000 times each (for in general, max(fi)
might not be known.) The mean fitness obtained for the Sphere problem is
roughly 44000 and the mean fitness for Rosenbrock is roughly 1e+10. Clearly,
using their fitness values directly in the meta-fitness sum would mean that
Rosenbrock would dominate the Sphere problem. Both problems have an op-
timal fitness value of zero and the Sphere problem has acceptable solutions
close to that because the problem is so simple, while acceptable solutions for
Rosenbrock can have much larger fitness due to the difficulty in optimizing that
problem. But an unacceptable result for Rosenbrock would surely be a fitness
larger than, say, 1000. So if an optimizer were to achieve a fitness of, say, 0.01 for
the Sphere problem and a fitness of 1000 for Rosenbrock, then their normalized
contributions to the meta-fitness sum would be 2.27e-7 and 1e-7, respectively.
This would mean that the result on Rosenbrock which was in fact unacceptable
now rates similar to a result for the Sphere problem which was acceptable. That
is, the bias has reversed and Sphere is given most weight and Rosenbrock least
weight in making up the meta-fitness measure.

There does not seem to be a simple solution to this dilemma. Fortunately
it turns out to be unimportant and all weights can usually be set to one, wi =
1. That it actually works will become self-evident shortly and in the many
experiments of chapters 4 and 5 where it is being used. Chapter 4 also contains
experiments with choosing the weights.
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3.3.2 Meta-Fitness Landscapes

To make a 3-dimensional plot showing what a meta-fitness landscape looks like,
an optimization method having only two behavioural parameters is needed.
Consider the DE/rand/1/bin optimizer having a fixed behavioural parameter
CR = 0.9, which was supposedly a good choice according to recommendations
in literature, see section 2.7. The other two behavioural parameters for the DE
optimizer, NP and F , are then varied so as to compute a grid of meta-fitness
values which can be plotted. The boundaries for the parameters are chosen so
as to cover the ranges commonly used in the literature, see e.g. [16] [17] [26].

Figures 3.5 and 3.6 show the meta-fitness landscape when DE is used with
different choices of behavioural parameters to optimize the Sphere and Rosen-
brock benchmark problems and being allowed either 6,000 or 60,000 iterations
per optimization run. Recall that smaller meta-fitness values mean better opti-
mization performance because Sphere and Rosenbrock are minimization prob-
lems. The first thing to observe is how regular and simple these meta-fitness
landscapes are. This explains why researchers and practitioners have had some
degree of success in tuning the DE parameters by hand, and it also suggests that
a simple optimization method can be used as the overlaying meta-optimizer to
automate the parameter tuning process. Another interesting observation is that
the fewer optimization iterations DE is allowed when optimizing the Sphere
and Rosenbrock problems, the harder it becomes to select good behavioural
parameters. This can be seen by the narrowing valley in the meta-fitness land-
scape when few optimization iterations are allowed. Note, for instance, that
the population size NP can be chosen much larger when more optimization
iterations are allowed, which perhaps makes intuitive sense. The region of the
meta-fitness landscape holding the best choices of behavioural parameters seems
to move slightly when more optimization iterations are allowed, but a choice
of behavioural parameters that appears to perform well for both scenarios is
NP ' 40, F ' 0.6, and CR = 0.9.

Figures 3.7 and 3.8 show the meta-fitness landscapes when using all 12 bench-
mark problems instead of just the Sphere and Rosenbrock problems. Due to the
vast range of meta-fitness values plots are shown in figures 3.9 and 3.10 with
the meta-fitness capped at 1e+15, so as to better show the interesting valley of
good performing parameter combinations. These valleys can be seen to be quite
similar in shape and placement to before, with the best performing parameters
situated around NP ' 50 and F ' 0.6.

The similarity of the meta-fitness landscapes suggests that the Sphere and
Rosenbrock problems may be representative for the entire suite of 12 benchmark
problems, in the sense that the best performing DE parameters for use on the
Sphere and Rosenbrock problems are similar to the best performing parameters
for use on all 12 benchmark problems. Though, it should be kept in mind
that the CR parameter is being held fixed and the meta-fitness landscapes
may be dramatically different when CR is allowed to vary as well. It will
also be likely that other optimization methods, and indeed other DE variants,
will have different performance correlations amongst the benchmark problems.

46



So it cannot be concluded from just these experiments that the Sphere and
Rosenbrock problems are representative for the entire benchmark suite.

Figures 3.11 and 3.12 show the optimization progress of using DE/rand/1/bin
with behavioural parameters chosen from the meta-fitness landscapes, namely
NP = 50, F = 0.6, and CR = 0.9. These are compared to the results of us-
ing hand-tuned behavioural parameters and show a great improvement. This
would suggest that the meta-fitness measure is suitable for use in tuning the
behavioural parameters of an optimization method.

3.3.3 Time Usage

Finding good choices of behavioural parameters for an optimization method
was done by exhaustive search in the above, as a grid of meta-fitness values
was computed and the best parameters could then be picked out. Although
it would not be possible to visualize the meta-fitness landscapes for optimizers
having more than two behavioural parameters, such a grid of meta-fitness values
could still be computed and exhaustively searched. What prohibits this is the
computation time required. Table 3.1 shows the time usage for computing the
meta-fitness landscapes from above on an Intel Pentium M 1.5 GHz laptop
computer. In chapter 4 an optimizer having 9 behavioural parameters is being
studied, where a grid of similar resolution would take more than two billion years
to compute. This is the Curse of Dimensionality for the meta-fitness search-
space. Clearly, it is not tractable to perform an exhaustive search for good
behavioural parameters of an optimizer, just as it is not tractable to perform
an exhaustive search for the optimum of any other non-trivial problem.

3.4 Preemptive Fitness Evaluation

Having defined a meta-fitness measure for use in meta-optimization, this section
now describes a technique for greatly reducing the time expenditure of comput-
ing the meta-fitness measure, when it is being optimized by certain kinds of
methods. The time-saving technique can be used for many other optimization
problems and will therefore be described in general terms.

The technique is dubbed Preemptive Fitness Evaluation because it works
by preemptively aborting a fitness (or meta-fitness) evaluation, once the fitness
becomes worse than that needed for it to be accepted as an improvement by the
optimizer (or meta-optimizer), and the fitness is known not to improve for the
rest of the evaluation.

Although the technique has been used by researchers for decades [104] [105],
its original author is difficult to establish, as the technique is seldom mentioned
in the literature. This is probably due to the technique’s simplicity, which
makes it appear as a mere programming trick. But the technique is of special
interest here because it offers such a simple way of achieving great time-savings
in meta-optimization, and gives an additional reason for using the weighted sum
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approach to multi-objective optimization. Furthermore, the technique presented
here is extended with sorting and is therefore less trivial than usual.

3.4.1 Compatible Optimization Methods

Greedy optimization methods are generally compatible with preemptive fitness
evaluation, because they only move their optimizing agents in the case of strict
improvement. Take for example the LUS method from chapter 2, which works
by choosing a random point in the vicinity of its current position and moving
to the new position only in the case of improvement to the fitness. Therefore
the fitness evaluation of the new position can be aborted, as soon as it becomes
known that it is actually worse than that of the current position, provided that
it will not improve later during computation of the fitness.

Non-Greedy Optimization Methods

Some non-greedy optimization methods also provide support for preemptive
fitness evaluation. For example the PSO method from chapter 2 also supports
the technique, as the fitness is used greedily in determining whether or not to
update the agent’s best-known position, ~p.

Although it requires more book-keeping, it is also possible to employ pre-
emptive fitness evaluation to optimization methods such as HC and SA, whose
movement decisions are stochastic according to the improvement in fitness. But
those methods are of no particular concern in the remainder of the thesis and
their compatibility with preemptive fitness evaluation is not detailed further.

3.4.2 Compatible Fitness Functions

Preemptive fitness evaluation is directly applicable to fitness functions (or meta-
fitness functions) that are iteratively computed, and where the overhead of
monitoring the progress and consequently aborting the fitness evaluation does
not cancel out the gain in computation time that arises from only evaluating a
part of the fitness function.

It is, however, a requirement for preemptive fitness evaluation to work that
the fitness is accumulated in a non-decreasing manner because the fitness must
only be allowed to grow worse during its computation, in order for the fitness
computation to be aborted safely.

3.4.3 Application To Meta-Optimization

To employ preemptive fitness evaluation in meta-optimization, consider the al-
gorithm for the meta-fitness measure given in figure 3.2. There, the results of
optimizing a number of problems fi are summed for the purpose of simultane-
ously evaluating the performance of an optimization method and a given choice
of behavioural parameters on a broader set of optimization problems.
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Ensuring Meta-Fitness Only Grows Worse

To ensure the meta-fitness measure is non-decreasing and can hence only grow
worse, first assume the fitness functions fi each have a known lower boundary
denoted min(fi). Since fitness results from several optimization runs are being
added to form the meta-fitness measure, we must compensate for the possibility
that one or more of these may be negative. This is done by subtracting min(fi)
from the individual fitness-contributions, thus ensuring they are all non-negative
and the overall meta-fitness sum is therefore non-decreasing. If/when the accu-
mulating meta-fitness becomes worse than what is required for the overlaying
meta-optimizer to accept it as an improvement, it may be aborted preemptively.

Algorithm

The algorithm from figure 3.2 for computing the meta-fitness measure is modi-
fied to support preemptive fitness evaluation as shown in figure 3.3. Here, the
preemptive fitness limit is denoted F and is the limit beyond which the meta-
fitness evaluation can be aborted. This limit is passed as an argument by the
overlaying meta-optimizer and is the meta-fitness of the agent that is poten-
tially being replaced. This is made more clear in figure 3.4 which depicts the
use of LUS as the meta-optimizer. In an actual implementation this can be
made almost transparent, so an optimizer only needs minor modifications for it
to work as a meta-optimizer with preemptive fitness evaluation. Also note that
the choice of weights is wi = 1, see section 3.3.1.

Evaluation Order

Some terms of the meta-fitness sum may be more likely than others to cause
the evaluated meta-fitness to become worse than the preemptive fitness limit. A
simple way of exploiting this to save even more computation time is to sort the
evaluation order of the individual parts of the meta-fitness function, according to
their last contributions to the overall meta-fitness. This sorting of the evaluation
order occurs towards the end of the algorithm in figure 3.3.

To exemplify this, consider the term resulting from optimizing the Rosen-
brock function, which is a benchmark problem that may give very large fitness
values. The Ackley problem, on the other hand, has comparatively small fitness
values. By sorting the order in which these benchmark functions are optimized,
the problems that are most likely to cause the meta-fitness evaluation to be
aborted will be optimized first.

Sorting is generally applicable to preemptive fitness evaluation, although it
might work best when the individual subproblems require approximately the
same time to execute, as is the case with these benchmark functions.

Unknown Fitness Boundary

For all practical purposes, one should be able to define a fitness boundary
min(fi) for all the problems fi and hence be able to use the meta-fitness al-
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gorithm above. In the rare case where this is not possible because the fitness
boundary is virtually unknown, one can still employ preemptive fitness evalua-
tion. This is done by changing the algorithm so that it first guesses the boundary
and then adjusts both the meta-fitness boundary and all the preemptive fitness
limits whenever it becomes known that the actual boundary is in fact lower.
The book-keeping is more involved though, and since it will not be used in this
thesis a detailed algorithm has been omitted.

Time-Savings Experienced

Depending on the experimental settings, the time-saving in meta-optimization
caused by the use of preemptive fitness evaluation ranges from about 50% to
a very substantial 85%. These estimates were computed from the experiments
later in this thesis by extrapolating the actual time usage with the measured
amount of preemptive abortion of the meta-fitness evaluations.

3.5 Noisy Meta-Fitness

The algorithm for computing the meta-fitness measure may cause two different
results for two executions with the same input behavioural parameters. This
is due to the stochastic nature of the optimizations that are being conducted
inside that algorithm.

In general, fitness functions that change stochastically over time like this are
called noisy. The overlaying meta-optimizer must be able to cope with such
noise, in order to accurately find good choices of behavioural parameters for
an optimizer by searching its noisy meta-fitness landscape. The following is a
survey of techniques for coping with noisy problems in general and a discussion of
which technique is most suitable for meta-optimization. A more extensive survey
of different categories of time-varying fitness functions and how to optimize them
with black-box methods can be found in [106].

In [107] DE is compared to other multi-agent optimization methods on a
number of benchmark problems with Gaussian noise added. The study in-
dicates that the DE method generally performs poorly on noisy optimization
problems and may require modifications to alleviate this. Variants of optimiza-
tion methods have indeed been developed to handle noisy fitness functions, or
even non-stationary (also called dynamic) fitness functions – meaning the op-
timum moves around in the search-space over time. It seems reasonable that
an optimization method being able to handle a non-stationary problem may
also be able to handle a noisy problem such as the one associated with meta-
optimization. An example of a PSO variant designed to cope with changing
fitness functions is due to Carlisle and Dozier [108]. There, the PSO essentially
resets its agents’ previous best known positions, ~p, if their corresponding fitness
values have changed after a designated period of time. This is reported to help
tracking a non-stationary optimum although an extra cost is incurred by having
to reevaluate the fitness at intervals.
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3.5.1 Averaging

A simple approach to lessen the effect of noise in a fitness function, without
modifying the optimization method itself, is to repeat the fitness evaluation a
number of times and use the average fitness value to guide the optimization.

It is suggested in [109] to schedule the number of times the fitness function is
evaluated for a GA optimizing a noisy problem. This is done in an effort to lessen
the effect of noise but at the same time decrease computation expense by only
repeating fitness evaluations when necessary. Scheduling shows performance
improvement on a number of noisy benchmark functions and is implemented in
a two-fold manner. First, fitness noise is considered more acceptable early in
an optimization run when the agents are spread out in the search-space and are
more likely to have significantly different fitness values, thus making the effect
of noise less significant. But as the optimization progresses and the fitness of the
agents become more similar, more fitness evaluations have to be performed and
averaged so as to lessen the effect of noise and more accurately tell the agents
apart with regard to their fitness. The second idea is that since the scheduling
is done for a GA in that paper and a GA uses selection of fitter agents in
its creation of new agents, the number of times the noisy fitness function is
evaluated can generally be made higher for the more fit agents as they are the
most likely to be chosen for reproduction anyway.

The belief of noise being less harmful early in an optimization run is also
used for the SA method in [110]. SA was briefly described in chapter 2 and is
based on local sampling of a single agent using a stochastic movement rule. So
noisy fitness functions are again suggested to be evaluated and averaged more
times later in the optimization run, as was suggested for a GA above. This claim
is backed by a mathematical proof in which convergence for the SA method on
noisy fitness functions is shown to require a gradual increase in the number of
times the fitness function is evaluated, so as to lessen the influence of noise.
The proof in [110] only holds for combinatorial, that is, discrete optimization
problems.

Studies with a GA on noisy fitness functions are conducted in [111] and
indicate multi-agent optimization methods generally have an advantage over
single-agent methods in the presence of noise. The results also suggest that
population-size be increased and the number of fitness repeats decreased, as
this seems to improve the results further. The cause of this appears to be
an implicit averaging of fitness evaluations, which occurs due to the multitude
of agents that are cooperating in optimization. This is echoed in [112] where
it is shown theoretically that using a special GA selection scheme known as
Boltzmann selection, the effect of Gaussian noise diminishes with an increasing
number of agents. Indeed, in the theoretical case of an infinite number of agents,
fitness noise is claimed to have no effect at all.

Stochastic deviations are already being lessened by repeating optimizations
and summing the results in the meta-fitness algorithm from figure 3.2, and the
algorithm in figure 3.3 employs Preemptive Fitness Evaluation to lessen the
time-usage, while ensuring evaluations are repeated until meta-fitness improve-
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ment can be determined correctly. This technique is simple to implement, works
well, and is almost transparently supported by many black-box optimization
methods. It is therefore preferred.

3.6 Choice of Meta-Optimizer

Because of the time usage involved in performing meta-optimization, the meta-
optimizer must be able to achieve good results using few iterations. Ideally
something like 20·n iterations will be allowed in a meta-optimization run, where
n is the number of behavioural parameters to be tuned. For DE/rand/1/bin
with n = 3 behavioural parameters this would mean a meta-optimization run
consists of 60 iterations, that is, 60 evaluations of the meta-fitness algorithm
in figure 3.3. This may also allow for the tuning of an optimizer’s behavioural
parameters with regard to problems that require more computation time. But
it is a considerable demand for the meta-optimizer to search the meta-fitness
landscape in so few iterations.

Considering the DE and PSO methods from chapter 2 and their optimiza-
tion progress as plotted in figures 2.7-2.10, it is clear that these two optimizers
with a standard choice of behavioural parameters are unable to achieve sat-
isfactory results using so few iterations. Even with the better choice of DE
parameters found by exhaustive search above, its optimization progress as re-
ported in figures 3.11-3.12 still does not appear to be rapid enough for DE to
be used as meta-optimizer. It may be possible to find behavioural parameters
for DE and PSO that make them perform well when they are to be used as the
meta-optimizer, but that would be meta-meta-optimization and we would be
getting ahead of ourselves.

Smit and Eiben [33] conduct meta-optimization experiments using the Co-
variance Matrix Adaptation ES (CMA-ES) as the meta-optimizer. The CMA-ES
is an optimization method originally due to Hansen and Ostermeier [113] that
has become popular because it achieves good performance on benchmark prob-
lems, see e.g. Garćıa et al. [114] for a comparison to other optimizers, and
CMA-ES does seem to have rapid optimization progress on a number of bench-
mark problems, see e.g. [113] [115], but CMA-ES is complicated to describe
and implement if simpler methods could be used as the meta-optimizer instead.
A more recent optimization method that has been made specifically for short
optimization runs is known as SNOBFIT and is due to Huyer and Neumaier
[116], however, it is also complicated to describe and implement.

The simple PS and LUS methods from chapter 2 were specifically designed to
quickly optimize simpler problems and were often able to achieve good results on
complex problems as well, as demonstrated in figures 2.11-2.14. From the sim-
plicity of the meta-fitness landscapes shown in figures 3.5-3.10 it would therefore
seem that either PS or LUS would be a good choice as the meta-optimizer.
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3.6.1 Comparison of Meta-Optimizers

Experiments will now be conducted with the PS and LUS methods to establish
which of them works best as the meta-optimizer, if at all. The DE/rand/1/bin
optimizer from before will be used again, in particular its behavioural param-
eters NP and F are being tuned while the parameter CR is held fixed at
CR = 0.9. Recall that PS and LUS sometimes have irregular performance and
may stagnate prematurely, so five meta-optimization runs will be conducted in
each experiment to overcome this, with each run consisting of 20 · n = 40 iter-
ations of the meta-optimizer because n = 2 behavioural parameters are being
tuned.

Figures 3.13-3.16 show the meta-optimization progress. The plots show the
meta-fitness landscapes from figures 3.5-3.10 superimposed with the optimiza-
tion moves made by either PS or LUS as the meta-optimizer. Their contem-
plated moves are shown as crosses and are the samples that PS and LUS make
that result in worse meta-fitness so a move to that position is not made. The
first thing to note is that PS has a tendency to focus its sampling while LUS
spreads the sampling more in the search-space. In fact, PS often samples the
same position several times, which is a quirk of that optimization method in
lower dimensional search-spaces due to its halving of the step-size and reversal
of direction that causes it to move back and forth to the same position several
times. As the dimensionality of the search-space increases it gets increasingly
unlikely that PS will sample the same position. This deficiency of PS in low-
dimensional search-spaces could perhaps be remedied, but it seems unnecessary
since LUS does not have this deficiency and can therefore be used instead. Con-
cerning the results achieved in these meta-optimization runs, both PS and LUS
locate the valley of good performing behavioural parameters for the DE opti-
mizer. Table 3.3 shows the four best sets of behavioural parameters found in
each meta-optimization experiment, note that these are not necessarily the re-
sults of four separate meta-optimization runs. The meta-fitness achieved from
using PS or LUS as meta-optimizer is similar to that found in the grid-search
of figures 3.5-3.10, although the location of the behavioural parameters are not
precisely centered in the apparently optimal regions from the meta-fitness land-
scapes depicted. In one case the PS and LUS meta-optimizers actually found
better results than the grid-search, this was for the experiment using all bench-
mark problems and allowing 60,000 optimization iterations. The grid-search
yielded a meta-fitness of 12556 for its best found behavioural parameters, while
table 3.3 shows that PS and LUS found behavioural parameters having a meta-
fitness around 9500, although it may well be due to stochastic noise.

Because only five meta-optimization runs are being conducted in each ex-
periment one should generally be wary of concluding too much from these ex-
periments. It does seem, however, that there is no clear winner as PS sometimes
works best (see the results with regard to all benchmark problems and 6,000
optimization iterations being allowed) and sometimes LUS works best (see the
results with regard to Sphere & Rosenbrock and 6,000 optimization iterations
being allowed). Overall PS and LUS seem to be somewhat comparable in terms
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of the quality of the behavioural parameters they can find.
Concerning the time usage it is a different matter. From table 3.2 LUS has

a clear advantage over PS as it is faster in performing meta-optimization. This
is because Preemptive Fitness Evaluation works better for some optimization
methods than others. As noted above, PS has a tendency in low-dimensional
search-spaces to focus its sampling and sometimes sample the same position
repeatedly, which will likely mean the meta-fitness evaluations have to be made
in their entirety and cannot be preemptively aborted, as the meta-fitness values
are too similar to be distinguished early in their evaluation. Regarding the time
usage of doing meta-optimization compared to that of doing exhaustive search,
see table 3.1, it is clear that meta-optimization requires only a small fraction of
the time for doing a more exhaustive search for behavioural parameters.

For these reasons LUS seems to be the preferred choice for a meta-optimizer
as it quickly found the behavioural parameters that made DE perform well in
a number of optimization scenarios. LUS will therefore be used in the meta-
optimization experiments for the remainder of the thesis.

3.7 Summary

This chapter gave a simple way of finding good behavioural parameters for an op-
timization method by employing another overlaying optimizer. This was named
Meta-Optimization and made possible because of the choice of meta-optimizer,
the LUS method from chapter 2, which requires comparatively few iterations to
find good solutions, and by using a technique called Preemptive Fitness Evalua-
tion for lowering the time usage further still. This meta-optimization setup will
be used in the following chapters to make detailed studies of optimizer variants,
now that their behavioural parameters can be tuned efficiently.
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Meta-Optimizer

Optimizer

Actual Problem(s)

Figure 3.1: The concept of meta-optimization. A black-box optimizer is used in
an offline manner as an overlaying meta-optimizer for finding good behavioural
parameters of another optimization method, which in turn is used to optimize
one or more actual problems.

� Initialize the problem-counter: i← 1, and the fitness-sum: s← 0.

� While (i ≤ N) iterate over the problems as follows:

– Initialize the run-counter: j ← 1.

– While (j ≤M) do the following:

* Perform an optimization run on problem fi using the given op-
timization method with the given choice of behavioural parame-
ters.

* Add the best fitness obtained in the run, call it fi(~g), to the
fitness-sum: s← s+ fi(~g) · wi, with wi being a weight.

* Increment the run-counter: j ← j + 1.

– Increment the problem-counter: i← i+ 1.

� Return s as the meta-fitness value of the given optimization method and
choice of parameters.

Figure 3.2: Meta-fitness algorithm for use in meta-optimization to rate the per-
formance of a given optimization method and choice of behavioural parameters.
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� Initialize the problem-counter: i← 1, and the fitness-sum: s← 0.

� While (i ≤ N) and (s < F ), do the following:

– Initialize the run-counter: j ← 1.

– While (j ≤M) and (s < F ), do the following:

* Perform an optimization run on problem fi using the given op-
timization method with the given choice of behavioural parame-
ters.

* Add the best fitness obtained in the run, call it fi(~g), to the
fitness-sum, ensuring it is non-zero by subtracting min(fi):

s← s+ (fi(~g)−min(fi)) · wi

with wi being a weight.
* Increment the run-counter: j ← j + 1.

– Increment the problem-counter: i← i+ 1.

� Sort the problems fi descendingly according to their contributions to the
overall fitness sum s. This will likely allow for earlier preemptive abortion
of the next meta-fitness evaluation.

� Return s as the meta-fitness value of the given optimization method and
choice of behavioural parameters.

Figure 3.3: Meta-fitness algorithm with preemptive evaluation used to rate the
performance of a given optimization method and choice of behavioural parame-
ters. This algorithm is the same as figure 3.2 above, but employing Preemptive
Fitness Evaluation to save computation time.
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� Initialize ~x to a random choice of behavioural parameters for the optimizer
whose parameters are to be tuned. For DE/rand/1/bin this would be a
random choice of ~x = (NP, CR, F )

� Compute the meta-fitness of the choice of behavioural parameters ~x using
the algorithm in figure 3.3, by passing the limit F = ∞ as an argument
to ensure full evaluation of the meta-fitness. Call the meta-fitness so
computed for f(~x) and store it for later use.

� Set the initial sampling range ~d to cover the entire space of behavioural
parameters for the optimizer whose parameters are being tuned.

� Until a termination criterion is met, such as a number of iterations having
been performed, or a threshold for f(~x) has been reached, repeat the
following:

– Pick a random vector ~a ∼ U
(
−~d, ~d

)
– Add this to the behavioural parameters ~x to create the new potential

choice of behavioural parameters, call these ~y:

~y = ~x+ ~a

– Compute the meta-fitness of the behavioural parameters ~y by using
the algorithm in figure 3.3 and by setting the preemptive fitness limit
F = f(~x), because the meta-fitness evaluation can be aborted if it
is worse than that needed for the new parameters ~y to replace the
currently best known parameters ~x, see next step.

– If (f(~y) < f(~x)) then update the best known choice of behavioural
parameters:

~x← ~y

Otherwise decrease the sampling-range by multiplication with the
factor q from Eq.(2.1):

~d← q · ~d

Figure 3.4: Using the LUS method as meta-optimizer.
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Figure 3.5: Meta-fitness landscape shown at different angles for DE/rand/1/bin
computed by varying the NP and F parameters and keeping a fixed parameter
CR = 0.9, measuring the performance of DE on Sphere and Rosenbrock in
30 dimensions over 50 optimization runs of 6,000 fitness evaluations each.
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Figure 3.6: Meta-fitness landscape shown at different angles for DE/rand/1/bin
computed by varying the NP and F parameters and keeping a fixed parameter
CR = 0.9, measuring the performance of DE on Sphere and Rosenbrock in
30 dimensions over 50 optimization runs of 60,000 fitness evaluations each.
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Figure 3.7: Meta-fitness landscape shown at different angles for DE/rand/1/bin
computed by varying the NP and F parameters and keeping a fixed parameter
CR = 0.9, measuring the performance of DE on all 12 benchmark problems
in 30 dimensions over 50 optimization runs of 6,000 fitness evaluations each.
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Figure 3.8: Meta-fitness landscape shown at different angles for DE/rand/1/bin
computed by varying the NP and F parameters and keeping a fixed parameter
CR = 0.9, measuring the performance of DE on all 12 benchmark problems
in 30 dimensions over 50 optimization runs of 60,000 fitness evaluations each.
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Figure 3.9: Meta-fitness landscape shown at different angles for DE/rand/1/bin
computed by varying the NP and F parameters and keeping a fixed parameter
CR = 0.9, measuring the performance of DE on all 12 benchmark problems
in 30 dimensions over 50 optimization runs of 6,000 fitness evaluations each.
Meta-fitness has been capped at 1e+15 for clarity.
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Figure 3.10: Meta-fitness landscape shown at different angles for
DE/rand/1/bin computed by varying the NP and F parameters and keep-
ing a fixed parameter CR = 0.9, measuring the performance of DE on all 12
benchmark problems in 30 dimensions over 50 optimization runs of 60,000
fitness evaluations each. Meta-fitness has been capped at 1e+15 for clarity.
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Figure 3.11: Comparison of optimization progress for DE/rand/1/bin using
the hand-tuned behavioural parameters NP = 300, CR = 0.9, F = 0.5 and
the grid-tuned parameters NP = 50, CR = 0.9, F = 0.6. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 3.12: Comparison of optimization progress for DE/rand/1/bin using
the hand-tuned behavioural parameters NP = 300, CR = 0.9, F = 0.5 and
the grid-tuned parameters NP = 50, CR = 0.9, F = 0.6. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization. Note that a fitness value of zero is reached for the Step
problem, which cannot be plotted on a logarithmic scale.
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Configuration 6,000 Iterations 60,000 Iterations
Sphere & Rosenbrock 1 hours 22 min 14 hours 04 min
All Benchmark Problems 12 hours 01 min 119 hours 18 min

Table 3.1: Time usage for computing a 40x40 grid of meta-fitness values for
the DE/rand/1/bin optimizer by varying the behavioural parameters NP and
F while keeping a fixed parameter CR = 0.9. Plots of the resulting grids can
be seen as meta-fitness landscapes in figures 3.5-3.10.

Problems Optimization Meta- Time UsageIterations Optimizer

Sphere & Rosenbrock
6,000 PS 9 min

LUS 5 min

60,000 PS 1 h 01 min
LUS 35 min

All Benchmark Problems
6,000 PS 26 min

LUS 22 min

60,000 PS 5 h 36 min
LUS 3 h 07 min

Table 3.2: Time usage for meta-optimizing DE/rand/1/bin with either the
PS or LUS as meta-optimizer and with different configurations of benchmark
problems and optimization run-lengths. The DE parameters NP and F are
being tuned while keeping a fixed parameter CR = 0.9. Plots of these meta-
optimization runs can be seen in figures 3.13-3.16.
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Figure 3.13: Meta-optimization progress of PS and LUS finding good be-
havioural parameters NP and F of DE/rand/1/bin with a fixed parameter
CR = 0.9, when DE is used for optimizing the Sphere and Rosenbrock
problems in 30 dimensions over 50 optimization runs of 6,000 fitness evalua-
tions each. Lines show moves made by the meta-optimizer, crosses show moves
contemplated but not taken as they would lead to worse meta-fitness. These are
superimposed on the meta-fitness landscape from figure 3.5 to show the valley
of good performing parameters is found.
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Figure 3.14: Meta-optimization progress of PS and LUS finding good be-
havioural parameters NP and F of DE/rand/1/bin with a fixed parameter
CR = 0.9, when DE is used for optimizing the Sphere and Rosenbrock
problems in 30 dimensions over 50 optimization runs of 60,000 fitness evalua-
tions each. Lines show moves made by the meta-optimizer, crosses show moves
contemplated but not taken as they would lead to worse meta-fitness. These are
superimposed on the meta-fitness landscape from figure 3.6 to show the valley
of good performing parameters is found.
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Figure 3.15: Meta-optimization progress of PS and LUS finding good be-
havioural parameters NP and F of DE/rand/1/bin with a fixed parameter
CR = 0.9, when DE is used for optimizing all 12 benchmark problems prob-
lems in 30 dimensions over 50 optimization runs of 6,000 fitness evaluations
each. Lines show moves made by the meta-optimizer, crosses show moves con-
templated but not taken as they would lead to worse meta-fitness. These are
superimposed on the meta-fitness landscape from figure 3.7 to show the valley
of good performing parameters is found. The meta-fitness landscape has been
capped at 1e+15 for clarity.
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Figure 3.16: Meta-optimization progress of PS and LUS finding good be-
havioural parameters NP and F of DE/rand/1/bin with a fixed parameter
CR = 0.9, when DE is used for optimizing all 12 benchmark problems prob-
lems in 30 dimensions over 50 optimization runs of 60,000 fitness evaluations
each. Lines show moves made by the meta-optimizer, crosses show moves con-
templated but not taken as they would lead to worse meta-fitness. These are
superimposed on the meta-fitness landscape from figure 3.8 to show the valley
of good performing parameters is found. The meta-fitness landscape has been
capped at 1e+12 for clarity.

65



Problem Configuration Parameters Found

Problems Optimization Meta-
NP F

Meta-
Iterations Optimizer Fitness

Sp
he

re
&

R
os

en
br

oc
k 6,000

PS

69 0.4029 124565
69 0.3951 131087
69 0.3873 134304
73 0.3750 150770

LUS

27 0.5940 61689
25 0.6137 65659
19 0.6714 86009
78 0.3808 175844

60,000

PS

25 0.7138 1063
77 0.4909 1142
77 0.5066 1147
79 0.5066 1172

LUS

52 0.5693 1069
60 0.5621 1115
42 0.5763 1115
61 0.5542 1124

A
ll

B
en

ch
m

ar
k

P
ro

bl
em

s

6,000

PS

52 0.4819 4.53e+6
42 0.5455 4.56e+6
52 0.4858 4.67e+6
55 0.4857 4.75e+6

LUS

51 0.5154 6.75e+6
64 0.4637 7.02e+6
64 0.4701 8.41e+6
72 0.4361 8.81e+6

60,000

PS

32 0.6875 9518
51 0.5304 13168
53 0.5304 13494
56 0.5304 13582

LUS

35 0.6193 9529
43 0.5928 11682
37 0.6113 11968
33 0.7104 12716

Table 3.3: Results of meta-optimizing behavioural parameters NP and F of
DE/rand/1/bin with a fixed parameter CR = 0.9, for a variety of scenarios: Dif-
ferent selections of benchmark problems, different number of optimization itera-
tions (6,000 and 60,000), and PS and LUS methods used as meta-optimizers.The
progress of the meta-optimization runs leading up to these results are shown in
figures 3.13-3.16.
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Chapter 4

Differential Evolution

4.1 Introduction

This chapter studies state-of-the-art variants of the DE optimization method
and how they perform using different choices of behavioural parameters in var-
ious optimization scenarios. A simplified DE variant is also studied to see if
performance is impaired or improved by simplifying the DE algorithm.

4.1.1 Background

Much research effort has been put into improving the performance of DE. The
behavioural parameters of DE were analyzed mathematically by Zaharie [30]
who aimed at keeping the optimizing agents from converging prematurely by
preserving their diversity in the search-space. The analysis yielded conditions for
the behavioural parameters to meet, although due to the limiting assumptions
of the analysis the empirical results were not a complete success.

Attempts have also been made at eliminating the need for tuning the be-
havioural parameters of DE altogether by perturbing or adapting the parameters
during optimization. It seems there are two reasons for doing this. First is the
belief that it remedies the need for a user to manually select parameters that
yield good performance on a problem at hand. Second is the belief that dif-
ferent choices of parameters are needed at different stages of optimization so
as to balance exploration and exploitation of the search-space. Otherwise the
parameters could just as well be held fixed during optimization. Both these
beliefs will be studied in this chapter.

One technique for doing such perturbing of the behavioural parameters of
DE is suggested by Kaelo and Ali [117]. It consists of picking the behavioural
parameters at random in each iteration, from the parameter ranges which have
been found in the literature to work well. They furthermore propose the use
of the Electromagnetism-Like (EM) method by Birbil and Fang [118], so as to
form a hybrid DE and EM method, where the attraction-repulsion feature of
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EM is combined with DE. Although this new DE hybrid is reported to improve
performance on a number of benchmark problems, it is not only significantly
more complicated than the basic DE method, but also fails to eliminate the
behavioural parameters as it actually introduces new parameters in form of the
boundaries for the stochastic sampling ranges of the DE parameters. Further-
more, the convergence proof of the EM method by Birbil et al. [21] is a limit-
proof, meaning that convergence to the global optimum occurs with probability
one, provided optimization is allowed to run for sufficiently many iterations.
But such a proof is useless in practice because the exact same thing can be
shown for completely random sampling as mentioned in chapter 1.

The Fuzzy Adaptive DE (FADE) by Liu and Lampinen [36] uses Fuzzy
Logic to adapt the DE behavioural parameters during an optimization run.
Fuzzy logic, originally due to Zadeh [37], provides a means for logical reasoning
with uncertainties. In FADE the fuzzy reasoning is used to alter DE behavioural
parameters according to observations of fitness improvements and population di-
versity and is reported to outperform DE with fixed and hand-tuned behavioural
parameters, especially on benchmark problems with higher dimensionalities.

Another example of an adaptive DE variant is the Self-adaptive DE (SaDE)
due to Qin and Suganthan [38]. The SaDE variant perturbs the F parameter
according to a normal distribution, and while the CR parameter is also ran-
domly picked, its observed effect on fitness improvement influences how and
when this random picking occurs. Additionally, SaDE uses several DE vari-
ants (e.g. DE/rand/1/bin and DE/current-to-best/1/bin, see [119]) which are
switched between in a stochastic manner according to their observed ability to
improve the fitness during optimization. Note that this is significantly more
complicated than the original DE method and will require a good deal more ef-
fort in implementation, which must be made up for by improved performance.

4.2 Dither & Jitter Variants

Several schemes for perturbing the differential weight F have been proposed in
the literature, see for example [25] [119]. The ones used by Storn himself are
generally the simple Dither and Jitter schemes [78] [120] which will also be used
in this study. In the Dither scheme a random differential weight F is picked on
a per-agent basis:

F = Fl + r′ · (Fu − Fl) (4.1)

so r′ ∼ U(0, 1) is a random number picked once for each agent being updated
using Eq.(2.2). Another way of perturbing the differential weight is to use the
Jitter scheme, also from [25] [120]:

Fi = Fmid · (1 + δ · (r′i − 0.5))

where r′i ∼ U(0, 1) is now being picked for each element of the vector being
updated in Eq.(2.2). The parameter δ determines the scale of perturbation and
will be eliminated shortly. For although these formulae appear to be distinct
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at first glance they are in fact equivalent, with the exception of Dither drawing
a random differential weight once for each agent-vector to be updated, and
Jitter drawing a random weight for each element of that vector. To see this let
Fl = Fmid · (1− δ/2) and Fu = Fmid · (1 + δ/2) in Eq.(4.1). A simpler and more
mathematical description of Dither would therefore be:

F ∼ U(Fl, Fu)

and for Jitter:
Fi ∼ U(Fmid · (1− δ/2), Fmid · (1 + δ/2))

Using a midpoint and a range instead of perturbation boundaries has the advan-
tage of being independent from each other, whereas the Fl and Fu boundaries
must also satisfy Fl < Fu, which would make automatic tuning of these more
difficult. A common notation will therefore be used here for both Dither and
Jitter, having a midpoint Fmid and a range Frange. For Dither this means the
differential weight is picked randomly as:

F ∼ U(Fmid − Frange, Fmid + Frange)

and for Jitter this would be:

Fi ∼ U(Fmid − Frange, Fmid + Frange)

meaning that Fi should be drawn once for every vector-element i in Eq.(2.2),
as opposed to once for the entire vector when using the Dither scheme.

The intention of perturbing the differential weight F was to free the user
from selecting a good value for F . But it has actually introduced two new
behavioural parameters which must be selected by the user, Fmid and Frange
determining the limits of perturbation for F . The midpoint can be anywhere
in Fmid ∈ [0, 2], and the perturbation range can be anywhere in Frange ∈ [0, 3],
which were chosen that wide to allow for unusual values when Fmid and Frange
will be automatically tuned later in this study. Note, however, that this also
allows for negative differential weights to occur, which for Jitter means the
computation of some vector-elements in Eq.(2.2) might use a positive differential
weight and for others a negative weight. The semantic meaning of this and how
it influences optimization performance is impossible to foresee.

Concerning stochastic behavioural parameters it seems to be the belief that
replacing fixed behavioural parameters with stochastic ones makes it easier for
a user to tune the optimizer’s behaviour, because the choosing of boundaries
for the stochastic parameters affect optimization performance more leniently
than choosing the actual parameters. Perhaps the belief is that sooner or later
a good choice of behavioural parameter will be chosen at random. But one
has to remember that completely random sampling of anything, whether it be
behavioural parameters or candidate solutions to the optimization problem at
hand, statistically takes a great many samples before finding a good choice.
Therefore one might question if perturbation of parameters such as done in
the Dither and Jitter schemes has a real chance of finding good choices of
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behavioural parameters, or whether such perturbation just slightly alters the
behaviour of the DE agents, without having a generally adaptive effect on the
behavioural parameters that would make DE perform well on mostly any given
optimization problem. This will be studied later.

4.3 JDE Variant

In addition to the perturbing DE variants above the adaptive DE variant known
as JDE will also be used, which is due to Brest et al. [39]. This variant has
been chosen because its performance has been found to compare well against
other allegedly state-of-the-art, adaptive DE variants [39] [121]. It is presented
by its authors as a Self-Adaptive DE as well because it eliminates the need for
a user to select the F and CR parameters; yet ironically introduces 8 new user-
adjustable parameters to achieve this. But this tendency is common for adaptive
DE variants and indeed also for the comparatively simpler Dither and Jitter
variants as described above, which merely perturb a behavioural parameter.

The JDE variant works as follows. First assign start values to F and CR, call
these Finit and CRinit, respectively. Then before computing the new potential
position of a DE agent using Eq.(2.2), first decide what parameters F and CR
to use in that formula. With probability τF ∈ [0, 1] draw a new random F ∼
U(Fl, Fl +Fu), otherwise reuse F from previously, where each DE agent retains
its own F parameter. Similarly, each agent retains its own CR parameter for
which a new random value CR ∼ U(CRl, CRl+CRu) is picked with probability
τCR ∈ [0, 1] and otherwise the old CR value for that agent is reused. Whichever
F and CR values are being used in the computation of Eq.(2.2), they will
survive to the next iteration or be discarded along with the agent’s new potential
position ~y according to fitness improvement.

In the original description of JDE [39] the authors encode each agent’s F
and CR values in that agent’s candidate solution vector ~x by extending the
vector accordingly. But since these F and CR values never themselves undergo
the crossover and mutation computation in Eq.(2.2), this encoding is not only
unnecessary but it makes the presentation hard to comprehend. It would have
been difficult if not impossible to implement JDE from the published description
in [39] had its authors not supplied the actual source-code. This is a good
example of an optimization method which is perhaps made more complex than
it ought to be, because heuristical optimizers cannot currently be proven correct
by analytical means.
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4.4 Experimental Results

4.4.1 Standard Behavioural Parameters

The purpose of this experiment is to establish how well these DE variants fare
against each other with standard choices of behavioural parameters. The pa-
rameters are shown in table 4.2 and are standard in the literature [16] [17] [119]
[39]. They come from a variety of both manual and automated experiments
with choosing behavioural parameters. The experience from section 3.3.2 has
been used in choosing two of the three parameters for the basic DE/rand/1/bin
variant, namely NP and F , as well as setting the population size NP = 50 in-
stead of 300 for the Dither and Jitter variants, which is otherwise common in the
literature. What is meant by standard DE parameters is therefore the currently
best known behavioural parameters including the experience from chapter 3.

Concerning the end results achieved, as shown in table 4.4, the first thing
to note is that they are fairly similar overall, with a DE variant performing a
little better than the other DE variants on some problems and a little worse
on others. For example, the Dither and JDE variants perform poorly on the
Schwefel1-2 problem which Jitter is best at optimizing. But JDE performs
better on Rastrigin. Concerning the average performance progress as shown in
figures 4.1 and 4.2 the same holds true, for instance, the Jitter variant has best
progress on the Rosenbrock problem and worst progress on the Schwefel2-21
problem. Another interesting thing to note is that the average optimization
progress seems to be fairly similar in curvature on some of these problems,
see for instance the QuarticNoise, Schwefel1-2, and Schwefel2-22 problems, this
suggests that the inner workings of these DE variants are perhaps somewhat
similar in spite of their algorithm differences.

4.4.2 Overall Meta-Optimized Performance

The purpose of this experiment is to establish how well the DE variants per-
form when their behavioural parameters have been tuned for all 12 benchmark
problems simultaneously, with the DE variants being allowed 60,000 iterations
for each optimization run on each of the problems. The boundaries for the be-
havioural parameters are shown in table 4.1 where the population size NP is
now bounded to 200 agents following the experience in chapter 3 where good
choices of NP were found to be below that. The parameters thus found through
meta-optimization are shown in table 4.3. Comparing these to the standard pa-
rameters in table 4.2 shows several differences. For the basic DE variant the
population size is now NP = 19 which is considerably lower than the 300 agents
originally suggested in the literature and also lower than the 50 agents found
to be a good choice in chapter 3. Here the parameter CR was also being meta-
optimized whereas in chapter 3 it was held fixed at CR = 0.9 as recommended in
the literature. The meta-optimized parameters have CR = 0.122 which appar-
ently gives a different influence of the population size NP on optimization per-
formance, hence the smallerNP = 19. For the Dither and Jitter variants the CR
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and Fmid parameters are fairly similar to those recommended in literature, but
their ranges of perturbation, Frange, are significantly greater than recommended
in literature, especially for the Jitter variant where Frange = 0.0005 was rec-
ommended but meta-optimization found a good choice being Frange = 0.3426.
As for the parameters of JDE they are more difficult to interpret because their
intrinsic meaning is opaque. However, it can be seen easily that the meta-
optimized JDE parameters are significantly different from the standard choice
recommended in the literature.

Using the DE variants with the meta-optimized parameters results in ta-
ble 4.5 which will now be compared to the results in table 4.4 from using stan-
dard behavioural parameters. Recall that the performance measure that was
being tuned for in meta-optimization was the sum of the fitness achieved in
50 optimization runs on each of these benchmark problems using 60,000 itera-
tions. This means the measures in table 4.5 that ought to benefit most from
meta-optimization are the mean fitness values in an overall manner for all the
benchmark problems. Negligible differences in performance will be ignored in
the following commentary because these are only stochastic benchmark results
which should not be taken as precise measurements of performance.

When using meta-optimized parameters the basic DE variant has improved
the mean fitness dramatically on the Rastrigin problem but it has worsened
just as dramatically on the Schwefel1-2 problem. The other results are some-
times a little better and sometimes a little worse when compared to the results
of using standard parameters. For the Dither variant the mean fitness results
using meta-optimized parameters are mostly an improvement, especially on the
Rastrigin and Schwefel1-2 problems. The results for the Jitter variant are not
as clear since the mean fitness achieved on the Penalized2 and Rastrigin prob-
lems is improved while it is greatly worsened on the Penalized1 and Schwefel1-2
problems. However, the quartiles on these problems are comparable to before
so the performance difference is due to irregularity in the results of only a few
optimization runs. For the JDE variant the mean fitness results are overall im-
proved using the meta-optimized parameters, especially for the Rastrigin and
Schwefel1-2 problems. It is true that JDE has worse mean fitness on some prob-
lems, e.g. the Ackley and Griewank problems, but the differences are negligible
considering the quartiles and the fact that they have optimal fitness values of
zero and the results are close to that.

The first conclusion to be made is that the meta-optimized behavioural pa-
rameters seem to perform roughly on par with the standard parameters, some-
times improving the results slightly and sometimes worsening them. This would
suggest that the standard parameters were well suited for this test bed of bench-
mark problems with a dimensionality of 30 and optimization run-lengths of
60,000 iterations. This does not rule out meta-optimization as a useful tech-
nique for finding behavioural parameters, rather the opposite because no human
effort is needed for doing meta-optimization whilst much human effort has been
put into finding the guidelines for choosing DE parameters by hand and human
effort will be needed in continually applying these guidelines. Additionally, the
parameters here termed standard were in fact using a choice of population size
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NP = 50 which was found in chapter 3 using exhaustive search of a grid of
parameter combinations to be much better than NP = 300 as recommended in
literature. So the standard parameters used here are not entirely hand-tuned
but have been significantly refined by automated tuning, which must be taken
into account when comparing the effort that has been put into finding the stan-
dard versus the meta-optimized parameters.

The other conclusion to be made regards the performance of the DE variants
compared to each other. From the end results in table 4.5 it now appears that
JDE is the best performing DE variant. Although in the progress plots in
figures 4.3 and 4.4 it seems that JDE achieves its better results half-ways or
later towards the end of the optimization runs and does not have any advantage
earlier during optimization where it performs roughly on par with the other DE
variants, except perhaps for the basic DE variant which is better early during
optimization on some of these problems. It is also important to stress that JDE
only became the top performing DE variant with regard to the end results in
table 4.5, after it had its behavioural parameters meta-optimized. This is ironic
because JDE was specifically designed so as not to need such parameter tuning
as the JDE parameters were intended to adapt during optimization. Figures 4.5
and 4.6 show in more detail how meta-optimization has mostly improved JDE
performance, the exception being the mean fitness progress on the Griewank
and Schwefel2-21 problems, which, however, can be seen from the quartiles to be
irregular and the tuned parameters do often but not always achieve significantly
better fitness values than using the standard parameters.

The remainder of this chapter will use JDE in performance comparisons
because it was found here to be the one achieving best end results overall and
because its complicated algorithm is in stark contrast to the simplified DE that
will be introduced next.

4.4.3 Simplification

This section introduces a simplification to the DE optimization method. The
DE/rand/1/bin family of optimizers has been used in the previous experiments
due to its popularity. The DE/best/1/bin variant on the other hand, has been
long out of favour with researchers and practitioners because it is believed to
have inferior performance with tendencies for premature convergence [25] [78].
The DE/best/1/bin replaces Eq.(2.2) with the following:

yi =
{
gi + F · (ai − bi) , (i = R) or (ri < CR)
xi , else (4.2)

where ~g is the population’s best known position in the search-space until now.
In the original version of this, the agents ~a and ~b are chosen to be different not
only from each other, but also from the agent ~x currently being processed. It
simplifies the implementation a good deal if this is not required and only ~a and ~b
must be different. In particular, first the index ra for agent ~a is picked randomly
from {1, · · · , NP}, and then the index rb for the other agent is determined by
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first picking a random r′b ∈ {1, · · · , NP − 1} and then computing:

rb =
{
ra + r′b , ra + r′b ≤ NP
ra + r′b −NP , else

Furthermore, instead of iterating over every agent in the population as done in
the original DE algorithm in figure 2.3, it is easier to also randomly pick the
agent ~x to be updated. The DE variant with these simplifications will be called
DE/simple.

Meta-optimization will be used to find good choices of behavioural param-
eters for DE/simple and the search-space for the behavioural parameters is
bounded same as for DE/rand/1/bin, as shown in table 4.1. Meta-optimizing
the behavioural parameters of DE/simple so as to perform well on all 12 bench-
mark problems when allowed 60,000 optimization iterations, yields:

NP = 186, CR = 0.8493, F = 0.4818 (4.3)

Comparing these parameters to the ones tuned for basic DE/rand/1/bin as
shown in table 4.3, there is a strikingly big change in population size from NP =
19 to NP = 186 and the crossover probability CR being almost inverted from
having been CR = 0.1220 for the basic DE variant to now being CR = 0.8493
for the simplified DE. The differential weight F is similar to before, though.
This is interesting because it shows that fairly small changes and simplifications
made to an optimization algorithm can cause rather significant changes to the
behavioural parameters that makes it perform well.

Table 4.6 shows the end results of using DE/simple and the JDE variant. It
is first noted that the simplified DE cannot optimize Ackley at all within the
number of iterations allowed and it also does not perform too well on Rastrigin.
But on the Rosenbrock, Schwefel1-2 and Schwefel2-21 problems the simplified
DE achieves significantly better results than JDE as it often comes close to the
optimal fitness value of zero and particularly the Rosenbrock and Schwefel1-2
problems are considered hard problems. It is true that DE/simple has slightly
worse average performance on e.g. Penalized1 and 2, but the quartiles reveal
that it often finds solutions to these problems of better fitness than those found
by JDE. As noted previously, however, these are stochastic benchmark results
and should not be considered as precise measurements of performance capa-
bilities, so when an optimizer finds solutions close to the optimal fitness value
and there is some small irregularity it is hard to conclude that one optimizer
is better than the other. The performance of DE/simple and JDE on e.g. the
Penalized1 and 2 problems therefore seems to be comparable.

Concerning the optimization progress of DE/simple versus JDE as shown
in figures 4.7 and 4.8, it is obvious that DE/simple stagnates quickly on the
Ackley and Rastrigin problems. On the other hand it can also be seen that
DE/simple progresses better than JDE earlier during optimization on most of
the benchmark problems. Concerning regularity as depicted by the quartiles
in these plots, the optimization progress might seem quite irregular at a first
glance, but it should be kept in mind that the fitness axes are logarithm scaled
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so what might appear as a big irregularity in e.g. the Griewank plot is actually
solutions that are all fairly close the optimal fitness value.

The experiments have shown that the DE/simple variant, which keeps its be-
havioural parameters fixed during optimization, can have its parameters tuned
so as to perform on par with the more sophisticated JDE/rand/1/bin variant,
which attempts to adapt its behavioural parameters during optimization. On
some of the benchmark problems DE/simple holds the advantage and on other
problems JDE is best.

4.4.4 Short Optimization Runs

The purpose of this experiment is to establish how the DE/simple and JDE op-
timizer variants perform when their behavioural parameters have been tuned for
6,000 optimization iterations instead of 60,000 as before. Tuning the behavioural
parameters with regard to all 12 benchmark problems results in the parameters
shown in table 4.7. Comparing the DE/simple parameters to those found in
Eq.(4.3) when allowing 60,000 optimization iterations shows that a somewhat
smaller population size is now being used, NP = 136 as opposed to NP = 186,
a crossover probability CR of almost one as opposed to CR ' 0.85, and a lower
differential weight F ' 0.28 as opposed to F ' 0.48. It is unknown why the
parameters should be chosen differently like this and the only noteworthy thing
is perhaps that the population size still remains rather high at NP = 136 even
though only 6,000 optimization iterations are being allowed. Comparing the
JDE parameters to the ones tuned for 60,000 optimization iterations as shown
in table 4.3, the only parameter that is roughly the same is the population size
NP whilst the other parameters are very different. The intrinsic meaning of
this parameter change is unknown as the inner workings of the JDE algorithm
are even more opaque than those of DE/simple.

Representative optimization results of using these behavioural parameters
are shown in figures 4.9 and 4.10. What is interesting in these plots is what
happens to the optimization progress both before, at, and after the point of
6,000 optimization iterations for which the performance was sought tuned.

For DE/simple as shown in figure 4.9 the performance is improved overall on
the Schwefel1-2 problem when the behavioural parameters are tuned for 6,000
iterations instead of 60,000. That is, the performance is improved both before
and after this number of optimization iterations. On the Schwefel2-21 problem
the inverse is true because the performance is now worse both before and after
the 6,000 iterations mark. On the Rastrigin problem the performance is im-
proved early during optimization at around 2000 iterations, but worsened for
the remainder of the optimization run, including a worse performance at the
6,000 iterations mark for which the behavioural parameters were tuned. On the
Schwefel2-22 problem there is an improvement before and somewhat after the
6,000 iterations mark but stagnation then occurs and the behavioural param-
eters tuned for 60,000 iterations gradually start to perform better and finally
yield significantly better fitness values. These results are representative for all
the benchmark problems when comparing the performance of behavioural pa-
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rameters for DE/simple that were tuned for either 60,000 or 6,000 optimization
iterations, namely that sometimes both the short- and long-term performance is
improved, sometimes both are worsened, sometimes the short-term performance
is improved but the long-term performance is worsened, etc.

For JDE the results are similarly mixed as shown in figure 4.10. On the
Rastrigin problem JDE performs slightly worse at the 6,000 iterations mark
when its behavioural parameters were specifically tuned to perform well on all
12 benchmark problems using 6,000 iterations instead of 60,000. JDE stagnates
and is unable to optimize the Rastrigin problem, whereas using behavioural pa-
rameters tuned for 60,000 iterations it is able to find fitness values close to the
optimal value of zero later in the optimization run. On the Schwefel1-2 problem
there is a small improvement both before and after the 6,000 iterations mark,
however, it would seem that there is just a lag between the two performance
curves and from the quartiles the performance can be seen to be somewhat
irregular and overlapping so it is hard to say that one choice of behavioural
parameters is definitely better than the other on the Schwefel1-2 problem. On
the Schwefel2-21 problem the parameters tuned for 6,000 iterations show a tiny
improvement prior to that mark, but then seem to stagnate and the performance
then becomes worse than for the parameters that were tuned for 60,000 itera-
tions. On the Schwefel2-22 problem there is a slight performance improvement
prior to the 6,000 iterations mark and that improvement becomes greater as
optimization progresses. The results are similar on the other benchmark prob-
lems, namely that short- and long-term performance is sometimes improved and
sometimes worsened, as was the case for DE/simple.

The cause of this might be that all 12 benchmark problems were used in the
meta-optimization process and given the shorter optimization runs too much
pressure was perhaps put on the DE variants to perform well on all 12 problems.
To test this theory the behavioural parameters have instead been tuned for the
four problems considered, namely the Rastrigin, Schwefel1-2, Schwefel2-21, and
Schwefel2-22 problems. The parameters thus found are shown in table 4.8.
Comparing these to the parameters tuned for all 12 benchmark problems as
shown in table 4.7, the parameters for DE/simple can be seen to be rather similar
while the JDE parameters are very different. The optimization performance for
DE/simple is shown in figure 4.11 where it is compared to the performance
of using the parameters that were tuned for all 12 benchmark problems. Since
these parameters are rather similar it is no surprise that the optimization results
are also similar, with the exception of the Schwefel1-2 problem where the mean
progress has worsened. However, it can be seen from the quartiles that the
reason for this worsening is due to only a few optimization runs performing
more poorly and the performance is otherwise on par with before. For JDE
the results are shown in figure 4.12 and the performance at the 6,000 iterations
mark has worsened slightly for the Rastrigin problem, improved slightly for
the Schwefel1-2 problem, and is about the same for the Schwefel2-21 and 2-22
problems. Interestingly, the mean performance on Rastrigin and Schwefel2-21
and 2-21 up until the 6,000 iterations mark is somewhat worse than when the
behavioural parameters were tuned for all 12 benchmark problems. This must
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be due to the inner workings of the JDE algorithm and is something that is not
taken into account in the meta-optimization technique that was employed here,
which merely tried to find behavioural parameters that improved performance
at exactly the 6,000 iterations mark. The performance after this 6,000 iterations
mark is improved towards the end on the Rastrigin problem and it is improved
immediately after this mark on the Schwefel2-21 problem. On the Schwefel1-2
and Schwefel2-22 problems the performance is actually worsened significantly
compared to before.

The conclusion is therefore that tuning the behavioural parameters for just
these four problems instead of all twelve benchmark problems in an attempt
to improve performance at the 6,000 iterations mark does not have any con-
sistently improving effect. For the DE/simple variant the results were rather
similar and for the JDE/rand/1/bin variant the results were sometimes better
and sometimes worse. It therefore seems that 6,000 optimization iterations are
perhaps too few iterations for the DE variants to work well without making per-
formance concessions. It also seems that tuning the parameters for just 6,000
optimization iterations more often results in stagnation than using parameters
that were tuned for 60,000 iterations. This implies that behavioural parameters
cannot always be tuned for shorter optimization runs and still be expected to
perform well for longer optimization runs, as was otherwise found to be the
case for the meta-fitness landscapes plotted in chapter 3. For these reasons the
remaining experiments will be conducted with 60,000 optimization iterations or
more to be able to properly distinguish performance characteristics of optimizer
variants.

4.4.5 Generalization Ability

It would be preferable to not have to tune the behavioural parameters of an opti-
mization method for each new problem encountered. The ability of an optimiza-
tion method to perform well on problems for which its behavioural parameters
were not specifically tuned may be called its generalization ability. The purpose
of this experiment is to establish the generalization ability of the DE/simple
and JDE/rand/1/bin optimizer variants. Recall that JDE was devised specifi-
cally with the intent of alleviating parameter tuning by adapting its parameters
during optimization and this experiment will seek to uncover whether JDE has
any consistent advantage over DE/simple in this regard, as DE/simple keeps its
behavioural parameters fixed during optimization. In order to test this, three
different sets of benchmark problems will be used in meta-optimization and the
performance on the remainder of the benchmark problems will then be studied.
This is a simple form of cross-validation, see [122] for a survey of cross-validation
techniques. The sets of benchmark problems are:

� Rosenbrock & Sphere, one hard and one easy problem.

� Rastrigin & Schwefel1-2, because DE/simple had difficulty optimizing Ras-
trigin and JDE had difficulty optimizing Schwefel1-2.
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� QuarticNoise, Sphere & Step, because they are all unimodal problems with
QuarticNoise having noise added and Step being a discontinuous version
of Sphere. Parameters tuned for these simple problems may not generalize
well to harder problems.

DE/simple

The behavioural parameters for DE/simple that were meta-optimized with re-
gard to the three sets of benchmark problems are shown in table 4.9. The
parameters that are most notably different from the parameters tuned for all 12
benchmark problems are the ones tuned for the QuarticNoise, Sphere & Step
problems, which have significantly smaller population size NP and crossover
probability CR. The parameters tuned for Rastrigin & Schwefel1-2 are very
similar to those tuned for all 12 benchmark problems.

Using the parameters tuned for the Rosenbrock & Sphere problems gives the
optimization results in figures 4.13 and 4.14 as well as the end results shown in
table 4.11. The first thing to note concerns the mean fitness achieved after 60,000
iterations on the Rosenbrock and Sphere problems, which was the performance
measure the behavioural parameters were being tuned for. The mean fitness
achieved on Rosenbrock is similar to that achieved from using parameters that
were tuned for all 12 benchmark problems, but the quartiles reveal that the
new parameters yield better performance in many of the optimization runs. On
the Sphere problem the mean fitness performance is improved significantly, but
it was already so close to the optimal fitness of zero that it is only of interest
in the sense that the optimum is now being approached quicker. Regarding
the performance on the remaining problems for which the parameters were not
specifically tuned, the performance is worsened somewhat on most of the other
problems, perhaps with exception of the Schwefel1-2 problem where the quartiles
reveal that better solutions are now found. Also, optimization now progresses
a bit faster on the Schwefel2-22 problem.

Using the parameters tuned for the Rastrigin & Schwefel1-2 problems gives
the optimization results in figures 4.15 and 4.16. The performance on Rastri-
gin seems to be unchanged and DE/simple still cannot optimize that problem
even though its parameters were now tuned partially for that problem. On
the Schwefel1-2 problem the mean performance is somewhat worse towards the
end, but the quartiles reveal that better solutions are actually found. On the
remaining benchmark problems the performance is comparable to when the be-
havioural parameters were tuned for all 12 benchmark problems, which is not a
surprise since the behavioural parameters are so similar. The exception is the
Schwefel2-22 problem on which the mean fitness is now worse but the quartiles
reveal that it is due to occasional performance outliers.

Using the parameters tuned for the QuarticNoise, Sphere & Step problems
gives the optimization results in figures 4.17 and 4.18. Performance is improved
on the QuarticNoise and Step problems. The QuarticNoise problem is noisy
and the fitness results are within the range of the noise and are therefore com-
parable. Performance on the Sphere problem is worsened slightly, but it is so
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close to the optimal fitness value of zero that they too are deemed comparable.
The overall sum of these is decreased, however, and as it is the measure that
meta-optimization attempted to tune for, it explains why the Sphere result may
have been allowed to get worse because the overall fitness sum has improved.
On the remaining benchmark problems for which the behavioural parameters
were not specifically tuned, performance has worsened on several problems in-
cluding Rosenbrock, Schwefel1-2 and Schwefel2-22. Interestingly, performance
has improved on the Rastrigin problem which DE/simple was previously having
difficulty optimizing, although the optimum is still not quite located.

Overall it can be concluded that meta-optimizing the behavioural parame-
ters of DE/simple with regard to these subsets of benchmark problems yields
a comparable or slightly improved performance on the problems for which the
parameters were tuned, while the performance was sometimes worse and some-
times better on the problems for which the parameters were not specifically
tuned.

JDE/rand/1/bin

The behavioural parameters for JDE/rand/1/bin that were meta-optimized
with regard to the three sets of benchmark problems are shown in table 4.10.
Due to the opaque nature of the JDE algorithm and its parameters, only the
population size NP will be commented here as it can be readily seen to be quite
different, ranging from NP = 14 when tuned for the Rosenbrock & Sphere prob-
lems to NP = 97 when tuned for the QuarticNoise, Sphere & Step problems.

Using the parameters tuned for the Rosenbrock & Sphere problems gives the
optimization results in figures 4.19 and 4.20. On the Rosenbrock and Sphere
problems for which the parameters were tuned optimization progress is now
faster, although the Rosenbrock end results are similar to before and the Sphere
results were already so close to the optimum that the results should just be
deemed comparable. On the remaining benchmark problems for which the JDE
parameters were not specifically tuned there seems to be greater irregularity
as shown by the quartiles. Take the Penalized1 and 2 problems, for example,
where the mean performance is significantly worse but the quartiles show that
significantly better solutions are indeed found. However, as these are all close to
the optimal fitness value of zero the results on Penalized1 and 2 should also just
be deemed comparable. Performance does appear to be considerably worsened
on Rastrigin and Schwefel1-2, though.

Using the parameters tuned for the Rastrigin & Schwefel1-2 problems gives
the optimization results in figures 4.21 and 4.22. On the Rastrigin problem the
performance is similar up until the last 15000 optimization iterations where the
mean performance is now worse and the quartiles reveal great irregularity with
fewer good solutions being found. On the Schwefel1-2 problem there is a small
improvement for the entire duration of optimization. Again, the explanation
for why meta-optimization has found this choice of parameters that worsens
the performance on one of the problems it was supposedly tuned for, while im-
proving performance on the other problem, is due to the equal weighting of the
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problems. From table 4.12 it can be seen that the sum of the fitness results
when using the parameters that were tuned for all 12 benchmark problems is
the mean fitness on Rastrigin plus the mean fitness on Schwefel1-2, that is,
0.02 + 10.38 = 10.40, while it is 4.27 + 5.56 = 9.83 when using the parameters
tuned specifically for these two problems. Although these numbers are stochastic
and may vary somewhat, it does explain why the meta-optimized parameters
exhibit this tendency of sometimes worsening and sometimes improving indi-
vidual benchmark results, as it is the overall performance sum that is sought
improved. Concerning the performance on the benchmark problems for which
these parameters were not specifically tuned there is clearly worse performance
on Schwefel2-22, but otherwise the performance seems to be comparable taking
the quartiles into account and the fact that fitness values close to optimal are
often found.

Using the parameters tuned for the QuarticNoise, Sphere & Step problems
gives the optimization results in figures 4.23 and 4.24. On the QuarticNoise
problem there is a slight improvement in the entire optimization progress. On
the Sphere problem there is improvement towards the end of the optimization
run. On the Step problem there is a slight worsening due to the fact that one
or a few of the optimization runs achieve sub-optimal results. Considering the
proximity to optimal fitness values the performance is deemed comparable over-
all on the three problems for which the behavioural parameters were tuned.
On the problems for which the parameters were not specifically tuned there is
dramatically worse performance on the Schwefel1-2 problem and also somewhat
worse on the Rastrigin and Schwefel2-21 problems. On the Rosenbrock and
Schwefel2-22 problems the performance is comparable. Taking the irregularity
of the results into account as well as their proximity to optimal fitness values,
the performance is also somewhat comparable on the remaining problems, be-
ing a little better perhaps on the Ackley problem whilst a little worse on the
Penalized1 and 2 problems.

The overall conclusion for the generalization ability of JDE/rand/1/bin is
similar to that of DE/simple above, namely that by tuning the behavioural pa-
rameters for only a subset of the 12 benchmark problems, performance is some-
times improved on the remaining problems for which the parameters were not
specifically tuned and sometimes the performance is worsened. So there does not
appear to be any consistent advantage to using JDE over DE/simple in terms of
the generalization ability. This is important because an assumed generalization
ability was part of the justification for introducing the more complicated JDE
variant in the first place.

4.4.6 Specialization Ability

The purpose of these experiments is to establish how well the DE/simple and
JDE/rand/1/bin optimizers are able to specialize to certain problems. This is
useful when one needs to optimize a number of problems that are closely related
but where the standard choice of behavioural parameters do not perform well.

It has been observed in the previous experiments that DE/simple is unable
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to optimize Ackley and Rastrigin with the behavioural parameters tested. Ta-
ble 4.13 shows the behavioural parameters for DE/simple tuned to perform well
on the Ackley and Rastrigin problems individually. These are almost the inverse
of the parameters found to work well on all 12 benchmark problems in an over-
all manner, which explains why poor performance was observed on those two
problems. The population size NP has decreased significantly, the crossover
probability CR has decreased to be almost zero, its lower limit, whereas before
it was closer to its upper limit of one. The differential weight F has increased
to twice its previous value, or more. The optimization progress of using these
specialized behavioural parameters is shown in figure 4.25 and can be seen to
be a great improvement as solutions close to the optimal fitness values are now
being found.

For the JDE/rand/1/bin variant the previous experiments showed perfor-
mance problems on the Rosenbrock and Schwefel1-2 problems. The behavioural
parameters tuned for these two problems individually are shown in table 4.14
but are again difficult to interpret due to their opaque nature, although it can
be noted that the population size NP appears to be somewhat similar to that of
the parameters tuned for all 12 benchmark problems. The optimization progress
of using these specialized behavioural parameters is shown in figure 4.26 and is
not as impressive an improvement as for DE/simple. Significant performance
improvement on the Rosenbrock problem occurs only at the end where near-
optimal fitness values are achieved on occasion. On the Schwefel1-2 problem
better results are obtained but there is also a much increased irregularity.

From these experiments it would therefore seem that JDE does not specialize
quite as well as DE/simple does, although one should be wary of concluding
too much from just a few experiments as the reverse may be true on other
optimization problems.

4.4.7 Long Optimization Runs

This experiment will study the performance of DE/simple and JDE/rand/1/bin
using longer optimization runs. This is only useful in practise when the fitness
function is fast to evaluate. Many studies in the literature report results for
such long optimization runs, see e.g. [36] [25], and it is apparently believed
that adaptive parameter schemes need additional iterations for the adaptation
to become effective.

It has been observed in the previous experiments that DE/simple had diffi-
culty optimizing the Ackley and Rastrigin problems when its behavioural param-
eters were not tuned specifically for those problems. Whether this was caused
by too short optimization runs will now be tested. There are no hand-tuned be-
havioural parameters available for DE/simple so the parameters meta-optimized
for all 12 benchmark problems when allowed 60,000 optimization iterations will
be used, see table 4.9. Figure 4.27 shows that the optimization progress stag-
nates early during optimization and it therefore seems reasonable to conclude
that DE/simple is unable to optimize the Ackley and Rastrigin problems using

81



this choice of behavioural parameters, seemingly no matter how many optimiza-
tion iterations are allowed.

Concerning JDE/rand/1/bin it has been observed that especially the Rosen-
brock and Schwefel1-2 problems were difficult for JDE to optimize. Using the
standard behavioural parameters for JDE the Rastrigin and Schwefel2-21 prob-
lems were also not quite optimized within 60,000 iterations, see table 4.4. Fig-
ure 4.28 shows the optimization progress when allowing 10 times as many it-
erations. First consider the use of standard parameters where it can be seen
that near-optimal fitness values are indeed found for the Rastrigin, Rosenbrock
and Schwefel1-2 problems when allowing more iterations. Performance on the
Schwefel2-21 problem is irregular and apparently stagnates before the optimal
fitness value of zero is quite reached. Now compare this to the use of behavioural
parameters that were tuned for all 12 benchmark problems using 60,000 opti-
mization iterations, also depicted in figure 4.28, from which it can be seen that
optimization generally progresses faster. On the Rastrigin problem both choices
of parameters find near-optimal fitness values and are therefore deemed compa-
rable. For the Rosenbrock problem the performance is comparable until around
250,000 iterations where the standard parameters start to perform better. On
the Schwefel1-2 problem optimization is improved overall. On the Schwefel2-21
problem optimization initially progresses faster and the mean fitness is improved
throughout, but the quartiles reveal that slightly better fitness values are found
by use of the standard parameters. It can therefore be concluded that JDE is
capable of optimizing most of the 12 benchmark problems with the standard
choice of behavioural parameters, provided enough iterations are being allowed.
Tuning the parameters for use with 60,000 optimization iterations sometimes
leads to better and sometimes worse results when allowing 10 times as many
iterations.

The behavioural parameters can be tuned specifically for these longer opti-
mization runs but due to the computational time involved only four benchmark
problems are being used: Ackley, Rastrigin, Rosenbrock and Schwefel1-2, that
is, some of the benchmark problems these DE variants had most difficulties op-
timizing. The behavioural parameters thus found are shown in table 4.15 and
the optimization progress from their usage are shown in figures 4.29 and 4.30.
The first thing to note is that DE/simple is now able to optimize Ackley on oc-
casion but still cannot optimize Rastrigin. The performance of DE/simple has
worsened on the Rosenbrock and especially the Schwefel1-2 problems on which
it previously performed well, see e.g. table 4.6, and for which the behavioural
parameters were now tuned. This seems peculiar and the reason is perhaps that
the inability to perform well on all four problems using one choice of behavioural
parameters has led to these performance concessions so as to improve the fitness
overall. Regarding JDE, it is now able to optimize and find near-optimal fitness
values for all 12 benchmark problems, even for the Schwefel2-21 problem which
was not quite optimized using either standard parameters or parameters that
were tuned for shorter optimization runs, see figure 4.28. Comparing DE/simple
to JDE it can be seen from figures 4.29 and 4.30 that in spite of the deficiencies
of DE/simple it does hold an advantage over JDE on some of the problems in
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that optimization progresses faster using DE/simple, see the Penalized1 and 2,
Schwefel2-21, Schwefel2-22, Sphere and Step problems.

The conclusion is that JDE seems to hold an advantage over DE/simple
when longer optimization runs are allowed, in that JDE is able to optimize all
12 benchmark problems and find near-optimal fitness values, while DE/simple
apparently cannot have its behavioural parameters tuned so as to work well
for all problems simultaneously. The cause of this is unknown although one
could speculate as to whether the so-called adaptive schemes of JDE did indeed
become effective when allowed more optimization iterations. It should be noted,
however, that JDE had its performance further improved by meta-optimizing
its behavioural parameters for these longer optimization runs and the technique
of meta-optimization is therefore still useful.

4.4.8 Weights in Meta-Optimization

It has been observed in the experiments above that meta-optimization may
improve the overall fitness while worsening performance on individual problems,
the reason being that equal weights were being used on all the problems during
tuning of behavioural parameters. The weights are denoted wi in the meta-
optimization algorithm depicted in figure 3.3 and have been set to wi = 1 in the
previous experiments. It was noted in chapter 3 that choosing the meta-fitness
weights is not a trivial task and this experiment will test various combinations
of weights in meta-optimization.

Recall that DE/simple had performance difficulties on the Ackley and Rastri-
gin problems except when the behavioural parameters were specifically tuned for
those problems individually, see section 4.4.6. Table 4.16 shows the behavioural
parameters of DE/simple when tuned for the Ackley, Rastrigin, Rosenbrock and
Schwefel1-2 problems using various weights in the meta-fitness measure. Set-
ting the meta-fitness weight to 10000 for one problem, e.g. Rastrigin, and 1
for the remaining problems, is done in an attempt to make the performance
on Rastrigin dominate the meta-fitness measure so that the behavioural pa-
rameters are tuned primarily for that problem. Since the benchmark problems
have vastly different fitness ranges the weights have been chosen rather large.
The DE/simple parameters that were tuned for these four problems with equal
weights seem to be dominated by the Schwefel1-2 problem, because the param-
eters are rather similar to the ones tuned for the Schwefel1-2 being weighted
heavily. The parameters tuned for the Ackley and Rastrigin problems have a
much smaller population size NP and crossover probability CR, and a higher
differential weight F . Table 4.17 shows the optimization end results of using
these behavioural parameters. Compared to the results of using parameters
tuned with equal weights for these four problems, it is evident that a heavy
weight on one of the problems causes the tuned parameters to perform better
on that one problem at the cost of degraded performance on one or more of
the other problems. It seems that performance on Ackley and Rastrigin are
somewhat correlated, in the sense that parameters tuned for Ackley being heav-
ily weighted also yield fair results on Rastrigin and vice versa. On the other
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hand, parameters tuned for either or both of Ackley and Rastrigin being heavily
weighted yield poor performance on the Rosenbrock and Schwefel1-2 problems,
and vice versa. So it would seem that good performance cannot be achieved on
all four problems using one common choice of parameters for DE/simple.

The conclusion is that meta-fitness weights may be useful when an optimiza-
tion method cannot have its behavioural parameters tuned to perform well on
all the problems considered, because there is some inability of the optimizer to
perform well on all the problems with only one choice of behavioural param-
eters. The practitioner can then set weights to be used in meta-optimization
so as to determine the mutual importance of the problems, thus ensuring good
performance on certain problems while perhaps worse performance on the other
problems. The choice of weights will depend on the practitioner’s needs, the
problems considered, as well as the capabilities of the optimization method
whose parameters are to be tuned. The practitioner may therefore have to do
some experimentation with weights in meta-optimization.

4.4.9 Parameter Consistency

From all the meta-optimization experiments above only the best found be-
havioural parameters were being used. Because the meta-fitness measure used in
guiding the tuning process is stochastic by nature it raises the question whether
the best found parameters were indeed accurate and representative of good
choices of parameters, or if the parameters were merely deemed best due to
stochastic irregularity and were in fact inferior. To gain additional confidence
in the parameters found through meta-optimization a list of the best found pa-
rameters can be studied for consistency. Although this has not been described
previously it was actually done in all of the experiments above. Table 4.18 shows
the ten best sets of parameters found for the meta-optimization experiments us-
ing all 12 benchmark problems and 60,000 optimization iterations, that is, the
experiments from sections 4.4.2 and 4.4.3. These ten sets of parameters are
taken from all five meta-optimization runs conducted on each optimizer variant
and are therefore not necessarily found in just one meta-optimization run. For
most of these parameters there are clear and consistent tendencies, for exam-
ple, there is a tendency for a population size for DE/simple of NP ' 180 and
for JDE of NP ' 40. The basic DE/rand/1/bin seems to perform worse with
increasing NP and the Dither variant does not seem to be that affected by the
choice of NP . There are other interesting parameter tendencies, for instance,
DE/rand/1/bin also seems to perform worse with increasing crossover proba-
bility CR (and decreasing differential weight F ), while the DE/simple, Dither,
Jitter and JDE variants seem to work best with high CR. It should be noted
that these observations are made for behavioural parameters that were tuned for
particular optimization scenarios and may not translate to other optimization
problems and run-lengths.

Overall the meta-optimized behavioural parameters of an optimizer seem
to be consistent, especially taking into account the small number of iterations
performed by the meta-optimizer to traverse the search-space of behavioural
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parameters. The behavioural parameters are also consistent in terms of the
meta-fitness measure which does not fluctuate wildly due to stochastic noise.
This consistency and stability adds to the credibility of the meta-optimization
technique for finding good choices behavioural parameters.

4.4.10 Time Usage

The time usage for some of the previous meta-optimization experiments have
been listed in table 4.19. All experiments were conducted on an Intel Pentium
M 1.5 GHz laptop computer, which is already several years old, using an imple-
mentation in the C# programming language. The experimental settings were
the LUS method as meta-optimizer, five meta-optimization runs per experi-
ment, each consisting of 20 times the number of behavioural parameters to be
tuned, that is, 60 iterations of the meta-optimizer when tuning the parameters
of DE/simple which has 3 behavioural parameters, and the optimizer was run 50
times on each benchmark problem using the designated number of optimization
iterations.

It should be noted that different combinations of benchmark problems may
require different amounts of time in meta-optimization, for example, tuning
DE/simple for the Rosenbrock and Sphere problems when allowing 6,000 opti-
mization iterations takes roughly 41 minutes, while it takes roughly 79 minutes
using the Rastrigin and Schwefel1-2 problems. So in this comparison the same
problem configurations have been used for both DE/simple and JDE. It can be
seen from table 4.19 that DE/simple is generally faster to tune than JDE, often
by a factor three but sometimes less. Although JDE does have three times as
many behavioural parameters as DE/simple it does not always take three times
as much time to tune the parameters. The reason is the use of Preemptive
Fitness Evaluation as described in section 3.4 which may alleviate time usage
somewhat differently for optimizers.

4.5 Summary

The first overall conclusion from this chapter regards the best performing DE
variant, where various experiments were conducted to establish the ability of
the DE variants to perform well in terms of the generalization and specialization
ability, for short and long optimization runs, etc. The only scenario in which the
complicated JDE/rand/1/bin variant appeared to have a consistent advantage
over the much simpler DE/simple variant was for long optimization runs. The
reason seems to be that DE/simple could not have its behavioural parameters
tuned so as to work well on all benchmark problems simultaneously. In this
regard it would seem that the so-called adaptive behavioural parameters of
JDE were indeed successful, although it is perhaps ironic that the performance
of JDE was improved by tuning its behavioural parameters as well. There
were also a number of scenarios in which DE/simple held an advantage over
JDE, in particular the optimization progress was faster for DE/simple on some
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problems and its behavioural parameters seemed to specialize better when tuned
for benchmark problems individually. Due to fewer behavioural parameters of
DE/simple it was also significantly faster to tune than JDE. Whether JDE or
DE/simple is best will therefore depend on the practitioner’s needs.

The second conclusion regards the usefulness of meta-optimization, where it
could be argued that the performance improvement resulting from tuning the
behavioural parameters in an offline manner, is not justified by the large number
of additional optimization iterations needed to perform such tuning. However,
it should be kept in mind that the behavioural parameters of an optimization
method must be tuned at least once before the method is published, whether this
is done by a human researcher or by a computer. Freeing up human resources
by having a computer perform automated parameter tuning seems desirable
and it may even lead to greater insight as it makes it easier for the human
researcher to study an optimizer’s performance in a variety of scenarios, such
as generalization and specialization ability, short and long optimization runs,
weighting of the performance on different problems, and so on.
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Basic NP ∈ {4, · · · , 200} CR ∈ [0, 1] F ∈ [0, 2]

Dither NP ∈ {4, · · · , 200} CR ∈ [0, 1]
Fmid ∈ [0, 2]
Frange ∈ [0, 3]

Jitter NP ∈ {4, · · · , 200} CR ∈ [0, 1]
Fmid ∈ [0, 2]
Frange ∈ [0, 3]

JDE NP ∈ {4, · · · , 200}

CRinit ∈ [0, 1]
CRl ∈ [0, 1]
CRu ∈ [0, 1]
τCR ∈ [0, 1]

Finit ∈ [0, 2]
Fl ∈ [0, 2]
Fu ∈ [0, 2]
τF ∈ [0, 1]

Table 4.1: Boundaries for the parameter search-spaces of DE/rand/1/bin vari-
ants as used in all the meta-optimization experiments.

Basic NP = 50 CR = 0.9 F = 0.6

Dither NP = 50 CR = 0.9
Fmid = 0.75
Frange = 0.25

Jitter NP = 50 CR = 0.9
Fmid = 0.5
Frange = 0.0005

JDE NP = 100

CRinit = 0.9
CRl = 0
CRu = 1
τCR = 0.1

Finit = 0.5
Fl = 0.1
Fu = 0.9
τF = 0.1

Table 4.2: Standard behavioural parameters for DE/rand/1/bin variants. Op-
timization results are found in table 4.4 and figures 4.1 and 4.2.

Basic NP = 19 CR = 0.1220 F = 0.4983

Dither NP = 102 CR = 0.9637
Fmid = 0.7876
Frange = 0.7292

Jitter NP = 58 CR = 0.9048
Fmid = 0.3989
Frange = 0.3426

JDE NP = 32

CRinit = 0.0947
CRl = 0.9166
CRu = 0.0834
τCR = 0.0180

Finit = 0.6068
Fl = 0.3462
Fu = 1.1388
τF = 0.0561

Table 4.3: Behavioural parameters for DE/rand/1/bin variants meta-optimized
for all 12 benchmark problems in 30 dimensions each and optimization run-
lengths of 60,000 iterations. Optimization results are found in table 4.5 and
figures 4.3 and 4.4.
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Figure 4.1: Comparison of optimization progress for DE/rand/1/bin variants
using the behavioural parameters from table 4.2 which are standard in the
literature. Plots show the mean fitness achieved over 50 optimization runs.
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Figure 4.2: Comparison of optimization progress for DE/rand/1/bin variants
using the behavioural parameters from table 4.2 which are standard in the
literature. Plots show the mean fitness achieved over 50 optimization runs.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max
B

as
ic

Ackley 1.67e-4 8.16e-5 4.13e-5 1.03e-4 1.39e-4 2.06e-4 3.67e-4
Griewank 9.86e-4 3.19e-3 3.4e-8 1.58e-7 3e-7 7.52e-7 0.02
Penalized1 0.02 0.12 8.05e-10 2e-8 9.14e-8 3.98e-7 0.83
Penalized2 0.03 0.22 3.54e-9 5.4e-8 1.35e-7 4.35e-7 1.6
QuarticNoise 10.34 0.94 9.06 9.97 10.29 10.51 15.99
Rastrigin 181.1 21.91 120 161.32 187.01 197.45 210.62
Rosenbrock 21.72 1.4 17.46 21.17 21.79 22.44 26.52
Schwefel1-2 70.79 38.83 24.45 40.16 61.42 87.64 216.44
Schwefel2-21 32.68 14.08 4.24 22.41 31.67 42.76 61.85
Schwefel2-22 6.59e-4 3.69e-4 1.57e-4 3.84e-4 5.47e-4 9.25e-4 1.79e-3
Sphere 7.97e-8 6.52e-8 1.35e-8 3.29e-8 6.54e-8 9.95e-8 3.5e-7
Step 0 0 0 0 0 0 0

D
it

he
r

Ackley 0.07 0.03 0.03 0.05 0.06 0.08 0.21
Griewank 0.1 0.11 0.02 0.04 0.06 0.12 0.52
Penalized1 0.03 0.09 2.67e-4 2.21e-3 4.72e-3 0.01 0.48
Penalized2 0.04 0.06 3.32e-3 0.01 0.02 0.05 0.32
QuarticNoise 10.57 0.47 9.23 10.21 10.59 10.84 11.41
Rastrigin 208.84 16.31 155.77 200.21 209.47 222.22 239.76
Rosenbrock 30.28 13.84 25.16 26.89 27.57 28.14 98.95
Schwefel1-2 978.9 442.25 453.43 678.32 918.49 1109 3308
Schwefel2-21 33.06 22.26 4.71 13.86 25.42 54.32 75
Schwefel2-22 0.3 0.16 0.07 0.19 0.26 0.35 0.93
Sphere 0.03 0.01 7.09e-3 0.02 0.02 0.03 0.07
Step 0 0 0 0 0 0 0

Ji
tt

er

Ackley 1.25 4.94 1.15e-9 5.56e-9 2.54e-8 1.93e-6 20.95
Griewank 3.35e-3 6.68e-3 0 0 0 7.4e-3 0.03
Penalized1 228.36 1346 4.15e-19 5.17e-14 2.36e-9 0.04 9452
Penalized2 753.61 4955 1.75e-19 1.9e-16 1.26e-12 2.51e-7 35364
QuarticNoise 10.11 0.43 9.02 9.86 10.09 10.43 11.07
Rastrigin 133.36 39.52 17.7 106.62 138.74 167.61 200.44
Rosenbrock 28.04 13.86 21.01 24.59 25.3 25.87 110.12
Schwefel1-2 14.9 41.78 0.56 2.66 5.4 8.55 292.78
Schwefel2-21 73.73 8.34 52.78 70.9 73.67 78.23 88.78
Schwefel2-22 1.71e-9 2.18e-9 9.36e-11 6.07e-10 9.6e-10 1.99e-9 1.1e-8
Sphere 1.93e-17 4.71e-17 4.41e-19 3.15e-18 5.94e-18 1.21e-17 3.21e-16
Step 0.9 4.11 0 0 0 0 25

JD
E

Ackley 0.12 0.65 3.41e-5 3.52e-4 4.69e-3 0.02 4.59
Griewank 5.22e-8 1.83e-7 6.2e-10 4.4e-9 8.16e-9 1.69e-8 1.07e-6
Penalized1 5.89e-11 4.74e-11 7.94e-12 2.66e-11 4.33e-11 8.19e-11 2.6e-10
Penalized2 4.36e-10 3.5e-10 5.43e-11 2.03e-10 3.61e-10 5.73e-10 2.1e-9
QuarticNoise 9.84 0.42 8.59 9.52 9.87 10.18 10.67
Rastrigin 12.91 3.46 4.55 10.92 12.63 15.36 20.62
Rosenbrock 25.7 7.71 23.43 24.39 24.65 24.97 79.58
Schwefel1-2 594.1 431.73 121.53 264.18 485.15 709.89 2009
Schwefel2-21 23.51 11.83 4.23 14.1 21.73 34.77 50.11
Schwefel2-22 3.99e-6 1.77e-6 1.08e-6 2.74e-6 3.54e-6 5.29e-6 9.2e-6
Sphere 1.33e-9 1.23e-9 1.3e-10 6.5e-10 9.05e-10 1.51e-9 6.84e-9
Step 0 0 0 0 0 0 0

Table 4.4: Optimization end results for DE/rand/1/bin variants using the
behavioural parameters from table 4.2 which are standard in the literature.
Table shows end results on benchmark problems of 30 dimensions each, results
obtained over 50 optimization runs where the number of fitness evaluations for
each run is 60,000.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max
B

as
ic

Ackley 1.21 3.82 3.15e-14 9.16e-10 5.8e-8 5.3e-6 17.06
Griewank 0.38 2.44 0 0 0 0 17.39
Penalized1 0.02 0.1 1.57e-32 1.57e-32 1.57e-32 1.57e-32 0.62
Penalized2 1.88e-32 2.85e-32 1.35e-32 1.35e-32 1.35e-32 1.35e-32 2.13e-31
QuarticNoise 12.66 1.43 10.1 11.77 12.65 13.32 18.05
Rastrigin 17.81 7 4.97 11.94 16.91 21.89 33.83
Rosenbrock 33.33 20.43 9.44 23.35 25.59 27.03 83.81
Schwefel1-2 2262 1313 678.23 1487 1833 2823 7374
Schwefel2-21 75.11 4.5 67.92 72.15 74.73 77.62 93.11
Schwefel2-22 1.78e-17 8.7e-17 0 0 0 0 4.44e-16
Sphere 1.14e-44 6.48e-44 7.71e-48 4.92e-47 1.07e-46 3.12e-46 4.59e-43
Step 0.08 0.56 0 0 0 0 4

D
it

he
r

Ackley 0.36 0.61 7.11e-3 0.01 0.03 0.11 2.22
Griewank 0.02 0.01 6.26e-4 6.91e-3 0.01 0.02 0.07
Penalized1 5.76 14.19 0.03 1.46 3.02 5.2 102.67
Penalized2 5.2 15.56 6.86e-4 1.24 2.72 4.44 112.6
QuarticNoise 10.06 0.58 8.97 9.67 10.07 10.36 11.95
Rastrigin 52.88 22.65 21.6 35.42 45.04 67.9 107.96
Rosenbrock 28.08 7.81 23.83 25.93 27.08 27.87 81.87
Schwefel1-2 99.25 61.83 19.62 48.46 89.34 120.41 264.79
Schwefel2-21 35.87 12.51 10.51 26.25 33.25 44.15 69.7
Schwefel2-22 0.01 6.54e-3 4.24e-3 6.61e-3 9.17e-3 0.01 0.04
Sphere 3.41e-3 3.32e-3 3.67e-4 1.67e-3 2.52e-3 3.44e-3 0.02
Step 0.74 1.78 0 0 0 1 9

Ji
tt

er

Ackley 2.61 6.78 4.74e-10 5.83e-8 1.57e-6 4.22e-4 20.99
Griewank 3.44e-3 8.61e-3 0 0 0 1.11e-16 0.05
Penalized1 9012 58619 7.63e-18 3.69e-14 1.26e-10 7.09e-4 418108
Penalized2 72.65 507.99 1.31e-19 2.54e-18 1.16e-16 9.7e-11 3629
QuarticNoise 10.18 1.14 8.77 9.76 10 10.23 15.89
Rastrigin 84.81 23.52 30.92 68.1 88.19 102.63 126.46
Rosenbrock 28.34 10.19 22.65 25.94 26.22 26.6 78.83
Schwefel1-2 80.89 93.68 9.22 30.51 52.9 86.35 609.98
Schwefel2-21 80.65 6.66 65.28 75.41 80.49 87.12 91.25
Schwefel2-22 4.17e-10 9e-10 4.17e-11 1.12e-10 1.84e-10 3.82e-10 6.32e-9
Sphere 2.82e-18 4.08e-18 9.84e-20 4.6e-19 8.12e-19 2.93e-18 1.82e-17
Step 0.08 0.27 0 0 0 0 1

JD
E

Ackley 1.1e-5 2.74e-5 7.86e-9 6.34e-7 1.92e-6 6.15e-6 1.77e-4
Griewank 1.04e-3 2.88e-3 1.11e-16 1.29e-14 9.4e-14 6.3e-13 0.01
Penalized1 5e-17 2.17e-16 5.89e-21 5.55e-19 3.01e-18 1.23e-17 1.45e-15
Penalized2 1.67e-13 1.15e-12 3.97e-20 7.78e-18 3.01e-17 2.08e-15 8.24e-12
QuarticNoise 10.2 0.56 8.65 9.86 10.28 10.54 11.5
Rastrigin 0.02 0.12 1.15e-8 1.73e-5 2.47e-4 5.41e-3 0.88
Rosenbrock 24.26 1.07 21.89 23.78 24.28 24.83 27.13
Schwefel1-2 10.38 13.26 0.63 3.2 5.96 12.45 77.18
Schwefel2-21 14.66 10.56 1.2 6.37 13.5 18.71 49.51
Schwefel2-22 3.2e-9 1.16e-8 2.05e-12 2.59e-11 1.34e-10 8.26e-10 7.98e-8
Sphere 3.13e-11 2.19e-10 4.08e-18 4.61e-16 2.47e-15 2.43e-14 1.56e-9
Step 0 0 0 0 0 0 0

Table 4.5: Optimization end results for DE/rand/1/bin variants using the
behavioural parameters from table 4.3 which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Table shows end
results on benchmark problems of 30 dimensions each, results obtained over 50
optimization runs where the number of fitness evaluations for each run is 60,000.
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Figure 4.3: Comparison of optimization progress for DE/rand/1/bin variants
using the behavioural parameters from table 4.3 which were meta-optimized for
all 12 benchmark problems using 60,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs.
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Figure 4.4: Comparison of optimization progress for DE/rand/1/bin variants
using the behavioural parameters from table 4.3 which were meta-optimized for
all 12 benchmark problems using 60,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs.
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Figure 4.5: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from tables 4.2 and 4.3, which were respectively
standard in the literature and meta-optimized for all 12 benchmark problems
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.6: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from tables 4.2 and 4.3, which were respectively
standard in the literature and meta-optimized for all 12 benchmark problems
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max

D
E

/s
im

pl
e

Ackley 20.57 0.39 19.93 19.98 20.79 20.87 20.97
Griewank 8.22e-3 0.01 0 0 7.4e-3 0.01 0.04
Penalized1 0.89 1.64 1.57e-32 2.25e-31 0.21 0.94 9.19
Penalized2 0.08 0.25 1.6e-32 7.27e-32 0.01 0.02 1.59
QuarticNoise 13.06 2.08 9.57 11.61 12.83 14.54 18.49
Rastrigin 159.04 27.93 102.48 137.28 155.71 184.01 204.9
Rosenbrock 1.12 1.79 7.96e-9 2.63e-4 8.1e-4 3.99 4.01
Schwefel1-2 0.6 3.92 2.33e-5 2.55e-4 2.77e-3 7.87e-3 28.01
Schwefel2-21 2.36e-3 3.04e-3 1.63e-4 7.48e-4 1.39e-3 2.86e-3 0.02
Schwefel2-22 0.5 2.45 1.78e-15 8.44e-15 1.54e-12 6.3e-10 12.5
Sphere 3.07e-39 4.45e-39 1.09e-40 4.24e-40 9.9e-40 3.21e-39 1.72e-38
Step 2.18 2.46 0 1 1 2 10

JD
E

Ackley 1.1e-5 2.74e-5 7.86e-9 6.34e-7 1.92e-6 6.15e-6 1.77e-4
Griewank 1.04e-3 2.88e-3 1.11e-16 1.29e-14 9.4e-14 6.3e-13 0.01
Penalized1 5e-17 2.17e-16 5.89e-21 5.55e-19 3.01e-18 1.23e-17 1.45e-15
Penalized2 1.67e-13 1.15e-12 3.97e-20 7.78e-18 3.01e-17 2.08e-15 8.24e-12
QuarticNoise 10.2 0.56 8.65 9.86 10.28 10.54 11.5
Rastrigin 0.02 0.12 1.15e-8 1.73e-5 2.47e-4 5.41e-3 0.88
Rosenbrock 24.26 1.07 21.89 23.78 24.28 24.83 27.13
Schwefel1-2 10.38 13.26 0.63 3.2 5.96 12.45 77.18
Schwefel2-21 14.66 10.56 1.2 6.37 13.5 18.71 49.51
Schwefel2-22 3.2e-9 1.16e-8 2.05e-12 2.59e-11 1.34e-10 8.26e-10 7.98e-8
Sphere 3.13e-11 2.19e-10 4.08e-18 4.61e-16 2.47e-15 2.43e-14 1.56e-9
Step 0 0 0 0 0 0 0

Table 4.6: Optimization end results for DE/simple and JDE/rand/1/bin us-
ing the behavioural parameters for DE/simple from Eq.(4.3) and for JDE from
table 4.3, which were meta-optimized for all 12 benchmark problems using
60,000 fitness evaluations. Table shows end results on benchmark problems of
30 dimensions each, results obtained over 50 optimization runs where the num-
ber of fitness evaluations for each run is 60,000. Results for JDE are reprinted
from table 4.5.
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Figure 4.7: Comparison of optimization progress for DE/simple and JDE us-
ing the behavioural parameters for DE/simple from Eq.(4.3) and for JDE from
table 4.7, which were meta-optimized for all 12 benchmark problems us-
ing 6,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.8: Comparison of optimization progress for DE/simple and JDE us-
ing the behavioural parameters for DE/simple from Eq.(4.3) and for JDE from
table 4.7, which were meta-optimized for all 12 benchmark problems us-
ing 6,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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DE/simple NP = 136 CR = 0.9813 F = 0.2790

JDE NP = 28

CRinit = 0.5
CRl = 0.4826
CRu = 0.5174
τCR = 0.1805

Finit = 0.4304
Fl = 0.3009
Fu = 0.6392
τF = 0.6449

Table 4.7: Behavioural parameters for DE/simple and JDE/rand/1/bin that
are meta-optimized for all 12 benchmark problems in 30 dimensions each and
optimization run-lengths of 6,000 iterations. Optimization results are found in
figures 4.9 and 4.10.

DE/simple NP = 103 CR = 0.9794 F = 0.3976

JDE NP = 77

CRinit = 0.3911
CRl = 0.9893
CRu = 0.0107
τCR = 0.8041

Finit = 1.8074
Fl = 0.2417
Fu = 1.0375
τF = 0.5336

Table 4.8: Behavioural parameters for DE/simple and JDE/rand/1/bin that are
meta-optimized for the Rastrigin, Schwefel1-2, Schwefel2-21, Schwefel2-
22 problems in 30 dimensions each and optimization run-lengths of 6,000 iter-
ations. Optimization results are found in figures 4.11 and 4.12.
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Figure 4.9: Comparison of optimization progress for DE/simple using the
behavioural parameters from Eq.(4.3) and table 4.7, which were meta-optimized
for all 12 benchmark problems using 60,000 and 6,000 fitness evaluations
respectively. Plots show the mean fitness achieved over 50 optimization runs
with quartiles at intervals. Dotted line shows 6,000 fitness evaluations.
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Figure 4.10: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from tables 4.3 and 4.7, which were meta-optimized
for all 12 benchmark problems using 60,000 and 6,000 fitness evaluations
respectively. Plots show the mean fitness achieved over 50 optimization runs
with quartiles at intervals. Dotted line shows 6,000 fitness evaluations.
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Figure 4.11: Comparison of optimization progress for DE/simple using the
behavioural parameters from tables 4.7 and 4.8, which were meta-optimized for
respectively all 12 benchmark problems and the Rastrigin, Schwefel1-2,
Schwefel2-21, Schwefel2-22 problems using 6,000 fitness evaluations. Plots
show the mean fitness achieved over 50 optimization runs with quartiles at
intervals. Dotted line shows 6,000 fitness evaluations.
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Figure 4.12: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from tables 4.7 and 4.8, which were meta-optimized
for respectively all 12 benchmark problems and the Rastrigin, Schwefel1-
2, Schwefel2-21, Schwefel2-22 problems using 6,000 fitness evaluations.
Plots show the mean fitness achieved over 50 optimization runs with quartiles
at intervals. Dotted line shows 6,000 fitness evaluations.
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Problems NP CR F

All Benchmark Problems 186 0.8493 0.4818
Rosenbrock & Sphere 126 0.9211 0.4027

Rastrigin & Schwefel1-2 185 0.8932 0.5125
QuarticNoise, Sphere & Step 106 0.3345 0.5860

Table 4.9: Behavioural parameters for DE/simple that are meta-optimized
for various combinations of benchmark problems in 30 dimensions each and
optimization run-lengths of 60,000 iterations. Optimization results are found
in figures 4.13-4.18 and table 4.11.

Problems NP CR F

All Benchmark Problems 32

CRinit = 0.0947
CRl = 0.9166
CRu = 0.0834
τCR = 0.0180

Finit = 0.6068
Fl = 0.3462
Fu = 1.1388
τF = 0.0561

Rosenbrock & Sphere 14

CRinit = 0.1943
CRl = 0.0676
CRu = 0.6439
τCR = 0.6275

Finit = 0.2091
Fl = 0.6697
Fu = 0.0962
τF = 0.2369

Rastrigin & Schwefel1-2 40

CRinit = 0.7029
CRl = 0.3101
CRu = 0.6899
τCR = 0.0909

Finit = 1.8855
Fl = 0.1030
Fu = 0.9366
τF = 0.2843

QuarticNoise, Sphere & Step 97

CRinit = 0.8331
CRl = 0.7161
CRu = 0.1705
τCR = 0.9808

Finit = 1.8255
Fl = 0.0437
Fu = 1.1422
τF = 0.2514

Table 4.10: Behavioural parameters for JDE/rand/1/bin that are meta-
optimized for various combinations of benchmark problems in 30 dimensions
each and optimization run-lengths of 60,000 iterations. Optimization results
are found in figures 4.19-4.24 and table 4.12.
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Figure 4.13: Comparison of optimization progress for DE/simple using the
behavioural parameters from table 4.9, which were meta-optimized for respec-
tively all 12 benchmark problems and Rosenbrock & Sphere using 60,000
fitness evaluations. Plots show the mean fitness achieved over 50 optimization
runs, as well as the quartiles at intervals during optimization.

104



1e-025

1e-020

1e-015

1e-010

1e-005

1

100000

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Rosenbrock

Tuned f. 12 Bnch. Problems
Tuned f. Sphere & Rosenbrock

1e-015

1e-010

1e-005

1

100000

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Schwefel 1-2

Tuned f. 12 Bnch. Problems
Tuned f. Sphere & Rosenbrock

0.0001

0.001

0.01

0.1

1

10

100

1000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Schwefel 2-21

Tuned f. 12 Bnch. Problems
Tuned f. Sphere & Rosenbrock

1e-015

1e-010

1e-005

1

100000

1e+010

1e+015

1e+020

1e+025

1e+030

1e+035

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Schwefel 2-22

Tuned f. 12 Bnch. Problems
Tuned f. Sphere & Rosenbrock

1e-080

1e-070

1e-060

1e-050

1e-040

1e-030

1e-020

1e-010

1

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Sphere

Tuned f. 12 Bnch. Problems
Tuned f. Sphere & Rosenbrock

1

10

100

1000

10000

100000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Step

Tuned f. 12 Bnch. Problems
Tuned f. Sphere & Rosenbrock

Figure 4.14: Comparison of optimization progress for DE/simple using the
behavioural parameters from table 4.9, which were meta-optimized for respec-
tively all 12 benchmark problems and Rosenbrock & Sphere using 60,000
fitness evaluations. Plots show the mean fitness achieved over 50 optimization
runs, as well as the quartiles at intervals during optimization.
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Figure 4.15: Comparison of optimization progress for DE/simple using the be-
havioural parameters from table 4.9, which were meta-optimized for respectively
all 12 benchmark problems and Rastrigin & Schwefel1-2 using 60,000
fitness evaluations. Plots show the mean fitness achieved over 50 optimization
runs, as well as the quartiles at intervals during optimization.
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Figure 4.16: Comparison of optimization progress for DE/simple using the be-
havioural parameters from table 4.9, which were meta-optimized for respectively
all 12 benchmark problems and Rastrigin & Schwefel1-2 using 60,000
fitness evaluations. Plots show the mean fitness achieved over 50 optimization
runs, as well as the quartiles at intervals during optimization.
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Figure 4.17: Comparison of optimization progress for DE/simple using the
behavioural parameters from table 4.9, which were meta-optimized for respec-
tively all 12 benchmark problems and QuarticNoise, Sphere & Step
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.18: Comparison of optimization progress for DE/simple using the
behavioural parameters from table 4.9, which were meta-optimized for respec-
tively all 12 benchmark problems and QuarticNoise, Sphere & Step
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max
A

ll
B

en
ch

m
ar

k
P

ro
bl

em
s

Ackley 20.57 0.39 19.93 19.98 20.79 20.87 20.97
Griewank 8.22e-3 0.01 0 0 7.4e-3 0.01 0.04
Penalized1 0.89 1.64 1.57e-32 2.25e-31 0.21 0.94 9.19
Penalized2 0.08 0.25 1.6e-32 7.27e-32 0.01 0.02 1.59
QuarticNoise 13.06 2.08 9.57 11.61 12.83 14.54 18.49
Rastrigin 159.04 27.93 102.48 137.28 155.71 184.01 204.9
Rosenbrock 1.12 1.79 7.96e-9 2.63e-4 8.1e-4 3.99 4.01
Schwefel1-2 0.6 3.92 2.33e-5 2.55e-4 2.77e-3 7.87e-3 28.01
Schwefel2-21 2.36e-3 3.04e-3 1.63e-4 7.48e-4 1.39e-3 2.86e-3 0.02
Schwefel2-22 0.5 2.45 1.78e-15 8.44e-15 1.54e-12 6.3e-10 12.5
Sphere 3.07e-39 4.45e-39 1.09e-40 4.24e-40 9.9e-40 3.21e-39 1.72e-38
Step 2.18 2.46 0 1 1 2 10

R
os

en
br

oc
k

&
Sp

he
re

Ackley 19.95 7.86e-3 19.93 19.94 19.95 19.95 19.96
Griewank 0.02 0.03 1.11e-16 1.33e-15 0.01 0.03 0.15
Penalized1 3.09 5.75 4.15e-32 1.77e-30 1.09 3.24 30.95
Penalized2 3.04 7.41 9.24e-32 0.31 0.91 3.02 48.24
QuarticNoise 21.25 6.86 12.07 16.11 20.19 25.42 41.53
Rastrigin 175.55 25.59 137.3 159.16 170.62 189.52 260.08
Rosenbrock 1.12 1.79 1.45e-22 3.43e-18 4.19e-16 3.99 3.99
Schwefel1-2 112.5 551.14 5.45e-15 7.42e-13 4.07e-12 1.51e-10 2813
Schwefel2-21 1.59 10.49 1.12e-3 0.02 0.06 0.11 75
Schwefel2-22 4.15 6.07 2.52e-11 3.07e-9 3.47e-6 12.5 20
Sphere 4.19e-70 1.18e-69 1.17e-75 1.02e-72 6.79e-72 1.14e-70 6.58e-69
Step 53.66 179.92 7 13 23 36 1306

R
as

tr
ig

in
&

Sc
hw

ef
el

1-
2

Ackley 20.4 0.4 19.94 19.96 20.28 20.81 20.98
Griewank 0.01 0.01 0 1.11e-16 9.86e-3 0.02 0.06
Penalized1 1.12 1.8 2.09e-32 1.29e-25 0.52 1.44 9.99
Penalized2 0.08 0.26 1.35e-32 1.35e-32 9.2e-29 0.01 1.58
QuarticNoise 13.14 2.36 10.22 11.35 12.7 14.76 20.59
Rastrigin 160.86 30.91 99.47 139.27 164.12 175.08 222.3
Rosenbrock 0.8 1.59 5.7e-10 5.81e-6 4.09e-5 1.27e-3 3.99
Schwefel1-2 57.03 393.68 1.78e-6 1.38e-5 5.67e-5 2.6e-4 2813
Schwefel2-21 1.51 10.5 2.42e-4 1.39e-3 3.87e-3 7.3e-3 75
Schwefel2-22 1 3.39 2e-14 3.72e-13 7.16e-11 2.85e-8 12.5
Sphere 3.58e-36 5.12e-36 3.55e-38 6.17e-37 2.11e-36 4.2e-36 2.7e-35
Step 2.44 2.78 0 1 2 4 14

Q
ua

rt
ic

N
oi

se
,

Sp
he

re
&

St
ep

Ackley 20.47 0.05 20.35 20.43 20.47 20.5 20.6
Griewank 2.12e-3 4.67e-3 5.44e-15 3.85e-14 8.68e-14 3.61e-13 0.02
Penalized1 8.29e-3 0.06 1.68e-16 6.71e-16 9.38e-16 1.99e-15 0.41
Penalized2 2.66e-15 2.37e-15 3.68e-16 1.1e-15 1.77e-15 3.21e-15 1.16e-14
QuarticNoise 10.04 0.47 8.76 9.8 10.01 10.3 11.21
Rastrigin 77.17 16.91 35.82 67.28 78.14 86.45 113.01
Rosenbrock 28.58 15.04 13.28 23.95 24.09 24.31 81.64
Schwefel1-2 10351 2546 5689 8636 10023 11780 17073
Schwefel2-21 1.48 1.23 0.34 0.74 1.06 1.99 7.13
Schwefel2-22 8e-8 5.06e-8 2.75e-8 4.95e-8 6.57e-8 9.8e-8 3.26e-7
Sphere 9.71e-15 9.27e-15 1.33e-15 5.22e-15 7.56e-15 1.17e-14 6.33e-14
Step 0 0 0 0 0 0 0

Table 4.11: Optimization end results for DE/simple using the behavioural
parameters from table 4.9 which were meta-optimized for various combinations
of benchmark problems using 60,000 fitness evaluations. Table shows end re-
sults on benchmark problems of 30 dimensions each, results obtained over 50
optimization runs where the number of fitness evaluations for each run is 60,000.
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Figure 4.19: Comparison of optimization progress for JDE/rand/1/bin us-
ing the behavioural parameters from table 4.10, which were meta-optimized for
respectively all 12 benchmark problems and Rosenbrock & Sphere us-
ing 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.20: Comparison of optimization progress for JDE/rand/1/bin us-
ing the behavioural parameters from table 4.10, which were meta-optimized for
respectively all 12 benchmark problems and Rosenbrock & Sphere us-
ing 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.21: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from table 4.10, which were meta-optimized for
respectively all 12 benchmark problems and Rastrigin & Schwefel1-2
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.22: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from table 4.10, which were meta-optimized for
respectively all 12 benchmark problems and Rastrigin & Schwefel1-2
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.23: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from table 4.10, which were meta-optimized for re-
spectively all 12 benchmark problems and QuarticNoise, Sphere & Step
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 4.24: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from table 4.10, which were meta-optimized for re-
spectively all 12 benchmark problems and QuarticNoise, Sphere & Step
using 60,000 fitness evaluations. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max
A

ll
B

en
ch

m
ar

k
P

ro
bl

em
s

Ackley 1.1e-5 2.74e-5 7.86e-9 6.34e-7 1.92e-6 6.15e-6 1.77e-4
Griewank 1.04e-3 2.88e-3 1.11e-16 1.29e-14 9.4e-14 6.3e-13 0.01
Penalized1 5e-17 2.17e-16 5.89e-21 5.55e-19 3.01e-18 1.23e-17 1.45e-15
Penalized2 1.67e-13 1.15e-12 3.97e-20 7.78e-18 3.01e-17 2.08e-15 8.24e-12
QuarticNoise 10.2 0.56 8.65 9.86 10.28 10.54 11.5
Rastrigin 0.02 0.12 1.15e-8 1.73e-5 2.47e-4 5.41e-3 0.88
Rosenbrock 24.26 1.07 21.89 23.78 24.28 24.83 27.13
Schwefel1-2 10.38 13.26 0.63 3.2 5.96 12.45 77.18
Schwefel2-21 14.66 10.56 1.2 6.37 13.5 18.71 49.51
Schwefel2-22 3.2e-9 1.16e-8 2.05e-12 2.59e-11 1.34e-10 8.26e-10 7.98e-8
Sphere 3.13e-11 2.19e-10 4.08e-18 4.61e-16 2.47e-15 2.43e-14 1.56e-9
Step 0 0 0 0 0 0 0

R
os

en
br

oc
k

&
Sp

he
re

Ackley 2.49 5.73 1.36e-12 9.67e-9 2.12e-6 0.04 19.72
Griewank 1.33e-3 3.46e-3 0 0 0 0 0.01
Penalized1 0.01 0.07 1.57e-32 1.57e-32 3.31e-32 9.06e-32 0.52
Penalized2 4.39e-4 2.15e-3 1.35e-32 1.47e-32 2.89e-32 8.38e-32 0.01
QuarticNoise 10.74 2.89 8.92 9.9 10.29 10.74 30.27
Rastrigin 13.68 9.32 1.99 6.96 10.94 18.9 45.77
Rosenbrock 21.32 14.64 13.45 16.95 17.67 18.74 80.87
Schwefel1-2 9965 2779 5007 7726 9623 11944 18303
Schwefel2-21 28.36 32.22 0.14 2.07 5.73 75 75
Schwefel2-22 0.25 1.75 0 0 0 0 12.5
Sphere 1.7e-31 3.23e-31 1.82e-33 2.21e-32 5.01e-32 1.58e-31 1.61e-30
Step 0 0 0 0 0 0 0

R
as

tr
ig

in
&

Sc
hw

ef
el

1-
2

Ackley 0.06 0.26 3.11e-15 6.66e-15 6.66e-15 6.66e-15 1.34
Griewank 5.92e-3 0.02 0 0 0 7.4e-3 0.07
Penalized1 628.97 4402 1.57e-32 1.51e-29 2.03e-26 2.5e-14 31444
Penalized2 264.58 1641 1.35e-32 7.27e-32 6.72e-28 1.28e-22 11714
QuarticNoise 9.63 0.53 7.94 9.36 9.65 9.9 10.89
Rastrigin 4.27 2.78 6.08e-7 2.98 2.99 5.97 12.43
Rosenbrock 33.21 21 0.31 22.7 25.58 27.91 81.45
Schwefel1-2 5.56 5.41 0.4 2.03 3.1 7.17 26.59
Schwefel2-21 78.47 11.1 44.8 73.34 82.64 85.75 92.66
Schwefel2-22 1.15e-16 2.32e-16 0 0 0 0 8.88e-16
Sphere 5.16e-30 3.22e-29 2.91e-35 2.31e-33 1.54e-32 6.77e-32 2.3e-28
Step 0.14 0.4 0 0 0 0 2

Q
ua

rt
ic

N
oi

se
,

Sp
he

re
&

St
ep

Ackley 1.14e-7 2.03e-7 1.88e-8 4.57e-8 6.18e-8 9.84e-8 1.39e-6
Griewank 2.86e-3 6.75e-3 1.21e-14 4.57e-14 1.2e-13 7.64e-13 0.02
Penalized1 0.14 0.36 3.1e-16 3.87e-13 1.42e-10 0.1 1.67
Penalized2 620.64 2754 7.38e-16 4.22e-14 2.68e-11 1.95e-5 17459
QuarticNoise 9.5 0.53 7.89 9.34 9.55 9.94 10.37
Rastrigin 10.92 4 4.97 7.96 9.95 12.93 24.87
Rosenbrock 29.06 13.58 17.75 25.27 26.07 26.42 82.94
Schwefel1-2 604.81 310.13 215.16 399.98 518.83 718.01 1650
Schwefel2-21 69.13 10.54 37.78 64.87 70.41 74.77 87.11
Schwefel2-22 4.36e-9 1.89e-9 1.28e-9 2.87e-9 4.26e-9 5.16e-9 9.53e-9
Sphere 4.3e-13 2.29e-12 4.07e-15 1.42e-14 3.8e-14 1.28e-13 1.64e-11
Step 0.02 0.14 0 0 0 0 1

Table 4.12: Optimization end results for JDE/rand/1/bin using the be-
havioural parameters from table 4.10 which were meta-optimized for various
combinations of benchmark problems using 60,000 fitness evaluations. Table
shows end results on benchmark problems of 30 dimensions each, results ob-
tained over 50 optimization runs where the number of fitness evaluations for
each run is 60,000.
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Problems NP CR F

All Benchmark Problems 186 0.8493 0.4818
Ackley 19 0.0130 1.2935

Rastrigin 42 0.0082 0.9417

Table 4.13: Behavioural parameters for DE/simple that are meta-optimized
for various combinations of benchmark problems in 30 dimensions each and
optimization run-lengths of 60,000 iterations. Optimization results are found
in figure 4.25.

Problems NP CR F

All Benchmark Problems 32

CRinit = 0.0947
CRl = 0.9166
CRu = 0.0834
τCR = 0.0180

Finit = 0.6068
Fl = 0.3462
Fu = 1.1388
τF = 0.0561

Rosenbrock 19

CRinit = 0.3607
CRl = 0.3110
CRu = 0.6890
tauCR = 0.0618

Finit = 1.1531
Fl = 0.4339
Fu = 1.3545
tauF = 0.1696

Schwefel1-2 28

CRinit = 0.2309
CRl = 0.6364
CRu = 0.3636
tauCR = 0.0835

Finit = 0.9733
Fl = 0.2937
Fu = 0.7191
tauF = 0.9093

Table 4.14: Behavioural parameters for JDE/rand/1/bin that are meta-
optimized for various combinations of benchmark problems in 30 dimensions
each and optimization run-lengths of 60,000 iterations. Optimization results
are found in figure 4.26.
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Figure 4.25: Comparison of optimization progress for DE/simple using the
behavioural parameters from table 4.13, which were meta-optimized for respec-
tively all 12 benchmark problems and individually for the Ackley and Ras-
trigin problems using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.
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Figure 4.26: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from table 4.14, which were meta-optimized for re-
spectively all 12 benchmark problems and individually for the Rosenbrock
and Schwefel1-2 problems using 60,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs, as well as the quartiles at
intervals during optimization.
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Figure 4.27: Optimization progress for DE/simple using the behavioural pa-
rameters from table 4.9, which were meta-optimized for all 12 benchmark
problems using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals dur-
ing optimization. Dotted line shows 60,000 fitness evaluations.
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Figure 4.28: Comparison of optimization progress for JDE/rand/1/bin using
the behavioural parameters from tables 4.2 and 4.3 which are respectively stan-
dard in the literature, and meta-optimized for all 12 benchmark problems
using 60,000 fitness evaluations. Plots show the mean fitness achieved over
50 optimization runs, as well as the quartiles at intervals during optimization.
Dotted line shows 60,000 fitness evaluations.

120



DE/simple NP = 120 CR = 0.4852 F = 0.6413

JDE/rand/1/bin NP = 82

CRinit = 0.0478
CRl = 0.4655
CRu = 0.5345
τCR = 0.0729

Finit = 1.5127
Fl = 0.4136
Fu = 0.1835
τF = 0.8375

Table 4.15: Behavioural parameters for DE/simple and JDE/rand/1/bin that
are meta-optimized for Ackley, Rastrigin, Rosenbrock & Schwefel1-2 in
30 dimensions each and optimization run-lengths of 600,000 iterations. Opti-
mization results are found in figures 4.29 and 4.30.
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Figure 4.29: Comparison of optimization progress for DE/simple and
JDE/rand/1/bin using the behavioural parameters from table 4.15, which were
meta-optimized for Ackley, Rastrigin, Rosenbrock & Schwefel1-2 using
600,000 fitness evaluations. Plots show the mean fitness achieved over 50 op-
timization runs, as well as the quartiles at intervals during optimization.
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Figure 4.30: Comparison of optimization progress for DE/simple and
JDE/rand/1/bin using the behavioural parameters from table 4.15, which were
meta-optimized for Ackley, Rastrigin, Rosenbrock & Schwefel1-2 using
600,000 fitness evaluations. Plots show the mean fitness achieved over 50 op-
timization runs, as well as the quartiles at intervals during optimization.
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Weights in Meta-Optimization DE Parameters

Ackley Rastrigin Rosenbrock Schwefel1-2 NP CR F

1 1 1 1 191 0.8448 0.5100
10000 1 1 1 20 0.1139 0.8742

1 10000 1 1 25 0.0399 0.9704
1 1 10000 1 72 0.7722 0.4594
1 1 1 10000 195 0.9618 0.5027

10000 1000 1 1 21 0.0403 0.8817
1 1 100 100 179 0.8473 0.3325

Table 4.16: Behavioural parameters for DE/simple that are meta-optimized
for the Ackley, Rastrigin, Rosenbrock and Schwefel1-2 problems in 30
dimensions each and optimization run-lengths of 60,000 iterations. Various
weights are used for the problems. Optimization results are found in table 4.17.

Weights Problem Mean Std.Dev. Min Q1 Median Q3 Max
1 Ackley 20.76 0.28 19.94 20.75 20.83 20.91 20.97
1 Rastrigin 156.16 27.74 104.47 137.3 154.69 176.59 217.81
1 Rosenbrock 0.95 1.58 1.21e-7 0.03 0.11 0.93 4.33
1 Schwefel1-2 120.33 550.88 8.52e-4 0.01 0.05 0.92 2813

10000 Ackley 1.05e-6 5.25e-6 2.98e-13 1.39e-11 1.42e-10 3.87e-9 3.66e-5
1 Rastrigin 5.87 4.02 0 2.98 4.97 6.96 16.91
1 Rosenbrock 26.75 8.6 18.22 24.48 25.41 26.61 81.2
1 Schwefel1-2 12566 2737 6837 10572 12213 14212 19747
1 Ackley 5.01e-7 1.26e-6 3.57e-9 2.72e-8 7.08e-8 4.14e-7 8.07e-6

10000 Rastrigin 0.16 0.61 0 0 0 0 3.98
1 Rosenbrock 29.5 13.15 18.34 24.52 26.43 28.32 80.68
1 Schwefel1-2 16829 3204 8046 15209 16795 19012 24115
1 Ackley 19.95 0.01 19.9 19.94 19.95 19.95 19.96
1 Rastrigin 160.12 26.69 106.46 139.78 155.94 174.09 245.19

10000 Rosenbrock 0.88 1.65 8.06e-13 9.15e-8 7.9e-7 1.21e-3 3.99
1 Schwefel1-2 1721 2928 3.42e-6 2.83e-4 3.84e-3 2813 13438
1 Ackley 19.95 0.03 19.89 19.94 19.95 19.96 20.13
1 Rastrigin 162.47 32.94 92.53 135.8 169.6 188.02 219.77
1 Rosenbrock 1.51 1.94 4.62e-14 1.46e-8 3.31e-7 3.99 3.99

10000 Schwefel1-2 4.54e-7 2.89e-6 4.73e-11 1.12e-9 4.28e-9 1.51e-8 2.07e-5
10000 Ackley 0.82 3.25 4.18e-12 1.9e-11 8.38e-11 2.51e-10 14.8
1000 Rastrigin 2.61 2.38 0 0.99 1.99 3.98 8.95

1 Rosenbrock 28.04 12.92 13.62 23.95 25.45 27.37 80.41
1 Schwefel1-2 11485 2423 6599 9436 11286 13280 18363
1 Ackley 19.95 9.67e-3 19.91 19.95 19.95 19.96 19.97
1 Rastrigin 168.25 22.09 113.43 154.22 167.88 183.07 234.78

100 Rosenbrock 1.04 1.75 4.92e-12 2.08e-8 2.19e-6 3.99 3.99
100 Schwefel1-2 1.1e-3 4.22e-3 6.9e-8 3.8e-6 2.22e-5 1.32e-4 0.03

Table 4.17: Optimization end results for DE/simple using the behavioural
parameters from table 4.16, which were meta-optimized for the Ackley, Ras-
trigin, Rosenbrock and Schwefel1-2 problems using various weights and
60,000 fitness evaluations. Table shows end results on benchmark problems
of 30 dimensions each, results obtained over 50 optimization runs where the
number of fitness evaluations for each run is 60,000.
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Meta-
NP CR F Fitness

D
E

/s
im

pl
e

186 0.8493 0.4818 10051
175 0.9369 0.5417 10674
181 0.8471 0.4074 10769
181 0.9019 0.4425 10989
162 0.8773 0.4087 11125
197 0.9300 0.3580 11480
188 0.9519 0.4047 12159
180 0.8601 0.2635 17204
136 0.6604 0.3701 19667
117 0.8183 0.3661 20652

D
E

/r
an

d/
1/

bi
n

19 0.1220 0.4983 112647
19 0.1318 0.4928 114646
24 0.2121 0.3991 117681
28 0.3334 0.4077 129805
31 0.3362 0.3852 129987
37 0.3184 0.3609 132937
46 0.4944 0.3233 182752
79 0.2825 0.2654 183267
80 0.2969 0.2884 188145
79 0.3115 0.2867 190367

Meta-
NP CR Fmid Frange Fitness

D
E

/r
an

d/
1/

bi
n/

D
it

he
r 102 0.9637 0.7876 0.7292 10176

88 0.9332 0.1475 1.4495 10467
103 0.9624 0.7677 0.7092 11577
33 0.8646 0.6680 0.2828 12428
34 0.8590 0.6522 0.2534 13325
110 0.9630 0.2937 1.7954 15334
105 0.9680 0.2888 1.7478 15942
108 0.9621 0.3525 1.8483 17914
29 0.8375 0.6243 0.1952 18478
110 0.9632 0.2960 1.8697 19364

D
E

/r
an

d/
1/

bi
n/

Ji
tt

er

58 0.9048 0.3989 0.3426 13277
52 0.9002 0.4521 0.3646 16036
47 0.9131 0.3776 0.4628 16475
37 0.8867 0.3855 0.5872 17647
49 0.8937 0.2662 0.6046 23459
44 0.9402 0.3186 0.6775 27985
42 0.9156 0.2208 0.7113 35914
31 0.9216 0.2167 0.8566 51107
25 0.9705 0.4120 0.8326 79824
17 0.0683 0.4891 0.2944 106213

Meta-
NP CRinit CRl CRu τCR Finit Fl Fu τF Fitness

JD
E

/r
an

d/
1/

bi
n

32 0.0947 0.9166 0.7104 0.0180 0.6068 0.3462 1.1388 0.0561 3136
31 0.1050 0.9301 0.6974 0.0169 0.6126 0.3479 1.1630 0.0637 3311
34 0.1199 0.9230 0.7135 0.0175 0.6501 0.3406 1.1257 0.0492 3447
36 0.1099 0.9062 0.7075 0.0221 0.6426 0.3117 1.1578 0.0340 3461
40 0.1233 0.8859 0.6921 0.0321 0.6332 0.3389 1.1106 0.0340 4129
37 0.0323 0.3588 0.9576 0.0500 0.3360 0.1461 1.1636 0.8474 4184
35 0.0285 0.3406 0.9700 0.0345 0.3018 0.1139 1.1875 0.8320 4320
34 0.0171 0.3348 0.9978 0.0441 0.3223 0.0954 1.2067 0.8563 4478
44 0.1374 0.9041 0.6766 0.0403 0.6471 0.3144 1.0924 0.0181 4986
46 0.1636 0.9007 0.6536 0.0264 0.6341 0.2708 1.1406 0.0444 5043

Table 4.18: Best 10 sets of behavioural parameters for DE variants that are
meta-optimized for all 12 benchmark problems in 30 dimensions each and
optimization run-lengths of 60,000 iterations.

Number of Optimization Time Usage
Problems Iterations DE/simple JDE

2 60,000 41 min 2 h 54 min
4 6,000 8 min 25 min
4 600,000 24 h 22 min 40 h 38 min
12 6,000 22 min 54 min
12 60,000 4 h 40 min 13 h 50 min

Table 4.19: Time usage for meta-optimizing the behavioural parameters of
DE/simple and JDE/rand/1/bin with various numbers of benchmark prob-
lems and optimization iterations being used.
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Chapter 5

Particle Swarm
Optimization

5.1 Introduction

New PSO variants are continually being introduced in an attempt to improve
optimization performance. Most of these variants increase the complexity of the
original PSO method. To appreciate the popularity of that research approach
just consider the journal volume in which the paper derived from this chapter
was published [123], which also contains numerous papers with more complex
PSO variants, e.g. [124] [125] [126] [127] [128] [129] [130] [131]. There are
certain trends in that research, one is to make a hybrid optimization method
using PSO combined with one or more other optimizers, see e.g. [76] [125] [127]
[130], another trend is to try and alleviate optimization stagnation by reversing
or perturbing the movement of the PSO particles, see e.g. [132] [133] [134] [124],
and then there are also attempts at trying to adapt the behavioural parameters
of PSO during optimization, see e.g. [135].

That the behavioural parameters play an important role in the performance
of PSO has been acknowledged since its inception and several studies of the
parameters have been made, see e.g. Shi and Eberhart [22] [23] and Carlisle
and Dozier [24]. To properly guide selection of behavioural parameters attempts
have also been made by van den Bergh [27], Clerc and Kennedy [29] and Trelea
[28] at mathematically analyzing the PSO behaviour by considering how the
parameters influence diversity of the particles, with the assumption apparently
being that diversity in turn influences optimization efficacy. To facilitate these
analyses a number of other assumptions were also made:

� The particles’ points of attraction ~p and ~g in Eq.(2.3) remain constant so
that improved positions found in the search-space have no influence on
the swarm’s further optimization progress.

� This also means that just a single particle is considered and not an entire
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swarm of particles as there is no inter-particle communication through ~g
which now remains unchanged.

� The stochastic variables rp and rg in Eq.(2.3) are also eliminated by using
their expectancies instead.

But do these features not seem to be what makes PSO work at all?
This chapter studies a basic PSO and derived simplifications. Of the many

studies that have been published only very few have been on simplifying the
PSO method. Kennedy [51] studied simplifications to the PSO method but
unfortunately did not have the necessary tools to make a rigorous comparison
with the basic PSO, something that will be done here. A more recent study is
due to Bratton and Blackwell [52] who made performance plots akin to those in
chapter 3, but unfortunately only considered positive behavioural parameters
where it is found in this chapter that PSO often performs best with negative
parameters. That a more rigorous study can easily be made here is due to the
use of meta-optimization for automatically tuning the PSO parameters. This
was also done by Meissner et al. [32] but their study was limited in terms of
the accuracy and quality of the results obtained, as their approach lacked the
proper choice of the overlaid meta-optimizer, it lacked time-saving features, and
it did not have the ability to meta-optimize the PSO parameters with regard to
their performance on multiple optimization problems.

5.2 Simplifications

This chapter will focus on the basic PSO from chapter 2 and three simplifica-
tions, they are:

� PSO is the basic variant from chapter 2 whose velocity update formula is
rewritten here for convenience:

~v ← ω~v + φprp(~p− ~x) + φgrg(~g − ~x) (5.1)

� PSO-VG is the variant that only has velocity (V) and attraction to the
swarm’s best known position (G). The velocity update formula is:

~v ← ω~v + φgrg(~g − ~x) (5.2)

Note that PSO-VG is also referred to as the MOL method in [123] and
the “social only” PSO by Kennedy [51].

� PSO-PG is the variant that has no recurrent velocity but only attraction
to the particle’s own best known position (P) and the swarm’s best known
position (G). The position update formula is:

~x← ~x+ φprp(~p− ~x) + φgrg(~g − ~x)

� PSO-G is the variant that only has attraction to the swarm’s best known
position (G). The position update formula is:

~x← ~x+ φgrg(~g − ~x)
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5.3 Experimental Results

5.3.1 Overall Meta-Optimized Performance

The purpose of this experiment is to establish how well the PSO variants per-
form when their behavioural parameters have been tuned for all 12 benchmark
problems simultaneously using 60,000 iterations for each optimization run on
each of these problems. The boundaries for the behavioural parameters in meta-
optimization are:

S ∈ {1, · · · , 200}, ω ∈ [−2, 2], φp ∈ [−4, 4], φg ∈ [−4, 4]

These boundaries were chosen amply wide surrounding the standard parameters,
see below, and the boundaries also allow for negative parameters where studies
in the literature are usually only made for positive parameters, see e.g. [51] [24]
[52], so this may yield unusual choices of behavioural parameters. The meta-
optimization settings are identical to those in chapter 4, namely that 5 meta-
optimization runs are performed, each consisting of a number of iterations equal
to 20 times the number of behavioural parameters being tuned, that is, for basic
PSO which has 4 parameters it means that 80 iterations are being performed in
each meta-optimization run. The parameters thus found are shown in table 5.1.
These can be compared to the standard parameters from section 2.7 which are
reprinted here for convenience:

S = 50, ω = 0.729, φ1 = φ2 = 1.49445 (5.3)

The most notable differences are that the swarm size S has more than doubled
and the so-called inertia weight ω has become negative which is contrary to
established guidelines in the literature, see e.g. [87] [24]. All PSO variants have
a large swarm-size S and a fairly large φg which is the attraction towards the
swarm’s best known position in the search-space. Note that the parameters
of PSO-VG have S and φg close to the boundary values thus suggesting the
boundaries should have been wider, but meta-optimization experiments with
new boundaries S ∈ {1, · · · , 400} and φg ∈ [−4, 8] did not yield better parame-
ters.

Figures 5.1 and 5.2 compare the optimization progress of basic PSO when
using the standard and meta-optimized parameters from whence it can be seen
that performance is greatly improved overall. There is a tiny advantage to the
standard parameters in the first few thousand optimization iterations on the
Rosenbrock and Schwefel2-22 problems but these are so negligible that they
may just be due to stochastic variation.

Figures 5.3 and 5.4 show the mean fitness progress for the four PSO variants
from where it can be seen that the PSO and PSO-VG are clearly the best
performing and that PSO-PG and PSO-G cannot even optimize the simple
Sphere problem. Since these two PSO variants employ no recurrent velocity for
their optimizing particles it would suggest that the velocity is an essential part
of what makes PSO work. Figures 5.5 and 5.6 show the progress of PSO and
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PSO-VG in more detail where PSO-VG can be seen to have a clear advantage.
The end results are shown in table 5.2 from which it can be seen that the PSO
and especially the PSO-VG variant often comes close to the optimal fitness
values of zero on these problems. Both variants seem to have some difficulty
optimizing the Rastrigin and Schwefel1-2 problems and the basic PSO also has
difficulty with the Rosenbrock problem. Note that the QuarticNoise problem is
in fact optimized well and a fitness of, say, 10 is just the noise that has been
added.

The first conclusion to be made is that meta-optimization greatly improves
the performance of PSO in this optimization scenario. The second conclusion
is that PSO can apparently be simplified to the PSO-VG variant with overall
performance improvement.

5.3.2 Generalization Ability

The purpose of this experiment is to test the generalization ability of PSO
and PSO-VG. Practitioners would prefer not to have to tune the behavioural
parameters of an optimizer for each new problem encountered, so the ability of
an optimizer to perform well on problems for which its behavioural parameters
were not specifically tuned is important. In order to test this, three different sets
of benchmark problems will be used in meta-optimization and the performance
on the remainder of the benchmark problems will then be studied. The sets
of benchmark problems are the same as for DE tested in section 4.4.5, and for
similar reasons:

� Rosenbrock & Sphere, one hard and one easy problem.

� Rastrigin & Schwefel1-2, because PSO and PSO-VG had some difficulty
optimizing these problems.

� QuarticNoise, Sphere & Step, because they are all unimodal problems with
QuarticNoise having noise added and Step being a discontinuous version
of Sphere. Parameters tuned for these simple problems may not generalize
well to harder problems.

The behavioural parameters that were meta-optimized with regard to these
three sets of benchmark problems are shown in table 5.3. For both PSO variants
the swarm-size S has decreased significantly compared to when the parameters
were tuned for all 12 benchmark problems. The parameters ω and φg show clear
tendencies. For ω the values are still negative although with more magnitude
than before, ω ' −0.35 for both PSO variants as opposed to ω ' −0.16 for
PSO and ω ' −0.27 for PSO-VG before. The parameter φg is also somewhat
similar for the two PSO variants, although it seems that when φp is large and
positive for the basic PSO variant then φg must be smaller. For PSO-VG the
good values seem to be around φg ' 3.5. The intrinsic meaning of these choices
of parameters is unknown.

Figures 5.7 and 5.8 compare the optimization progress of PSO and PSO-
VG when using the parameters tuned for Rosenbrock & Sphere. Note from
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table 5.3 the PSO parameter φp = −0.0075 which is so close to zero that we
would expect it to perform on par with PSO-VG which is really just PSO with
φp = 0. Indeed, the progress plots show that performance is very similar, with a
slight advantage of PSO-VG on e.g. the Ackley and Rosenbrock problems, and
a slight disadvantage on e.g. the Schwefel1-2 and 2-22 problems. Considering,
however, the proximity to the optimal fitness values of zero the performance is
deemed comparable, as expected.

Figures 5.9 and 5.10 compare the optimization progress of using the param-
eters tuned for Rastrigin & Schwefel1-2. The performance is overall very similar
for PSO and PSO-VG. The most notable difference is on the Ackley problem
where PSO-VG has worse mean progress but the quartiles reveal that it actually
discovers better solutions than PSO on occasion.

Figures 5.11 and 5.12 compare the optimization progress of using the param-
eters tuned for QuarticNoise, Sphere and Step. Here, PSO-VG seems to have
an advantage overall, perhaps with a slight exception on the Rastrigin problem
on which PSO-VG performs marginally worse.

Table 5.4 shows the optimization results of using PSO with these behavioural
parameters. Interestingly, the parameters tuned for Rosenbrock & Sphere and
for Rastrigin & Schwefel1-2 also seem to improve the end results on many of
the other problems. This is also partially true for the parameters tuned for
QuarticNoise, Sphere & Step, but on e.g. the Schwefel1-2 problem performance
is worsened compared to when the parameters were tuned for all 12 benchmark
problems.

Table 5.5 shows the end results of optimization using PSO-VG. Here the
tendencies are not so clear. For instance, tuning the parameters for Rosenbrock
& Sphere leads to slight improvement on these two problems where performance
was already good, but the mean results on e.g. Schwefel1-2 and 2-22 are now
worse, although the quartiles do reveal that better solutions are in fact being
found and worse solutions are found only occasionally. Performance on some of
the other problems is improved, see e.g. the Rastrigin problem. When the pa-
rameters were tuned for the Rastrigin & Schwefel1-2 problems the quartiles are
improved for the Schwefel1-2 problem but worsened for the Rastrigin problem
compared to when the parameters were tuned for all 12 benchmark problems.
Performance on the remaining problems seems comparable overall. When the
parameters were tuned for the QuarticNoise, Sphere & Step problems perfor-
mance seems to be comparable overall to when the parameters were tuned for
all 12 benchmark problems.

The conclusion is that both PSO and PSO-VG appear to generalize well to
problems for which their behavioural parameters were not specifically tuned.
PSO-VG seemed to have a small advantage when its parameters were tuned
for the simple problems QuarticNoise, Sphere & Step, but otherwise PSO and
PSO-VG seemed to be comparable in terms of their generalization ability.
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5.3.3 Specialization Ability

The purpose of this experiment is to uncover how well PSO and PSO-VG can
be made to perform by tuning their behavioural parameters for individual opti-
mization problems. This is useful in practise if a large number of closely related
problems must be optimized but the common choice of behavioural parameters
do not yield satisfactory results.

It was found in the experiments above that PSO consistently had difficulties
optimizing the Rastrigin and Schwefel1-2 problems, but also the Rosenbrock
and sometimes the Ackley problems. Table 5.6 shows the parameters of PSO
tuned for these problems individually which are very different from the param-
eters tuned for all 12 benchmark problems. It would be pure speculation to say
why these parameters should perform better on these specific problems. Two
interesting observations can be made, though. First, that the behavioural pa-
rameters are all negative when tuned to work well on the Rastrigin problem.
Second, when the parameters are tuned for the Rosenbrock problem the swarm
size S only has two particles and all the behavioural parameters are now positive.
Figure 5.13 shows the optimization progress of using these parameters compared
to when the behavioural parameters were tuned for all 12 benchmark problems.
It can be seen that performance is improved on these individual benchmark
problems, but performance is still irregular and satisfactory solutions are not
always found to these problems, see especially the Schwefel1-2 problem where
the mean and median fitness are well above the optimal fitness value of zero.

For PSO-VG the experiments above have shown difficulty optimizing the
Rastrigin and Schwefel1-2 problems. Table 5.6 shows the behavioural parame-
ters for PSO-VG tuned for these two problems individually, which appear some-
what related to the parameters that were tuned for all 12 benchmark problems.
This is interesting because the basic PSO variant had very different parameters
and it therefore indicates that introducing the φp parameter greatly alters and
perhaps distorts the meta-fitness landscape, while it is seemingly more smooth
for the PSO-VG variant that does not have the φp parameter. Figure 5.14 shows
the optimization progress of using these specialized parameters compared to the
parameters that were tuned for all 12 benchmark problems. On the Rastrigin
problem the quartiles show that performance is improved for most but not all
of the optimization runs. On the Schwefel1-2 problem performance is actu-
ally worsened when the parameters are tuned specifically for that one problem.
This is interesting but the cause is unknown. A guess would be that it is due
to the general performance irregularity of PSO-VG on the Schwefel1-2 problem
which somehow diverts the meta-optimizer from locating the region of good be-
havioural parameters, and this irregularity is perhaps masked when tuning the
behavioural parameters for multiple problems.

The conclusion is that performance of PSO and PSO-VG could be improved
on some problems when the behavioural parameters were tuned specifically for
one optimization problem at a time, although both these PSO variants still had
difficulty with the Schwefel1-2 problem on which the specialized parameters of
PSO-VG actually caused worse performance.
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5.3.4 Long Optimization Runs

The purpose of this experiment is to uncover the performance capabilities when
PSO and PSO-VG are allowed 600,000 iterations in optimization instead of
60,000 as before. Table 5.8 shows the end results of using the hand-tuned param-
eters from section 2.7 which are clearly still not capable of finding near-optimal
fitness values (close to zero), even though ten times as many optimization iter-
ations are now being performed.

Figures 5.15 and 5.16 show the optimization progress of using the behavioural
parameters for PSO and PSO-VG that were meta-optimized for all 12 bench-
mark problems when using 60,000 optimization iterations, marked by the dotted
line in these plots. It can be seen that PSO-VG has a small advantage over PSO
on these problems overall and PSO-VG is capable of finding solutions with near-
optimal fitness values for all problems while PSO is having some difficulty on
especially the Rastrigin problem.

Tuning the behavioural parameters for all 12 benchmark problems using
600,000 optimization iterations instead yields the parameters in table 5.7. The
PSO parameters are quite different from before but the PSO-VG parameters are
somewhat similar. Figures 5.17 and 5.18 show the optimization progress of using
these parameters where it can be seen that PSO-VG progresses slightly faster
and better on most of the problems, although the results are so close to the
optimal fitness values of zero that performance should be deemed comparable.
Table 5.10 shows the end results and PSO has occasional difficulty in optimizing
the Rastrigin problem while PSO-VG has occasional difficulty in optimizing the
Schwefel2-22 problem.

Tuning the behavioural parameters for only the Rastrigin and Schwefel1-
2 problems using 600,000 optimization iterations yields the parameters in ta-
ble 5.7. The PSO parameters seem to be somewhat related to when they were
tuned for all 12 benchmark problems using 600,000 optimization iterations, while
the PSO-VG parameters show similar tendencies to before but of different mag-
nitudes. Figures 5.19 and 5.20 show the optimization progress of using these
parameters. On both of the problems for which the behavioural parameters
were tuned PSO-VG performs slightly worse than PSO, although the proximity
to the optimal fitness values of zero suggests they should perhaps be deemed
comparable. On the problems for which the behavioural parameters were not
tuned there does seem to be a general advantage of PSO, although the prox-
imity to optimal fitness values again suggests that the performance should be
deemed comparable. Indeed, table 5.10 shows that near-optimal fitness values
are frequently found for all problems by both PSO and PSO-VG, but PSO-VG
occasionally has difficulties with especially Schwefel2-21 and 2-22. This is inter-
esting because the behavioural parameters of PSO-VG were previously tuned to
perform and generalize better than those of PSO. The cause of this deficiency
is unknown, but a guess would be that tuning the PSO-VG parameters for Ras-
trigin and Schwefel1-2 causes a similar sort of confusion for the meta-optimizer
as was observed when tuning the parameters for just the Schwefel1-2 problem
in section 5.3.3 above.
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The conclusion is that both PSO and PSO-VG can be tuned to perform well
in these longer optimization runs, although some care must be taken in selecting
the problems for which the behavioural parameters are tuned, so as to make the
performance generalize well to other problems.

5.3.5 Deterministic Variants

The purpose of this experiment is to uncover the performance capabilities of
deterministic PSO and PSO-VG variants, which are identical to their original
stochastic versions except for fixing the stochastic variables, that is, rp = rg = 1
in Eqs.(5.1) and (5.2) for the velocity updates. Recall that deterministic PSO
variants were the subject of the mathematical analyses in [27] [29] [28], so this
experiment may confirm or disconfirm the usefulness of those analyses.

Table 5.9 shows the behavioural parameters of the deterministic PSO vari-
ants that were discovered through meta-optimization. Comparing these to the
parameters for the stochastic PSO variants in table 5.1 the most striking dif-
ferences are that the inertia weight is no longer negative and that the weight
φg is significantly lower than before. The optimization results of using these
parameters are shown in table 5.11. Clearly, the deterministic PSO variants
perform poorly compared to the stochastic variants, especially PSO-VG has
greatly diminished optimization capabilities when it is made deterministic.

The conclusion is that PSO variants perform significantly better when their
movement in the search-space is stochastic rather than deterministic. Theoret-
ical analyses in the literature that have assumed determinism of PSO would
therefore seem to be misleading in practise.

5.3.6 Parameter Study

This section is a more detailed study of the behavioural parameters from the
meta-optimization experiments above. Table 5.12 lists the ten best sets of pa-
rameters found in some of these experiments. Recall that smaller meta-fitness
values indicate better optimization performance. Observe that good choices of
ω apparently have to be negative for PSO and PSO-VG both, and shorter op-
timization runs seem to need an ω parameter of smaller magnitude. For PSO
good choices of the φg parameter seem to be roughly φg ∈ [2; 3.5] although
negative values are also sometimes found to work well. The φp parameter is
more erratic and it is hard to see a clear tendency for what choices of φp yield
good performance. For PSO-VG good choices of the φg parameter are fairly
consistently found to be close to the boundary value of φg ' 4 for the opti-
mization runs having 60,000 iterations, while smaller values, say, φg ∈ [2; 3] are
found to work well for the longer optimization runs. For PSO a good choice of
swarm-size seems to be roughly S ∈ {70, · · · , 100} and for PSO-VG it should
perhaps be somewhat higher, say, S ∈ {70, · · · , 200} depending on the problem
configuration.

Figure 5.21 shows meta-fitness landscapes of using PSO-VG with a fixed
swarm-size S = 100, which seems to be a good compromise from the above. The
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landscapes are made for the Rastrigin, Rosenbrock and Schwefel1-2 problems
individually. There is obvious correlation between the parameters that work well
for these problems, namely ω ∈ [−0.5; −0.25] and φg ∈ [3; 4], although positive
values of ω also work well on the Rosenbrock problem but not on the other two
problems. This region of good parameters is consistent with the meta-optimized
parameters from table 5.12. Figure 5.22 shows the meta-fitness landscapes for
combinations of benchmark problems with a similar region of good performing
parameters.

Observe from the plots in figures 5.21 and 5.22 as well as the behavioural
parameters listed in table 5.12 that good choices of the φg parameter are so
close to its boundary value of 4. This was already noted in section 5.3.1 where
an additional meta-optimization experiment was conducted with wider bound-
aries for the S and φg parameters but did not yield better results. Perhaps that
conclusion was too hasty. To investigate if wider boundaries are really necessary
figure 5.23 shows the meta-fitness landscapes where the upper boundary for φg
has been expanded to 16 instead of 4. Also note that the swarm-size is now fixed
to S = 200 instead of S = 100, this was done to get a slightly different view of
the meta-fitness landscape, from which it can be seen that the swarm-size does
not appear to greatly influence the performance of PSO-VG. As can be seen
from figure 5.23 good choices of φg seem to be in the range φg ∈ [2.5; 5]. This
is perhaps more evident from the plots in figure 5.24 and would suggest that all
the meta-optimization experiments above should indeed have been conducted
with slightly wider boundaries. However, the best behavioural parameter for the
Rastrigin & Schwefel1-2 problems when traversing this grid was indeed found to
be φg = 3.6923, and φg = 3.1795 for the grid measuring the performance on all
12 benchmark problems. Both these φg values are below the upper boundary
of 4 as used in the meta-optimization experiments, thus suggesting the bound-
aries were in fact wide enough. Nevertheless, the proximity to the boundary
might explain why there were occasional difficulties in locating good parame-
ters, because of the small size of the region and that the surrounding valley
was cut off. See for example table 5.12 where meta-optimization had difficulty
finding good behavioral parameters for the Rastrigin & Schwefel1-2 problems
when using 600,000 optimization iterations. Although a good parameter choice
was indeed found to be φg ' 2 which is well below the boundary of 4, there
were only two good sets of parameters found which indicates difficulty in param-
eter tuning. Redoing that meta-optimization experiment with the boundaries
S ∈ {1, · · · , 300} and φg ∈ [−4; 6] yields the parameters in table 5.13 which
now all have good performance as indicated by the low meta-fitness measure.
Using the best of these parameters for PSO-VG gives the optimization progress
shown in figures 5.25 and 5.26 that are compared to PSO, which did not seem to
need re-tuning with wider parameter boundaries as the parameters in table 5.12
are well within the boundaries. The performance of PSO and PSO-VG is now
mostly comparable, perhaps with a slight advantage to PSO-VG as shown by
the quartiles, although the results are close to the optimal fitness value of zero
for PSO and PSO-VG both.

The overall conclusion is that PSO-VG seems to have more predictable and
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consistently good behavioural parameters than PSO, although the boundaries
for the parameters in meta-optimization must be sufficiently wide or the region
of good parameters can be difficult to locate. On the other hand, the boundaries
should also not be made too wide because the good region will then again become
difficult to find. Chapter 6 has suggestions on how to overcome the dilemma of
selecting boundaries for behavioural parameters.

5.3.7 Time Usage

The time usage for some of the previous meta-optimization experiments have
been listed in table 5.14. The experimental settings were similar to those for DE
as described in section 4.4.10. As can be seen, PSO-VG with its 3 behavioural
parameters is somewhat faster to tune than PSO with 4 parameters. That
the time usage does not scale exactly in terms of the number of behavioural
parameters being tuned, the number of benchmark problems and the number
of optimization iterations, is due to the different effect that Preemptive Fitness
Evaluation has on different optimizers in different scenarios.

Now compare the time usage of meta-optimization for all 12 benchmark
problems with that of traversing a 40x40 grid of the space of behavioural pa-
rameters and computing the meta-fitness value at each point, as was done for
the meta-fitness landscape plotted in figure 5.22 which took more than 90 hours
to compute. That was just for 2 behavioural parameters, computing a grid of
that resolution for all 3 parameters of PSO-VG would take about 150 days,
and for PSO with its 4 parameters it would take more than 16 years. Meta-
optimization for that problem configuration took less than 3 hours for PSO-VG
as shown in table 5.14, and less than 4 hours for PSO. This clearly shows the
advantage of using meta-optimization instead of a more exhaustive, grid-based
search for good behavioural parameters.

5.3.8 Comparison to Differential Evolution

Comparison of PSO and DE variants will now be done for a few overall per-
formance characteristics. First is the performance when the behavioural pa-
rameters were tuned for all 12 benchmark problems using 60,000 optimization
iterations. This is compared for PSO-VG and DE/Simple because they are the
simplified optimizer variants and they were both found to work well in that sce-
nario. Figures 5.27 and 5.28 show the optimization progress which is reprinted
from the previous plots for easy comparison. First note that DE/Simple per-
forms poorly on the Ackley and Rastrigin problems, which was a deficiency of
DE/Simple already known from the study in chapter 4. But on most of the re-
maining problems, e.g. the Griewank, Penalized1 and 2, Rosenbrock, Schwefel1-
2, 2-21 and 2-22 problems DE/Simple gets closer to the optimal fitness value of
zero towards the end of the optimization runs than PSO-VG does.

Another DE variant will now be used in the performance comparison for
600,000 optimization iterations. For longer optimization runs JDE was found
to work better than DE/Simple in chapter 4, mainly because DE/Simple could
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not have its parameters tuned to work well for all benchmark problems simulta-
neously. The behavioural parameters for JDE were tuned for the Ackley, Rast-
rigin, Rosenbrock and Schwefel1-2 problems, while the parameters for PSO-VG
were only tuned for the Rastrigin and Schwefel1-2 problems. This would seem to
make for an unfair comparison, but considering the strong correlation of PSO-
VG parameters tuned for different problems, as shown in section 5.3.6, there
seems to be little to gain in tuning the PSO-VG parameters for two additional
problems. Figures 5.29 and 5.30 show the optimization progress. As can be
seen, PSO-VG performs better than JDE early during optimization but JDE is
able to get closer to the optimal fitness values of zero later during optimization.
Considering the proximity of the PSO-VG results to the optimal fitness values
of zero, it is however questionable if JDE is a real improvement as the PSO-VG
results are likely good enough for practical purposes.

Comparing the time usage of meta-optimizing the behavioural parameters
of PSO-VG and JDE, as shown in tables 5.14 and 4.19, it is evident that it
takes considerable longer to tune the 9 parameters of JDE than it takes to tune
the 3 parameters of PSO-VG. In particular, consider meta-optimization for all
12 benchmark problems and 60,000 optimization iterations, where JDE takes
almost 14 hours to tune while PSO-VG takes less than 3 hours. Also note that
the time usage of tuning the parameters of DE/Simple is almost twice that of
PSO-VG, in spite of them both having 3 parameters to be tuned. The reason
for this is that Preemptive Fitness Evaluation yields different time savings for
different optimization methods.

The conclusion is that the simple PSO-VG variant progresses somewhat
faster in optimization, but the DE variants can get closer to the optimal fitness
values for these benchmark problems. Though, the proximity of the PSO-VG
results to optimal fitness values may be good enough for practical purposes.

5.4 Summary

From the experiments in this chapter a number of conclusions can be made.
First, tuning the behavioural parameters of PSO variants greatly improved op-
timization performance. Second, the PSO parameters that worked best were
contrary to guidelines in the literature. Third, the simplified PSO-VG vari-
ant generally performed on par with the basic PSO from which it was derived,
and sometimes even had improved performance. The behavioural parameters
of PSO-VG were also easier to tune although their boundaries should be chosen
properly. Fourth, stochastic PSO algorithms perform significantly better than
deterministic ones. Fifth, PSO-VG had slightly faster optimization progress
than the DE variants, but did not get quite as close to the optimal fitness
values, although the results of PSO-VG may be satisfactory in practise.
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Variant S ω φp φg
PSO 134 -0.1618 1.8903 2.1225
PSO-VG 198 -0.2723 - 3.8283
PSO-PG 113 - -3.3743 1.6645
PSO-G 133 - - 3.7858

Table 5.1: Behavioural parameters for PSO variants meta-optimized for all 12
benchmark problems in 30 dimensions each and optimization run-lengths of
60,000 iterations. Optimization results are found in table 5.2 and figures 5.1-
5.6.
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Figure 5.1: Comparison of optimization progress for basic PSO using the
behavioural parameters from Eq.(5.3) which are standard in the literature and
the parameters from table 4.3 which were meta-optimized for all 12 bench-
mark problems using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.
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Figure 5.2: Comparison of optimization progress for basic PSO using the
behavioural parameters from Eq.(5.3) which are standard in the literature and
the parameters from table 4.3 which were meta-optimized for all 12 bench-
mark problems using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.

137



0.01

0.1

1

10

100

1000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Ackley

PSO
PSO-VG
PSO-PG

PSO-G

0.01

0.1

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Griewank

PSO
PSO-VG
PSO-PG

PSO-G

0.0001

0.01

1

100

10000

1e+006

1e+008

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Penalized1

PSO
PSO-VG
PSO-PG

PSO-G

0.01

1

100

10000

1e+006

1e+008

1e+010

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Penalized2

PSO
PSO-VG
PSO-PG

PSO-G

1

10

100

1000

10000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

QuarticNoise

PSO
PSO-VG
PSO-PG

PSO-G

10

100

1000

0 10000 20000 30000 40000 50000 60000

F
it

ne
ss

Iteration

Rastrigin

PSO
PSO-VG
PSO-PG

PSO-G

Figure 5.3: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.1 which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs.
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Figure 5.4: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.1 which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs.
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Figure 5.5: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.1 which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 5.6: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.1 which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max

P
SO

Ackley 1.54 1.33 0.03 0.19 1.35 2.66 4.42
Griewank 0.54 0.26 5.13e-3 0.36 0.58 0.74 0.98
Penalized1 0.13 0.28 8.19e-4 2.03e-3 5.57e-3 0.13 1.29
Penalized2 0.29 0.25 0.01 0.12 0.23 0.41 1.35
QuarticNoise 10.12 0.75 8.83 9.6 10.06 10.55 12.64
Rastrigin 81 56.64 0.09 38.23 74.61 118.5 207.86
Rosenbrock 42.77 29.21 0.14 31.44 35.81 47.67 152.52
Schwefel1-2 449.19 231.1 1.9 277.51 426.35 593.53 982.47
Schwefel2-21 0.5 0.47 0.01 0.18 0.27 0.75 1.93
Schwefel2-22 2.65 3.03 0.16 0.65 1.14 5.19 15.5
Sphere 0.03 0.04 1.23e-3 6.81e-3 0.02 0.04 0.21
Step 0.88 1.86 0 0 0 1 7

P
SO

-V
G

Ackley 0.01 0.01 4.03e-4 3.8e-3 6.98e-3 0.01 0.05
Griewank 0.05 0.08 5.09e-6 1.92e-3 8.11e-3 0.07 0.5
Penalized1 4.74e-3 0.02 1.43e-5 2.15e-4 4.12e-4 6.86e-4 0.11
Penalized2 0.06 0.08 6.38e-5 0.01 0.03 0.06 0.45
QuarticNoise 9.27 0.56 8.11 8.89 9.25 9.64 10.93
Rastrigin 13 11.54 3.5e-4 2.18 12.5 18.04 45.01
Rosenbrock 0.29 0.67 4.3e-4 8.13e-3 0.04 0.2 3.63
Schwefel1-2 46.9 97.87 0.02 1.5 10.69 49.83 632.05
Schwefel2-21 0.01 0.02 2.99e-5 2.73e-3 5.68e-3 0.02 0.15
Schwefel2-22 0.24 0.97 5.85e-4 9.31e-3 0.03 0.06 5.02
Sphere 1.07e-3 1.54e-3 4.56e-7 2.4e-4 6.01e-4 1.4e-3 9.93e-3
Step 0 0 0 0 0 0 0

P
SO

-P
G

Ackley 6.05 2.76 3.53 4.52 5.19 6.23 16.19
Griewank 67.79 24.4 24.25 53.68 65.97 84.92 128.65
Penalized1 11.43 7.06 1.82 5.08 10.51 15.3 28.09
Penalized2 30679 164175 3.01 37.95 69.05 6589 1.17e+6
QuarticNoise 13.17 1.83 9.76 11.82 12.99 14.33 18.42
Rastrigin 112.52 66.9 11.05 47.9 98.51 178.76 234.75
Rosenbrock 5758 2959 2147 3321 5139 7916 16853
Schwefel1-2 212371 531057 4598 11513 18029 90739 3.14e+6
Schwefel2-21 7.16 4.49 0.89 3.71 6.79 9.01 22.93
Schwefel2-22 69.95 60.6 10.35 22.4 41.46 107.32 192.91
Sphere 1412 910.47 2.31 829.54 1260 1893 5519
Step 201.78 104.03 49 126 171.5 253 540

P
SO

-G

Ackley 20.06 0.1 19.96 19.98 20.03 20.14 20.4
Griewank 15.55 44.02 0.75 1.04 1.08 1.2 192.28
Penalized1 14.95 5.91 6.33 10.4 14.35 18.09 35.84
Penalized2 41.56 12.26 5.95 36.49 42.54 49.74 70.57
QuarticNoise 26.05 13.25 12.54 16.53 22.11 28.89 71.38
Rastrigin 193.22 44.43 106.81 169.43 180.48 212.53 333.63
Rosenbrock 182.63 83.44 63.15 120.05 164.43 223.64 429.25
Schwefel1-2 379438 856116 9547 31923 55203 252545 5.36e+6
Schwefel2-21 45.85 43.82 1.68 7.53 16.64 99.14 102.82
Schwefel2-22 123.68 47.17 15.88 89.68 127.8 159.04 220.59
Sphere 600.02 2338 1.02 3.44 5.39 8.89 10002
Step 2573 2280 216 1086 1617 3155 11709

Table 5.2: Optimization end results for PSO variants using the behavioural
parameters from table 5.1 which were meta-optimized for all 12 benchmark
problems using 60,000 fitness evaluations. Table shows end results on bench-
mark problems of 30 dimensions each, results obtained over 50 optimization
runs where the number of fitness evaluations for each run is 60,000.
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Problems S ω φp φg

P
S
O

All Benchmark Problems 134 -0.1618 1.8903 2.1225
Rosenbrock & Sphere 84 -0.3036 -0.0075 3.9730

Rastrigin & Schwefel1-2 82 -0.3794 -0.2389 3.5481
QuarticNoise, Sphere & Step 50 -0.3610 0.7590 2.2897

P
S
O

-V
G All Benchmark Problems 198 -0.2723 - 3.8283

Rosenbrock & Sphere 42 -0.4055 - 3.1722
Rastrigin & Schwefel1-2 47 -0.3000 - 3.5582

QuarticNoise, Sphere & Step 83 -0.3461 - 3.2535

Table 5.3: Behavioural parameters for PSO variants that are meta-optimized
for various combinations of benchmark problems in 30 dimensions each and
optimization run-lengths of 60,000 iterations. Optimization results are found
in figures 5.7-5.12 and tables 5.4 and 5.5.
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Figure 5.7: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.3 which were meta-optimized for Rosen-
brock & Sphere using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.
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Figure 5.8: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.3 which were meta-optimized for Rosen-
brock & Sphere using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.
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Figure 5.9: Comparison of optimization progress for PSO variants using the be-
havioural parameters from table 5.3 which were meta-optimized for Rastrigin
& Schwefel1-2 using 60,000 fitness evaluations. Plots show the mean fitness
achieved over 50 optimization runs, as well as the quartiles at intervals during
optimization.
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Figure 5.10: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.3 which were meta-optimized for Rast-
rigin & Schwefel1-2 using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 5.11: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.3 which were meta-optimized for Quartic-
Noise, Sphere & Step using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 5.12: Comparison of optimization progress for PSO variants using the
behavioural parameters from table 5.3 which were meta-optimized for Quartic-
Noise, Sphere & Step using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max

A
ll

B
en

ch
m

ar
k

P
ro

bl
em

s
Ackley 1.54 1.33 0.03 0.19 1.35 2.66 4.42
Griewank 0.54 0.26 5.13e-3 0.36 0.58 0.74 0.98
Penalized1 0.13 0.28 8.19e-4 2.03e-3 5.57e-3 0.13 1.29
Penalized2 0.29 0.25 0.01 0.12 0.23 0.41 1.35
QuarticNoise 10.12 0.75 8.83 9.6 10.06 10.55 12.64
Rastrigin 81 56.64 0.09 38.23 74.61 118.5 207.86
Rosenbrock 42.77 29.21 0.14 31.44 35.81 47.67 152.52
Schwefel1-2 449.19 231.1 1.9 277.51 426.35 593.53 982.47
Schwefel2-21 0.5 0.47 0.01 0.18 0.27 0.75 1.93
Schwefel2-22 2.65 3.03 0.16 0.65 1.14 5.19 15.5
Sphere 0.03 0.04 1.23e-3 6.81e-3 0.02 0.04 0.21
Step 0.88 1.86 0 0 0 1 7

R
os

en
br

oc
k

&
Sp

he
re

Ackley 2.49e-3 2.78e-3 3.82e-6 3.44e-4 1.54e-3 3.94e-3 0.01
Griewank 0.01 0.04 4.02e-10 1.89e-5 3.04e-4 9.51e-4 0.18
Penalized1 1.03e-3 3.68e-3 2.02e-7 3.76e-5 1.8e-4 7.54e-4 0.03
Penalized2 0.05 0.11 1.65e-5 1.07e-3 0.01 0.05 0.69
QuarticNoise 9.38 0.63 8.33 8.91 9.3 9.88 10.9
Rastrigin 7.56 8.89 2.72e-7 1.18e-3 3.86 14.07 31.76
Rosenbrock 0.02 0.04 1.67e-5 2.98e-4 2.72e-3 7.16e-3 0.2
Schwefel1-2 276.92 696.64 2.21e-5 0.02 0.16 25.15 2820
Schwefel2-21 2.89e-3 3.92e-3 1.77e-6 1.64e-4 8.64e-4 4.8e-3 0.02
Schwefel2-22 1.71 2.93 2.3e-5 1.27e-3 8.34e-3 5 10.02
Sphere 6.41e-4 9.64e-4 5.54e-6 8.28e-5 3.05e-4 8.9e-4 4.17e-3
Step 0 0 0 0 0 0 0

R
as

tr
ig

in
&

Sc
hw

ef
el

1-
2

Ackley 0.01 8.68e-3 1.4e-3 5.13e-3 9.25e-3 0.01 0.04
Griewank 0.02 0.06 1.59e-5 1.27e-3 4.44e-3 0.01 0.29
Penalized1 9.33e-3 0.03 1.53e-5 2.23e-4 5.77e-4 9.77e-4 0.11
Penalized2 0.05 0.08 1.84e-4 4.49e-3 0.03 0.05 0.46
QuarticNoise 9.34 0.58 7.77 9.01 9.41 9.77 10.21
Rastrigin 11.07 12.84 9.06e-5 2.84e-3 4.75 23.2 40.16
Rosenbrock 0.17 0.32 8.39e-4 0.01 0.04 0.25 2.01
Schwefel1-2 23.35 35.32 7.47e-3 0.49 4.7 29.19 131.21
Schwefel2-21 0.01 0.02 7.31e-5 2.02e-3 4.75e-3 0.01 0.1
Schwefel2-22 0.33 1.19 6.33e-4 8.74e-3 0.02 0.04 5.03
Sphere 1.09e-3 1.33e-3 2.92e-6 2.02e-4 5.33e-4 1.63e-3 6.21e-3
Step 0 0 0 0 0 0 0

Q
ua

rt
ic

N
oi

se
,

Sp
he

re
&

St
ep

Ackley 0.25 0.55 3.89e-3 0.03 0.07 0.16 3.05
Griewank 0.42 0.32 2.75e-4 0.07 0.4 0.74 0.97
Penalized1 0.02 0.04 1.4e-4 3.3e-3 5.77e-3 0.01 0.24
Penalized2 0.18 0.13 2.71e-3 0.08 0.16 0.3 0.44
QuarticNoise 9.7 0.77 6.46 9.35 9.63 10.18 11.81
Rastrigin 12.34 11.94 2.68e-4 0.58 10.88 21.79 50.11
Rosenbrock 16.62 25.56 0.03 0.84 3.45 19.38 103.9
Schwefel1-2 822.91 470.61 123.13 466.07 757.04 1153 2260
Schwefel2-21 0.07 0.06 4.53e-3 0.03 0.05 0.08 0.3
Schwefel2-22 1.41 2.23 0.03 0.15 0.31 1.17 10.04
Sphere 6.26e-3 0.01 4.62e-6 5.91e-4 2.46e-3 6.61e-3 0.06
Step 0 0 0 0 0 0 0

Table 5.4: Optimization end results for PSO using the behavioural parameters
from table 5.3 which were meta-optimized for various combinations of bench-
mark problems using 60,000 fitness evaluations. Table shows end results on
benchmark problems of 30 dimensions each, results obtained over 50 optimiza-
tion runs where the number of fitness evaluations for each run is 60,000.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max

A
ll

B
en

ch
m

ar
k

P
ro

bl
em

s
Ackley 0.01 0.01 4.03e-4 3.8e-3 6.98e-3 0.01 0.05
Griewank 0.05 0.08 5.09e-6 1.92e-3 8.11e-3 0.07 0.5
Penalized1 4.74e-3 0.02 1.43e-5 2.15e-4 4.12e-4 6.86e-4 0.11
Penalized2 0.06 0.08 6.38e-5 0.01 0.03 0.06 0.45
QuarticNoise 9.27 0.56 8.11 8.89 9.25 9.64 10.93
Rastrigin 13 11.54 3.5e-4 2.18 12.5 18.04 45.01
Rosenbrock 0.29 0.67 4.3e-4 8.13e-3 0.04 0.2 3.63
Schwefel1-2 46.9 97.87 0.02 1.5 10.69 49.83 632.05
Schwefel2-21 0.01 0.02 2.99e-5 2.73e-3 5.68e-3 0.02 0.15
Schwefel2-22 0.24 0.97 5.85e-4 9.31e-3 0.03 0.06 5.02
Sphere 1.07e-3 1.54e-3 4.56e-7 2.4e-4 6.01e-4 1.4e-3 9.93e-3
Step 0 0 0 0 0 0 0

R
os

en
br

oc
k

&
Sp

he
re

Ackley 3.94e-3 5.85e-3 2.28e-7 3.62e-4 2.31e-3 5.38e-3 0.03
Griewank 0.06 0.14 2.61e-10 2.83e-5 7.12e-4 3.53e-3 0.54
Penalized1 5.61e-3 0.02 1.91e-7 3.96e-5 3.97e-4 2.21e-3 0.17
Penalized2 0.17 0.23 4.57e-6 5.42e-4 0.04 0.33 1.08
QuarticNoise 9.65 0.86 8.22 9.04 9.45 10.1 12.23
Rastrigin 3.87 5.93 1.93e-8 9.04e-5 6.3e-3 7.23 27.35
Rosenbrock 0.05 0.13 5.68e-9 4.39e-4 5.13e-3 0.02 0.73
Schwefel1-2 541.3 738.71 5.03e-3 0.5 102.96 1091 2810
Schwefel2-21 1.5 5.94 5.16e-8 6.45e-5 1.33e-3 7.19e-3 25
Schwefel2-22 4.81 4.58 3.24e-6 7.5e-3 5 10 15
Sphere 1.06e-3 1.89e-3 2.26e-6 4.99e-5 2.84e-4 1.23e-3 9.61e-3
Step 0 0 0 0 0 0 0

R
as

tr
ig

in
&

Sc
hw

ef
el

1-
2

Ackley 0.41 2.8 1.66e-4 2.33e-3 5.98e-3 0.02 20.02
Griewank 0.05 0.07 6.79e-7 7.82e-5 3.71e-3 0.04 0.24
Penalized1 4.83e-3 0.02 6.7e-6 2.62e-4 4.13e-4 6.44e-4 0.11
Penalized2 0.15 0.22 1.54e-4 0.02 0.06 0.14 1.25
QuarticNoise 9.57 0.83 7.54 8.84 9.62 10.16 11.83
Rastrigin 24.49 34.47 2.29e-6 5.04 17.98 26.07 168.2
Rosenbrock 0.08 0.19 2.23e-5 5.14e-3 0.02 0.08 1.25
Schwefel1-2 39.58 76.79 2.59e-4 0.41 3.62 42.36 387.69
Schwefel2-21 0.01 0.02 6.25e-9 1.98e-4 6.22e-3 0.02 0.12
Schwefel2-22 1.43 2.24 3e-5 5.51e-3 0.04 5 5.18
Sphere 6.66e-4 1.09e-3 3.21e-8 4.37e-5 2.8e-4 6.55e-4 5.54e-3
Step 0 0 0 0 0 0 0

Q
ua

rt
ic

N
oi

se
,

Sp
he

re
&

St
ep

Ackley 0.01 0.01 1.67e-4 3.58e-3 8.37e-3 0.02 0.06
Griewank 0.05 0.07 1.98e-5 1.06e-3 0.01 0.07 0.3
Penalized1 2.6e-3 0.01 8.41e-6 1.23e-4 2.81e-4 4.86e-4 0.11
Penalized2 0.06 0.08 9.52e-4 0.01 0.03 0.09 0.42
QuarticNoise 9.32 0.71 7.48 8.86 9.25 9.72 11.22
Rastrigin 15.63 12.88 1.1e-4 4.99 13.52 22.01 52.27
Rosenbrock 1.56 5.63 1.43e-4 0.01 0.13 0.41 29.56
Schwefel1-2 39.8 76.19 3.38e-3 0.86 15.85 44.56 487.84
Schwefel2-21 0.03 0.05 3.39e-4 4.05e-3 9.58e-3 0.03 0.19
Schwefel2-22 0.76 1.74 1.72e-3 0.01 0.04 0.11 5.21
Sphere 5.39e-4 7.43e-4 6.59e-7 6.91e-5 3.06e-4 6.74e-4 3.74e-3
Step 0 0 0 0 0 0 0

Table 5.5: Optimization end results for PSO-VG using the behavioural pa-
rameters from table 5.3 which were meta-optimized for various combinations
of benchmark problems using 60,000 fitness evaluations. Table shows end re-
sults on benchmark problems of 30 dimensions each, results obtained over 50
optimization runs where the number of fitness evaluations for each run is 60,000.
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Variant Problems S ω φp φg

PSO

All Benchmark Problems 134 -0.1618 1.8903 2.1225
Ackley 24 -0.6421 -3.9845 0.2583

Rastrigin 53 -1.3131 -0.7090 -0.5648
Rosenbrock 2 0.7622 1.3619 3.4249
Schwefel1-2 119 -0.3718 -0.2031 3.2785

PSO-VG
All Benchmark Problems 198 -0.2723 - 3.8283

Rastrigin 114 -0.3606 - 3.8220
Schwefel1-2 138 -0.4774 - 2.3943

Table 5.6: Behavioural parameters for PSO variants that are meta-optimized for
individual benchmark problems in 30 dimensions and optimization run-lengths
of 60,000 iterations. Optimization results are found in figures 5.13 and 5.14.
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Figure 5.13: Comparison of optimization progress for PSO using the be-
havioural parameters from table 5.6 which were meta-optimized for the bench-
mark problems individually using 60,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs, as well as the quartiles at
intervals during optimization.
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Figure 5.14: Comparison of optimization progress for PSO-VG using the be-
havioural parameters from table 5.6 which were meta-optimized for the bench-
mark problems individually using 60,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs, as well as the quartiles at
intervals during optimization.

Variant Problems Iterations S ω φp φg

PSO
All Benchmark Problems 60,000 134 -0.1618 1.8903 2.1225
All Benchmark Problems 600,000 95 -0.6031 -0.6485 2.6475
Rastrigin & Schwefel1-2 600,000 104 -0.4565 -0.1244 3.0364

PSO-VG
All Benchmark Problems 60,000 198 -0.2723 - 3.8283
All Benchmark Problems 600,000 134 -0.4300 - 3.0469
Rastrigin & Schwefel1-2 600,000 72 -0.6076 - 1.9609

Table 5.7: Behavioural parameters for PSO variants that are meta-optimized
for various benchmark problems in 30 dimensions and various optimization run-
lengths. Optimization results are found in figures 5.17-5.20.

Problem Mean Std.Dev. Min Q1 Median Q3 Max
Ackley 19.91 0.54 17.18 19.97 20.06 20.15 20.45
Griewank 250.71 100.56 31.99 182.1 228.58 319.37 523.07
Penalized1 14711 35150 15.45 49.56 712.4 7216 157746
Penalized2 381735 637052 48.69 6672 113321 380088 3.09e+6
QuarticNoise 80.82 43.52 9.55 50.2 78.29 114.79 189.5
Rastrigin 191.45 29.84 127.27 170.3 191.75 212.66 272.71
Rosenbrock 1975 1337 526.53 1084 1486 2394 6040
Schwefel1-2 52333 24786 8620 36792 46006 62961 144736
Schwefel2-21 49.46 24.14 20.08 28.63 37.17 75 98.35
Schwefel2-22 77.25 30.36 26.19 55.63 71.64 94.1 144.34
Sphere 14374 10710 194.03 11021 12358 21358 44688
Step 10054 5492 2270 5417 9389 13777 25426

Table 5.8: Optimization end results for PSO using the behavioural parameters
from Eq.(5.3) which were hand-tuned. Table shows end results on benchmark
problems of 30 dimensions each, results obtained over 50 optimization runs
where the number of fitness evaluations for each run is 600,000.
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Figure 5.15: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.1, which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization. Dotted line shows 60,000 fitness evaluations for which the
parameters were tuned.

Variant S ω φp φg
PSO 167 0.9447 1.4047 0.1494
PSO-VG 195 0.1285 - 0.8231

Table 5.9: Behavioural parameters for deterministic PSO variants meta-
optimized for all 12 benchmark problems in 30 dimensions each and opti-
mization run-lengths of 60,000 iterations. Optimization results are found in
table 5.11.
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Figure 5.16: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.1, which were meta-optimized for all 12
benchmark problems using 60,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization. Dotted line shows 60,000 fitness evaluations for which the
parameters were tuned.
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Figure 5.17: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.7, which were meta-optimized for all
12 benchmark problems using 600,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs, as well as the quartiles at
intervals during optimization.
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Figure 5.18: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.7, which were meta-optimized for all
12 benchmark problems using 600,000 fitness evaluations. Plots show the
mean fitness achieved over 50 optimization runs, as well as the quartiles at
intervals during optimization.
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Figure 5.19: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.7, which were meta-optimized for the
Rastrigin & Schwefel1-2 problems using 600,000 fitness evaluations. Plots
show the mean fitness achieved over 50 optimization runs, as well as the quartiles
at intervals during optimization.
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Figure 5.20: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters from table 5.7, which were meta-optimized for the
Rastrigin & Schwefel1-2 problems using 600,000 fitness evaluations. Plots
show the mean fitness achieved over 50 optimization runs, as well as the quartiles
at intervals during optimization.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max

A
ll

B
en

ch
m

ar
k

P
ro

bl
em

s

P
SO

Ackley 3.69e-4 2.24e-4 1.87e-5 1.88e-4 3.74e-4 4.89e-4 1.01e-3
Griewank 3.83e-3 8.76e-3 8.45e-7 5.15e-6 1.74e-5 1.24e-4 0.05
Penalized1 4.27e-8 4.19e-8 5.97e-9 1.75e-8 3.05e-8 4.99e-8 2.05e-7
Penalized2 1.1e-3 3.3e-3 3.38e-8 3.05e-7 8.15e-7 2.22e-6 0.01
QuarticNoise 8.74 0.44 7.8 8.53 8.7 8.97 10.02
Rastrigin 0.51 2.75 5.54e-8 1.38e-6 9.64e-6 6.97e-5 19.39
Rosenbrock 3.45e-4 4.34e-4 1.22e-6 4.37e-5 1.85e-4 4.78e-4 2.48e-3
Schwefel1-2 0.02 0.04 3.02e-6 1.25e-3 4.56e-3 0.03 0.25
Schwefel2-21 2.26e-3 2.99e-3 5.42e-5 3.17e-4 1.16e-3 2.91e-3 0.02
Schwefel2-22 2.25e-3 2.06e-3 1.29e-4 5.93e-4 1.64e-3 3.01e-3 7.41e-3
Sphere 2.37e-8 2.94e-8 8.91e-10 8.22e-9 1.25e-8 3.43e-8 1.77e-7
Step 0 0 0 0 0 0 0

P
SO

-V
G

Ackley 5.47e-5 1.08e-4 7.76e-10 8.61e-7 6.3e-6 5.61e-5 6.03e-4
Griewank 8.15e-4 3.41e-3 0 1.83e-10 1.95e-8 1.12e-6 0.02
Penalized1 1.11e-7 2.13e-7 1.63e-11 3.12e-9 2.2e-8 1.39e-7 1.05e-6
Penalized2 1.69e-6 2.58e-6 1.4e-10 4.33e-8 6.07e-7 1.93e-6 1.07e-5
QuarticNoise 8.5 0.51 7.44 8.18 8.4 8.9 9.81
Rastrigin 9.81e-7 4.6e-6 1.42e-14 2.02e-11 4.1e-9 1.06e-7 3.26e-5
Rosenbrock 3.31e-5 1.63e-4 6.04e-12 7.44e-10 9.46e-8 3.49e-6 1.15e-3
Schwefel1-2 2.72e-4 7.18e-4 2.57e-13 2.85e-8 2.82e-6 1.32e-4 3.59e-3
Schwefel2-21 2.09e-4 4.45e-4 5.02e-10 7.47e-7 1.98e-5 1.58e-4 2.4e-3
Schwefel2-22 0.2 0.98 4.36e-9 2.51e-6 4.23e-5 3.99e-4 5
Sphere 3.34e-7 3.79e-7 9.46e-10 9.9e-8 1.82e-7 4.19e-7 1.94e-6
Step 0 0 0 0 0 0 0

R
as

tr
ig

in
&

Sc
hw

ef
el

1-
2

P
SO

Ackley 2.86e-4 3.22e-4 5.58e-6 5.94e-5 1.27e-4 4.05e-4 1.4e-3
Griewank 5.17e-6 9.36e-6 4.08e-11 1.98e-7 1.25e-6 4.06e-6 5.32e-5
Penalized1 3.91e-8 4.88e-8 2.7e-11 4.56e-9 1.38e-8 6.22e-8 1.78e-7
Penalized2 1.38e-6 1.73e-6 1.34e-8 8.59e-8 7.61e-7 2.16e-6 6.93e-6
QuarticNoise 8.62 0.51 7.56 8.38 8.51 8.93 10.02
Rastrigin 1.24e-6 2.69e-6 4.69e-10 4.91e-8 2.69e-7 6.41e-7 1.32e-5
Rosenbrock 1.71e-4 3.03e-4 1.36e-8 5.56e-6 3.44e-5 1.13e-4 1.39e-3
Schwefel1-2 2.13e-3 4.98e-3 2.82e-6 3.26e-5 3.04e-4 1.54e-3 0.02
Schwefel2-21 2.52e-4 4.33e-4 2.96e-8 1.81e-5 7.08e-5 2.33e-4 2.22e-3
Schwefel2-22 0.2 0.98 1.07e-5 8.67e-5 3.08e-4 1.01e-3 5
Sphere 2.18e-7 2.11e-7 1.86e-9 5.55e-8 1.46e-7 3.21e-7 8.65e-7
Step 0 0 0 0 0 0 0

P
SO

-V
G

Ackley 9.29e-4 1.28e-3 1.49e-5 1.54e-4 5.04e-4 1.18e-3 7.61e-3
Griewank 7.31e-5 1.58e-4 2.75e-8 1.62e-6 4.96e-6 7.09e-5 9.35e-4
Penalized1 3.18e-4 7.97e-4 5.94e-8 9.23e-6 3.51e-5 1.51e-4 4.8e-3
Penalized2 0.04 0.1 7.31e-6 1.58e-4 5.4e-4 2.48e-3 0.4
QuarticNoise 9.16 0.79 7.28 8.72 9.09 9.47 12.14
Rastrigin 4.69e-5 1.43e-4 3.11e-9 2.85e-7 2.95e-6 1.44e-5 8.83e-4
Rosenbrock 5.04e-3 8.28e-3 4.1e-7 5.44e-5 7.27e-4 7.1e-3 0.04
Schwefel1-2 0.02 0.05 3.11e-6 2.01e-4 2.21e-3 0.02 0.33
Schwefel2-21 12.01 12.47 2.19e-5 4.25e-4 0.29 25 25.01
Schwefel2-22 2.9 3.18 3.38e-5 6.97e-4 2.51 5 10
Sphere 1.46e-4 2.13e-4 4.67e-7 3.01e-5 5.95e-5 2.05e-4 1.02e-3
Step 0 0 0 0 0 0 0

Table 5.10: Optimization end results for PSO variants using the behavioural
parameters from table 5.7 which were meta-optimized for all 12 benchmark
problems and the Rastrigin & Schwefel1-2 problems, respectively, using
600,000 fitness evaluations. Table shows end results on benchmark problems
of 30 dimensions each, results obtained over 50 optimization runs where the
number of fitness evaluations for each run is 600,000.
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Problem Mean Std.Dev. Min Q1 Median Q3 Max
P

SO

St
oc

ha
st

ic

Ackley 1.54 1.33 0.03 0.19 1.35 2.66 4.42
Griewank 0.54 0.26 5.13e-3 0.36 0.58 0.74 0.98
Penalized1 0.13 0.28 8.19e-4 2.03e-3 5.57e-3 0.13 1.29
Penalized2 0.29 0.25 0.01 0.12 0.23 0.41 1.35
QuarticNoise 10.12 0.75 8.83 9.6 10.06 10.55 12.64
Rastrigin 81 56.64 0.09 38.23 74.61 118.5 207.86
Rosenbrock 42.77 29.21 0.14 31.44 35.81 47.67 152.52
Schwefel1-2 449.19 231.1 1.9 277.51 426.35 593.53 982.47
Schwefel2-21 0.5 0.47 0.01 0.18 0.27 0.75 1.93
Schwefel2-22 2.65 3.03 0.16 0.65 1.14 5.19 15.5
Sphere 0.03 0.04 1.23e-3 6.81e-3 0.02 0.04 0.21
Step 0.88 1.86 0 0 0 1 7

D
et

er
m

in
is

ti
c

Ackley 20.02 1.92 12.6 20.12 20.92 21 21.08
Griewank 3.08 1.6 1.55 2.02 2.53 3.49 9.79
Penalized1 15.12 10.01 1.63 8.28 11.44 19.06 43.12
Penalized2 41.1 16.53 7.32 27.59 44.18 52.71 76.5
QuarticNoise 16.18 5.11 10.96 12.86 14.16 17.19 33.69
Rastrigin 281.22 34.37 212.65 261.49 277.5 304.44 356.34
Rosenbrock 84.07 60.58 36.82 47.7 65.67 115.18 426.44
Schwefel1-2 2121 1115 453.81 1353 1825 2651 5170
Schwefel2-21 37.85 14.1 19.33 30.45 35.81 40.24 96.52
Schwefel2-22 49.88 38.06 12.13 21.74 31.59 78.09 151.46
Sphere 142.78 123.86 10.72 57.9 106.15 173.51 516.83
Step 231.5 105.07 69 166 214 291 527

P
SO

-V
G

St
oc

ha
st

ic

Ackley 0.01 0.01 4.03e-4 3.8e-3 6.98e-3 0.01 0.05
Griewank 0.05 0.08 5.09e-6 1.92e-3 8.11e-3 0.07 0.5
Penalized1 4.74e-3 0.02 1.43e-5 2.15e-4 4.12e-4 6.86e-4 0.11
Penalized2 0.06 0.08 6.38e-5 0.01 0.03 0.06 0.45
QuarticNoise 9.27 0.56 8.11 8.89 9.25 9.64 10.93
Rastrigin 13 11.54 3.5e-4 2.18 12.5 18.04 45.01
Rosenbrock 0.29 0.67 4.3e-4 8.13e-3 0.04 0.2 3.63
Schwefel1-2 46.9 97.87 0.02 1.5 10.69 49.83 632.05
Schwefel2-21 0.01 0.02 2.99e-5 2.73e-3 5.68e-3 0.02 0.15
Schwefel2-22 0.24 0.97 5.85e-4 9.31e-3 0.03 0.06 5.02
Sphere 1.07e-3 1.54e-3 4.56e-7 2.4e-4 6.01e-4 1.4e-3 9.93e-3
Step 0 0 0 0 0 0 0

D
et

er
m

in
is

ti
c

Ackley 20.57 0.14 20.25 20.5 20.58 20.66 20.85
Griewank 451.91 78.61 314.18 393.87 450.31 498.59 657.56
Penalized1 2.09e+6 2.94e+6 2810 156200 459724 2.72e+6 1.21e+7
Penalized2 6.52e+6 8.31e+6 54514 2.36e+6 3.97e+6 7e+6 5e+7
QuarticNoise 109.53 36.41 55.95 84.4 103.11 131.94 230.35
Rastrigin 258.64 29.31 196.65 241.65 254.35 282.78 329.07
Rosenbrock 77658 46643 15449 41391 66145 116558 221552
Schwefel1-2 572000 378879 57334 254583 504665 760026 1.47e+6
Schwefel2-21 103.27 6.81 83.85 99.94 103.83 108.44 115.42
Schwefel2-22 219.73 21.62 178.12 204.37 220.2 236.7 273.33
Sphere 23380 5163 10557 19442 23656 28094 30903
Step 9312 2255 5401 7739 8976 10813 15945

Table 5.11: Optimization end results for stochastic and deterministic PSO
variants using the behavioural parameters from tables 5.1 and 5.9 which were
meta-optimized for all 12 benchmark problems using 60,000 fitness evalua-
tions. Table shows end results on benchmark problems of 30 dimensions each,
results obtained over 50 optimization runs where the number of fitness evalua-
tions for each run is 60,000.
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PSO PSO-VG
Meta- Meta-

S ω φp φg Fitness S ω φg Fitness

A
ll

B
en

ch
m

ar
k

P
ro

bl
em

s

60
,0

00
It

er
at

io
ns

134 -0.1618 1.8903 2.1225 2477 198 -0.2723 3.8283 191
58 -0.1815 -2.6178 2.2893 2520 124 -0.2989 3.6516 192
63 -0.1734 -2.7807 2.2399 2597 127 -0.3008 3.6689 196
137 -0.1870 1.7507 2.0190 2620 198 -0.2706 3.9574 211
67 -0.2683 -2.6941 2.2765 2640 130 -0.3295 3.4083 307
73 -0.1660 -2.8456 2.4932 2681 198 -0.3126 3.9352 357
75 -0.1680 -2.4819 2.1990 2803 141 -0.4295 3.1463 539
57 -0.0682 -2.9241 2.4741 3221 142 -0.5229 2.6741 2805
35 -0.1596 -3.2256 3.4187 3891 122 -0.1655 3.4526 3013
29 -0.1015 -3.4645 2.9721 3925 173 -0.5148 3.0156 5119

60
0,

00
0

It
er

at
io

ns

95 -0.6031 -0.6485 2.6475 36 134 -0.4300 3.0469 35
93 -0.6092 -0.5166 2.5289 36 136 -0.4505 2.8850 36
104 -0.5712 -0.5501 2.9829 37 138 -0.4546 2.8991 36
98 -0.3892 3.7110 -0.4651 37 135 -0.4027 3.0895 36
95 -0.3825 3.8995 -0.3487 38 132 -0.4402 2.8853 37
102 -0.4151 3.6217 -0.3605 38 136 -0.4477 3.0220 37
100 -0.4758 3.6132 -0.4235 39 125 -0.2962 3.5748 43
103 -0.4763 3.8797 -0.8518 42 75 -0.6388 1.7474 151
125 -0.5873 -1.5224 3.7938 42 72 -0.6290 1.6422 157
167 -0.4713 3.7834 -0.9089 43 180 -0.7571 -2.0636 5526

R
as

tr
ig

in
&

Sc
hw

ef
el

1-
2

60
,0

00
It

er
at

io
ns

82 -0.3794 -0.2389 3.5481 971 47 -0.3000 3.5582 1013
79 -0.3617 -0.3757 3.6127 1247 91 -0.3128 3.6807 1027
78 -0.3475 -0.2667 3.5363 1567 89 -0.3096 3.5499 1247
78 -0.3960 -0.3805 3.5699 2628 81 -0.2681 3.8548 1328
128 -0.1739 -2.8805 2.6971 10850 107 -0.3971 2.9703 1490
129 -0.2018 -2.7798 2.8136 10950 137 -0.3797 3.1818 1618
129 -0.1793 -2.9783 2.779 11770 112 -0.3816 3.1116 1646
131 -0.2298 -2.7022 2.8644 12364 144 -0.4144 2.9859 1683
130 -0.1761 -2.7207 2.9896 12624 105 -0.2731 3.4445 1830
137 -0.0750 -2.4195 3.0308 16080 93 -0.2285 3.7267 2198

60
0,

00
0

It
er

at
io

ns

104 -0.4565 -0.1244 3.0364 0.04 72 -0.6076 1.9609 0.86
102 -0.4509 -0.1825 3.0732 0.07 67 -0.5900 1.9807 9.27
106 -0.5275 -0.3622 3.0008 0.07 108 -0.0153 3.5932 34078
109 -0.5444 -0.2456 2.7428 0.13 132 -0.7774 -2.0419 51456
103 -0.5447 -0.571 3.5057 0.36 90 -1.0630 -1.8378 56003
95 -0.3143 2.1649 1.4668 1.72 131 -0.7488 -2.0159 66937
92 -0.2907 2.2996 1.5602 5.14 126 -0.7474 -2.2825 76404
92 -0.2701 2.2933 1.5871 19.49 125 -0.8157 -1.9518 78618
182 -0.3354 -2.7778 2.053 289.99 121 -0.7931 -1.9929 80899
191 -0.3765 -2.8861 2.3334 314.56 118 -0.9791 -1.8073 83891

Table 5.12: Best 10 sets of behavioural parameters for PSO variants that are
meta-optimized for various combinations of benchmark problems and optimiza-
tion run-lengths.
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Figure 5.21: Meta-fitness landscape shown at different angles for PSO-VG
computed by varying the ω and φg parameters and keeping a fixed swarm-size
S = 100, measuring the performance of PSO-VG on Rastrigin, Rosenbrock
and Schwefel1-2 in 30 dimensions over 50 optimization runs of 60,000 fitness
evaluations each.
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Figure 5.22: Meta-fitness landscape shown at different angles for PSO-VG
computed by varying the ω and φg parameters and keeping a fixed swarm-size
S = 100, measuring the performance of PSO-VG on respectively Rastrigin
& Schwefel1-2 and all 12 benchmark problems in 30 dimensions over 50
optimization runs of 60,000 fitness evaluations each.
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Figure 5.23: Meta-fitness landscape shown at different angles for PSO-VG
computed by varying the ω and φg parameters and keeping a fixed swarm-size
S = 200, measuring the performance of PSO-VG on respectively Rastrigin
& Schwefel1-2 and all 12 benchmark problems in 30 dimensions over 50
optimization runs of 60,000 fitness evaluations each. Compared to figure 5.22
these plots are for a swarm-size of S = 200 instead of S = 100 and a wider
boundary for φg.
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Figure 5.24: Depth of meta-fitness landscape for PSO-VG computed by vary-
ing the ω and φg parameters and keeping a fixed swarm-size S = 200, measuring
the performance of PSO-VG on respectively Rastrigin & Schwefel1-2 and
all 12 benchmark problems in 30 dimensions over 50 optimization runs of
60,000 fitness evaluations each. Darker grey means better performance, so the
region around ω ' −0.3 and φg ' 3.5 seems to be best in both plots.

S ω φg Meta-Fitness
130 -0.4135 3.1937 4.01e-3
216 -0.2531 4.1917 4.01e-3
191 -0.4685 2.8533 0.01
185 -0.4597 2.9226 0.02
212 -0.3027 4.2061 0.02
247 -0.4522 2.9134 0.02
198 -0.4313 2.9630 0.03
194 -0.3620 3.2545 0.03
218 -0.4888 2.6767 0.05
248 -0.4615 2.7601 0.09

Table 5.13: Best 10 sets of behavioural parameters for PSO-VG that are
meta-optimized for Rastrigin & Schwefel1-2 in 30 dimensions each and opti-
mization run-lengths of 600,000 iterations. Compared to table 5.12 these have
been meta-optimized with wider boundaries for the S and φg parameters.

165



1e-009
1e-008
1e-007
1e-006
1e-005
0.0001
0.001
0.01
0.1

1
10

100

0 100000 200000 300000 400000 500000 600000

F
it

ne
ss

Iteration

Ackley

PSO
PSO-VG

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

0 100000 200000 300000 400000 500000 600000

F
it

ne
ss

Iteration

Griewank

PSO
PSO-VG

1e-012
1e-010
1e-008
1e-006
0.0001

0.01
1

100
10000

1e+006
1e+008
1e+010

0 100000 200000 300000 400000 500000 600000

F
it

ne
ss

Iteration

Penalized1

PSO
PSO-VG

1e-015

1e-010

1e-005

1

100000

1e+010

0 100000 200000 300000 400000 500000 600000

F
it

ne
ss

Iteration

Penalized2

PSO
PSO-VG

1

10

100

1000

10000

0 100000 200000 300000 400000 500000 600000

F
it

ne
ss

Iteration

QuarticNoise

PSO
PSO-VG

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

10000

0 100000 200000 300000 400000 500000 600000

F
it

ne
ss

Iteration

Rastrigin

PSO
PSO-VG

Figure 5.25: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters for PSO from table 5.7 and the best parameters
for PSO-VG from table 5.13, which were meta-optimized for the Rastrigin &
Schwefel1-2 problems using 600,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Figure 5.26: Comparison of optimization progress for PSO and PSO-VG using
the behavioural parameters for PSO from table 5.7 and the best parameters
for PSO-VG from table 5.13, which were meta-optimized for the Rastrigin &
Schwefel1-2 problems using 600,000 fitness evaluations. Plots show the mean
fitness achieved over 50 optimization runs, as well as the quartiles at intervals
during optimization.
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Optimization Time Usage
Problems Iterations PSO PSO-VG

Rosenbrock & Sphere 60,000 27 min 25 min
Rastrigin & Schwefel1-2 600,000 10 h 26 min 6 h 19 min

QuarticNoise, Sphere & Step 60,000 1 h 45 min 1 h 16 min
All 12 Benchmark Problems 60,000 3 h 38 min 2 h 46 min
All 12 Benchmark Problems 600,000 43 h 11 min 27 h 26 min

Table 5.14: Time usage for meta-optimizing the behavioural parameters of
PSO and PSO-VG with various combinations of benchmark problems and
optimization iterations being used.
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Figure 5.27: Comparison of optimization progress for PSO-VG and
DE/Simple using behavioural parameters that were meta-optimized for all
12 benchmark problems using 60,000 fitness evaluations. Reprinted from
figures 5.3-5.4 and 4.7-4.8. Plots show the mean fitness achieved over 50 opti-
mization runs, as well as the quartiles at intervals during optimization.
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Figure 5.28: Comparison of optimization progress for PSO-VG and
DE/Simple using behavioural parameters that were meta-optimized for all
12 benchmark problems using 60,000 fitness evaluations. Reprinted from
figures 5.3-5.4 and 4.7-4.8. Plots show the mean fitness achieved over 50 opti-
mization runs, as well as the quartiles at intervals during optimization.
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Figure 5.29: Comparison of optimization progress for PSO-VG and
JDE/rand/1/bin using behavioural parameters that were meta-optimized for
Rastrigin & Schwefel1-2 (PSO-VG) and Ackley, Rastrigin, Rosenbrock
& Schwefel1-2 (JDE) when using 600,000 fitness evaluations. Reprinted from
figures 5.25-5.26 and 4.29-4.29. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Figure 5.30: Comparison of optimization progress for PSO-VG and
JDE/rand/1/bin using behavioural parameters that were meta-optimized for
Rastrigin & Schwefel1-2 (PSO-VG) and Ackley, Rastrigin, Rosenbrock
& Schwefel1-2 (JDE) when using 600,000 fitness evaluations. Reprinted from
figures 5.25-5.26 and 4.29-4.29. Plots show the mean fitness achieved over 50
optimization runs, as well as the quartiles at intervals during optimization.
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Chapter 6

Conclusion

6.1 Main Contributions

6.1.1 Meta-Optimization

Optimization methods often have behavioural parameters the user must select
to achieve good performance. Even if practitioners will only be using the de-
fault parameters provided by the author of an optimization method, the author
must still do significant testing of different parameter choices to find the ones
that perform well and also generalize to new optimization problems. Choosing
the parameters can be done by manual experimentation by a human researcher,
or by exhaustive search of combinations of parameters, or by using an overlaid
Meta-Optimizer to search for good parameters. Manual experimentation uses
an expensive and scarce resource, human thought, while grid-based search of pa-
rameter combinations is impossible for more than a few behavioural parameters
due to the Curse of Dimensionality and the exponential increase in computa-
tion time with more parameters. On the other hand, meta-optimization has
been shown to be comparatively cheap to execute yet superior in the optimiza-
tion performance of the tuned parameters. Because of this, meta-optimization
can also lead to new insight into what makes an optimizer work, as many ex-
periments with tuning the behavioural parameters for different scenarios can
be made with little effort. Moreover, the technique presented in chapter 3 for
doing meta-optimization is simple to describe and implement and is therefore
useful for both experienced researchers and beginners.

6.1.2 Adaptive Vs. Simplified Optimizers

Another and much more popular approach in the research literature for selecting
the behavioural parameters of an optimizer is to try and adapt the parameters
during optimization. It was demonstrated in the experiments of chapters 4 and
5 that there is no general and consistent advantage in doing so-called parameter
adaptation. There are advantages in certain optimization scenarios but they
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are countered by disadvantages elsewhere. It was also demonstrated that opti-
mizers may be simplified with improved performance in several cases, and their
behavioural parameters became easier to tune as well.

6.2 Recommendations for Future Research

6.2.1 Boundaries For Behavioural Parameters

This thesis used boundaries for defining the search-space of behavioural param-
eters, but they were really just meant as a guidance for which combinations of
behavioural parameters might be interesting. Sometimes the boundaries turned
out to be too narrow and the meta-optimization experiments had to be re-
done with wider boundaries for the behavioural parameters, which was time
consuming. The obvious suggestion is to use an unbounded version of LUS as
the meta-optimizer, which, however, will need some research as LUS may not
perform as well in an unbounded search-space as it does in a bounded one.

6.2.2 Meta-Fitness Landscape Approximation

Even though the simple technique of Preemptive Fitness Evaluation was able
to greatly reduce the time-usage involved in doing meta-optimization it still
remains a computationally expensive task. To save even more time in meta-
optimization one could approximate the meta-fitness landscape, so as to try
and predict meta-fitness values for previously unseen parameter combinations.
This was done in various ways by Ridge and Kudenko [136], Bartz-Beielstein et
al. [137] and Smit and Eiben [33].

The challenge with using an approximator in meta-optimization is that very
few sample mappings are available. Another challenge is to combine both meta-
fitness approximation and the technique of Preemptive Fitness Evaluation, as
the latter causes many of the meta-fitness measures to be incomplete due to their
evaluations being preemptively aborted, which might disrupt the approximator
in accurately mimicking the meta-fitness landscape.

6.2.3 Parallelization & Distributed Computation

Another approach to save time in meta-optimization would be to distribute the
execution to several computational nodes. Since the LUS method used here as
meta-optimizer only has a single optimizing agent it will take some research to
find a good approach for distributing its computation. One suggestion would be
to make a multi-agent version of LUS where each agent is distributed to a com-
putation node, and then synchronize update of the best behavioural parameters
providing the center from which all new parameters are sampled.
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6.2.4 Other Meta-Fitness Measures

The experiments here with meta-optimization all used a meta-fitness measure
based on the average fitness achieved by an optimizer using a certain number of
iterations. Other useful performance measures to tune for could be the number
of optimization iterations required to achieve a certain goal, or perhaps the
rate of optimization as measured by the integral of the fitness progress. Some
meta-fitness measures may not be supported by Preemptive Fitness Evaluation,
however, and will therefore take significantly more time to meta-optimize.

6.2.5 Multi-Objective Meta-Optimization

This thesis has focused on single-objective optimization problems and meta-
optimization was therefore also a single-objective task. Many optimization prob-
lems occurring in the real world are multi-objective by nature and tuning the
behavioural parameters of a multi-objective optimization method is therefore
Multi-Objective Meta-Optimization. It is currently unclear what would be the
best approach for doing this, without sacrificing the simplicity or efficacy of the
approach that was presented here for doing single-objective meta-optimization.
One suggestion would be to make LUS multi-objective by replacing its compar-
ison operator with the Pareto domination operator from Eq.(3.1). Additionally,
the tuned parameters should cause the optimizer to have good coverage of the
Pareto front and perhaps this could be achieved by taking a measure of spread
into account when LUS selects which behavioural parameters are best.

6.2.6 Meta-Meta-Optimization

The LUS method was used as meta-optimizer with its own behavioural parame-
ter being found by manual experimentation. It would be interesting to see if this
behavioural parameter of LUS itself could be tuned to make LUS perform even
better when used as a meta-optimizer. If LUS is going to be used often as the
meta-optimizer then it makes perfect sense to find the behavioural parameter
that makes it perform its best at this task. This would effectively mean that the
behavioural parameter of the LUS method should be Meta-Meta-Optimized, and
this naturally raises the question of which optimization method to use as the
meta-meta-optimizer? Since the meta-meta search-space can still be expected
to be fairly smooth, a suggestion would be to use the LUS method again, and
with its standard parameter that worked well for ordinary meta-optimization.

Although this may seem silly to people who are just beginning to accept
the usefulness of doing meta-optimization, comparisons of techniques for doing
meta-optimization have actually already been made in the literature to iden-
tify which approach works best, which is a manual way of doing meta-meta-
optimization, see Smit and Eiben [33]. Indeed, this was also done in chapter 3
here.
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Meta-Meta-Meta-...

Does it then make sense to tune the behavioural parameter of LUS when it
is being used as the meta-meta-optimizer? This does not appear to be the
case, because the parameter search-spaces for each additional meta-layer seem
to become increasingly simple and smooth and when we reach the meta-meta-
layer they just might be smooth enough to almost guarantee that the best
performing parameters can be found.

6.2.7 Evolving An Optimization Method

Meta-optimization was used in this thesis to tune the behavioural parameters
of an optimization method. An interesting idea would be to not only tune the
parameters but also the actual optimization algorithm. This has already been
studied to some extent for evolving specialized optimizers by Bengio et al. [138]
and Radi and Poli [139], and for evolving PSO variants by Poli et al [140]. They
used Genetic Programming (GP) which employs basic evolutionary concepts to
construct computer programs (see chapter 1).

A more general way of evolving actual optimization algorithms would be
to first define a language for concisely describing optimization algorithms and
then use an overlaying optimization method akin to GP but tailored to work
on strings from this language. The concept of evolving strings from a given
language has been studied by O’Neill et al. [141] [142] [143] who called it Gram-
matical Evolution (GE) and works on arbitrarily long strings of integers, which
are then translated to syntactic trees according to some predefined grammar
and whose fitness can then be computed. An extension to GE is due to Ortega
et al. [144] and ensures the evolved strings are not only syntactically correct
but also semantically correct.

The language that is used for describing optimization algorithms can itself
be evolved so as to be more expressive. This can be achieved by applying GE
in an overlaying meta-manner and preliminary studies of this are reported by
O’Neill and Ryan [145].

6.2.8 Bootstrapped Evolution of Optimization Methods

Taking the idea of evolving an optimization algorithm one step further it can
be used in a bootstrapped manner to gradually improve itself. The idea is
once again to start by defining (or evolving) a language for concisely describing
optimization algorithms. Then implement a simple optimization method in this
language that works on instances of the same language. The method can then
be used for optimizing itself, perhaps ad infinitum. A similar idea for general
problem solving is proposed in the Gödel machine by Schmidhuber [146] [147].
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Appendix A

Non-Convergence Analysis

A.1 Introduction

This appendix contains simple mathematical analysis that proves an optimizer
which does not somehow adapt its search- or sampling-range cannot converge
to a local optimum in a timely manner.

A.2 The Sphere Function

The Sphere benchmark function from chapter 2 will be used in this analysis
due to its simplicity, thus leading to graceful mathematical derivations. Fur-
thermore, because the Sphere function is perhaps the simplest optimization
problem available that is both continuous and unimodal, it seems reasonable
that when an optimization method fails at optimizing the Sphere function, then
the method will probably also fail in optimizing more difficult problems.

The Sphere function has also been used by other researchers for analyzing
convergence aspects of optimization methods, see for example [20] [60] [70].

Sphere Re-Write

First recall the definition of the Sphere function from chapter 2:

f(~x) =
n∑
i=1

x2
i

and notice that it is actually the dot-product of vector ~x with itself, that is:

f(~x) =
n∑
i=1

x2
i = ~x · ~x = ‖~x‖2 (A.1)

176



where the last identity is basic linear algebra. The vectors ~x evaluating to a
fitness less than some fitness-value F ≥ 0 must therefore satisfy:

f(~x) ≤ F ⇔ ‖~x‖2 ≤ F ⇔ ‖~x‖ ≤
√
F

which designates the closed hyperball of radius
√
F . Let us denote a general

n-dimensional hyperball with radius r by Bn(r), thus defined as:

Bn(r) = {~x : ‖~x‖ ≤ r}

with the vectors ~x being n-dimensional. This means positions having a fitness
better than or equal to F , must satisfy:

f(~x) ≤ F ⇔ ~x ∈ Bn
(√

F
)

(A.2)

Expressing this fitness requirement as set-membership will prove convenient in
the probability-theoretical analysis of the Sphere function below.

Hyperball Volume

The volume of a hyperball |Bn(r)| is defined in [148, p. 1442] in terms of the
constant sn, which is the hyper-surface area of the n-dimensional hypersphere
with unit radius. The hyperball volume is then defined as:1

|Bn(r)| = sn · rn

n
(A.3)

But what is sn? Although [148, Eq.(7), p. 1442] provides an explicit formula for
computing sn, it is fairly complicated. Fortunately enough, the value sn is not
needed for the analysis to follow, as the probability boundaries may be studied
instead, thus factoring out sn. And this boundary study actually suffices for
the conclusions that are sought.

A.3 Local Sampling

Mathematical analysis is now used to show that optimization methods using
local sampling with a fixed sampling-range are actually incapable of converging
to a local optimum in a timely manner.

A.3.1 Basic Local Sampling

The essential idea of local sampling is to choose a random point ~y from the
neighbourhood of the current position ~x in the search-space, and move to the
new position in case of fitness improvement. That is, let the new potential
position ~y be defined as:

~y = ~x+ ~a

1Notation adjusted to context.
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with ~a chosen randomly and uniformly as follows:

~a ∼ U(−~d, ~d)

where ~d is the search-range.
But keeping a fixed search-range d throughout the optimization run will now

be shown mathematically to decrease the probability of fitness improvement, the
closer we get to the optimum of the Sphere function.

A.3.2 Single-Dimensional Case

To understand the underlying idea of this proof, first consider the single dimen-
sional Sphere function:

f(x) = x2, x ∈ R

where any uniformly localized sampling method will calculate the agent’s po-
tential new position as:

y = x+ a

with a ∼ U(−d, d) for some sampling range delimiter d > 0. But now consider
x approaching the global optimum, then less and less of the (−d, d) range will
result in a fitness improvement of the new randomly chosen y. To see this, recall
Eq.(A.1) from which it follows that:

f(~y) < f(~x) ⇔ ‖~y‖ < ‖~x‖ (A.4)

and specifically for the one-dimensional case: f(y) < f(x) ⇔ |y| < |x|. So a
sample y taken from the range (−|x|, |x|) will result in an improvement over x,
but since y is taken from the range (|x| − d, |x| + d), it means the probability
of finding such an improved position for y, is given by the amount of overlap
between these two ranges. For the one-dimensional case, this can be expressed
as:

Pr [f(y) < f(x)] =
{
|x|/d , if |x| < d/2
1/2 , else

Initially, when x is far from the global optimum, the probability of finding
an improved position by localized random sampling, is always 1/2. This is
demonstrated in figure A.1. But as x approaches the global optimum, and when
the sampling range d remains fixed, the probability of improvement approaches
zero. This is demonstrated in figure A.2.

As the probability of improvement is non-zero unless x is already situated in
the optimum, it is also possible to prove that an improved position y is inevitably
discovered if enough samples are taken. So the method does eventually converge
to the optimum. But convergence for an optimization method should never be
proven using extreme limit-cases, without augmenting that proof with a good
estimate on the computational effort required to actually obtain satisfactory
results. In the case of local sampling with a fixed range, it was just shown that
the computational effort approaches infinity as the optimum is approached.
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Figure A.1: Local sampling of the Sphere function. When the current position
x is far from the optimum, the probability of improvement is always 1/2.

Since the Sphere function is separable, in the sense that the dimensions are
independent of each other, this argument can be repeated for each dimension in
the multi-dimensional case to show the same result applies there. But it is also
possible to show it using set-volumes, as will be done next.

A.3.3 Multi-Dimensional Case

The idea from the one-dimensional Sphere function can be extended directly
to n-dimensional search-spaces. The relation from Eq.(A.4) is used again and
states the conditions under which some position ~y will improve on the fitness of
~x, namely when the length of ~y is shorter than the length of ~x.

In multi-dimensional localized sampling, ~y is taken from the hypercube sur-
rounding ~x and having sidelengths 2d (assuming the search-range is identical
for all dimensions). Let this n-dimensional hypercube be denoted by:

Cn(~x, d) = [x1 − d, x1 + d]× · · · × [xn − d, xn + d]

So the probability of ~y improving the fitness of ~x, is the size of the intersection
between this hypercube and the (open) hyperball of radius ‖~x‖, divided by the
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Figure A.2: Local sampling of the Sphere function. When the current position x
is close to the optimum, the probability of improvement is 2|x|/(2d) = |x|/d. If d
remains fixed, this probability will approach zero as x approaches the optimum.

total size of the hypercube used for sampling, that is:

Pr [f(~y) < f(~x)] =
|Cn(~x, d) ∩ Bn(‖~x‖)|

|Cn(~x, d)|
=
|Cn(~x, d) ∩ Bn(‖~x‖)|

(2d)n
(A.5)

where the last identity follows from the fact that |Cn(~x, d)| = (2d)n.
The exact value of Eq.(A.5) is not important, as we only need to note a few

things. First, that the denominator (2d)n remains constant because the range
delimiter d of the sampling hypercube is fixed. Second, that the numerator
approaches zero as ~x approaches the global optimum of the Sphere function,
because |Bn(‖~x‖)| and hence |Cn(~x, d) ∩ Bn(‖~x‖)| approach zero. So the prob-
ability in Eq.(A.5) approaches zero as we approach the global optimum of the
Sphere function.

This finding is not so strange, because the hypercube used for sampling is
of fixed size throughout the optimization run, while the hyperball that holds
the part of the search-space with improved fitness, decreases in size each time
such an improvement is found. Thus we have proved a deficiency with localized
sampling of the Sphere function using a fixed sampling-range. Namely that the
closer it gets to the optimum, the less likely it is to find any improved positions.
In other words, optimization methods that work by local sampling must decrease
their search-range somehow.
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control parameters in differential evolution: a comparative study on nu-
merical benchmark functions. IEEE Transactions on Evolutionary Com-
putation, 10(6):646–657, 2006.

[40] K.E. Parsopoulos and M.N. Vrahatis. Recent approaches to global opti-
mization problems through particle swarm optimization. Natural Com-
puting, 1:235–306, 2002.

183



[41] H-P. Schwefel. Collective phenomena in evolutionary systems. In Proceed-
ings of the 31st Annual Meeting on Problems of Constancy and Change
– The Complementarity of Systems Approaches to Complexity, volume 2,
pages 1025–1033, Budapest, 1987.

[42] Z. Tu and Y. Lu. A robust stochastic genetic algorithm (StGA) for global
numerical optimization. IEEE Transactions on Evolutionary Computa-
tion, 8(5):456–470, 2004.

[43] Z. Tu and Y. Lu. Errata to “A robust stochastic genetic algorithm (StGA)
for global numerical optimization”. IEEE Transactions on Evolutionary
Computation, Accepted, 2008.

[44] S. Hawking. A Brief History of Time. Bantam Press, 1988.

[45] S. Hawking. The Universe in a Nutshell. Bantam Press, 2001.

[46] P. Ball. The Self-Made Tapestry: pattern formation in nature. Oxford
University Press, 2001.

[47] J.H. Holland. Hidden Order: how adaptation builds complexity. Addison
Wesley Longman Publishing Co., Inc., 1995.

[48] J.H. Holland. Emergence: from chaos to order. Addison-Wesley Longman
Publishing Co., Inc., 1998.

[49] S. Johnson. Emergence: the connected lives of ants, brains, cities, and
software. Scribner, 2002.
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