
Fig. 1 Flow chart of the EVOLVE

Fig. 1 Flow chart of the EVOLVE (continued)

Fig. 2 Geometry of riveted lap joint

/X/ Percent_fea 13, 15, 18
/Y/ NEW_P, OLD_P, PEN 11, 13, 15, 18, 23, 35

APPENDIX B

List of Common Blocks Subroutines using the block

/A/ OldSeed 21, 31
/B/ StringLength, Popsize, Bytesize, Packsize 4, 5, 6, 7, 9, 11, 13, 15, 18, 20, 21, 23,

25, 27, 29, 30, 33, 34, 35, 36, 37
/BB/ Bias, Lost, Conv 4, 10, 18, 33
/BEST/ BestObj 18, 23
/C/ C_rate, M_rate, Mu_next 6, 7, 21, 25, 33
/CLUSTER/ Num_clusters 3, 14, 21
/DC/ Old_Curve, NDC 9, 21
/DCROSS/ Isite1, Isite2, last 6, 7, 9, 27
/DCR2/ Qual, Ch_Next, Effect_Curve 7, 9, 27
/E/ OLDfit, NEWfit, WORST, AveCurFit 9, 11, 13, 15, 18, 23, 27, 34, 35
/ERANK/ rank, num_elitist 11, 21, 23
/F/ NewGene, OldGene 4, 6, 7, 11, 13, 15, 18, 20, 25, 33, 34, 35
/H/ Doneflag, Bestflag 14, 15, 18, 21
/J/ GEN 13, 15, 18, 21, 23, 34
/K/ WorstCurFit, BestCurFit, BestDesign, 11, 18, 21, 23, 26

Windowsize, Window
/KK/ Totaltrials, Trials 10, 13, 18, 21, 34
/L/ Upper_bound, Lower_bound, Accuracy 1, 5, 21
/M/ Num_Con, Num_Int, Num_Dis, Num_ele, 1, 5, 16, 18, 20, 21, 22, 24, 28, 30, 36

Bit_Length, Num_Total, DIS
/MULTI/ Num_stage, ISTAGE, Num_melt_design 1, 3, 5, 13, 14, 15, 18, 19, 21, 24, 30, 32
/N/ firstflag 18, 21, 25, 34
/P/ Num_Seed 20, 21
/PM/ ADDED 13, 15, 21
/PR/ Pc_control 18, 21
/Q/ Graycodeflag 16, 21, 22
/R/ NEWobj, NEW_PEN_TOTAL, OLDobj, 11, 13, 15, 23, 34, 35

OLD_PEN_TOTAL
/RELAXATION/ Relax 14, 23
/REV/ lost_bit, chance_revive 4, 21
/RR/ NeedEV 6, 7, 11, 13, 15, 20, 25, 33, 35
/S/ BestPenalty 11, 18, 23
/SHAREFLAG/ share_flag 13, 16, 21, 35
/SHARING/ alpha, sigma_share, xlow, xdiff, xxx 16, 21, 36
/T/ Num_Penalty 11, 13, 15, 18, 21, 23, 28, 35
/TL/ TITLE 18, 21
/TRACE/ I_trace 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16,

17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29,
32, 33, 34, 35, 36, 37

/U/ MAXCAP, COE_PENALTY 13, 15, 21, 23
/V/ Savesize, Bestsize 13, 21, 30, 34
/W1/ B_Gene, B_GEN, B_Trials 30, 34
/W2/ B_Fit, B_PENALTY, B_obj 30, 34

APPENDIX A

Subroutine Name Common Blocks Used

1. Actual_value: L, M, MULTI, TRACE
2. Binary_value: TRACE
3. Clusters: B, CLUSTER, M, MULTI, SHARING, TRACE
4. Converge: B, BB, F, REV, TRACE
5. Convert: B, L, M, MULTI, TRACE
6. Cross: B, C, DCROSS, F, RR, TRACE
7. Cross_curve: B, E, DC, DCROSS, DCR2, TRACE
8. Degray: TRACE
9. Directed_cross: B, C, DCROSS, DCR2, F,RR, TRACE
10. Done: B, BB, KK, TRACE
11. Elitist: B, E, ERANK, F, K, R, RR, S, T, TRACE, Y
12. Error: TRACE
13. Evaluate: B, E, F, J, KK, MULTI, PM, R,RELAXATION, RR, SHAREFLAG,

T, TRACE, U, V,X, Y
14. Evolve: CLUSTER, H, MULTI
15. Generate: B, DC, E, F, H, J, MULTI, PM, R, RR, T, TRACE, U, X, Y
16. Get_dv: M, Q, SHAREFLAG, SHARING, TRACE
17. Gray: TRACE
18. History: B, BB, BEST, E, F, H, J, K, KK, M, MULTI, N, PR, S, T, TL,

TRACE, X, Y
19. Init_data: B, C, H, J, KK, L, M, MULTI, N, TRACE, V
20. Initialize: B, F, M, P, RR, TRACE
21. Input: A, B, C, CLUSTER, DC, ERANK, K, KK, M, MULTI, L, P, PR,

PM, Q, RELAXATION, REV, SHAREFLAG, SHARING, T, TL,
TRACE, U, V

22. Itob: M, Q, TRACE
23. Measure: B, BEST, E, ERANK, J, K, R, S, T, TRACE, U, Y
24. Melt: L, M, MULTI, TRACE
25. Mutate: B, C, F, N, RR, TRACE
26. Newworst: K, TRACE
27. Next_chance: B, DCROSS, DCR2, E, TRACE
28. Obj: M, T, TRACE
29. Pack: B, TRACE
30. Printbest: B, M, MULTI, V, W1, W2
31. Ranint: A
32. Re_initialize: B, F, M, MULTI, RR, TRACE
33. Revive: B, BB, C, F, REV, RR, TRACE
34. Savebest: B, E, F, J, KK, N, R, TRACE, V, W1, W2
35. Select: A, B, E, F, R, RR, SHAREFLAG, T, TRACE, Y
36. Share: B, M, SHARING, TRACE
37. Unpack: B, TRACE

Appendices A and B summarize the common blocks particular to the different
subroutines in EVOLVE.

AA

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x2

Himmelblau’s Function:
f(x)=(x1

2+x2-11)2+(x1+x2
2-7)2

A B C D E

A
B
C
D
E
F
G

A

Contour ID A B C D E F G H I J
 5.00 20.00 35.00 50.00 65.00 80.00 95.00 110.00 125.00 140.00

A

B
C
DE

G F
HIJ

2. HIMMELBLAU'S FUNCTION MINIMIZATION

OBJECTIVE: Exercise solving a multimodal problem using sharing strategy, and
practice a multiple stage search with varying granularity.

PROBLEM STATEMENT: see attached figure.

PARTIAL INPUT AND OUTPUT FILES: see attached.

This variable is therefore of the discrete type. The objective of this optimization is to
maximize the efficiency of the joint, defined as the ratio of the strength of joint to the
strength of the plate. The strength of the joint is obtained as the minimum of the
sharing failure strength Ps, tension failure strength Pt, and compression or bearing
failure Pb. These can be formulated as follows:

where,

τ = 80 MPa σt = 90 MPa σb = 120 MPa

Stress concentration due to the close placement of any two rivets were avoided by
the imposition of the following linear constraints.

Further, the strength of the plate was specified as 2700 kN.

Ps

πx3
2
x1x2

τ
4
--- if x1 3<,

πx3
2
x1x2

τ
4 1.06 0.126 x1 3–()+[]
--- otherwise,









=

Pt 2000 x2x3–()tσt=

Pb

tx3σbx1x2 if x1 3<,

tx3σbx1x2
1.06 0.126 x1 3–()+[]

--- otherwise,






=

3x3x1 2x3 500≤+

3x3x2 2x3 2000≤+

Riveted Lap Joint

The first problem involves the design of a lap joint between two steel plates in which
the rivet size and the number and arrangement of the rivet pattern were considered
as design variables. The configuration of the plates and the rivets is shown in Fig. 2.
The number of rows parallel to side AB is represented by an integer variable x1 with
permissible values between 1 and 32. The number of the rivets in each row x2 was
an integer variable and was allowed to assume values between 1 and 128. The
diameter x3 of all rivets was assumed to be the same, and is chosen from a
commercially available set:

x3 = [6,8,10,12,14,16,18,20,22,24,27,30,33,36,40,45] (mm)

20
00

m
m

600mm

P
P

P P

A

B

C

D

15mm
15mm

Fig. 2 Geometry of riveted lap joint

11. TEST PROBLEMS

1. RIVET JOINT EFFICIENCY MAXIMIZATION

OBJECTIVE: Exercise the use of integer and discrete variables, solve a
maximization problem, and practice the exterior penalty approach for
constrained optimization.

PROBLEM STATEMENT: see attached.

PARTIAL INPUT AND OUTPUT FILES: see attached.

<SECTION 5> needed only where N_integer > 0

Order the number of variable.

Lower bound lower bound of the integer variable.

Upper bound upper bound of the integer variable.

<SECTION 6> needed only where N_discrete > 0

Num_elements number of allowable values for each discrete variable; an
array with as many elements as N_discrete.

<SECTION 7> needed only where N_discrete > 0

DIS(I,K) list all allowable values in an ascending order for each
discrete variable.

<SECTION 8> needed only where Sh = 1 (sharing strategy)

alpha defines the nature of the sharing function.

sigma_share defines the radius of sharing neighborhood.

<SECTION 9> needed only where Sl > 0

Bit_length(I) bit length of binary substring for each of all variables.

<SECTION 2>

N_continuous number of continuous design variables.

N_integer number of integer design variables.

N_discrete number of discrete design variables.

N_penalty number of constraints

*** in EVOLVE, the design variables in an optimization problem
are require to be arranged in a sequence as continuous, integer
and discrete ***

<SECTION 3> needed only where N_penalty>0

Pe Starting penalty coefficient

PM Stepwise increment on the penalty coefficient every 10
generations.

MC Maximum cap on the undeflected penalty. Any penalty
which exceeds this maximum cap will be adjusted as the
sum of the maximum cap and 20% of the amount of
penalty over the value of MC.

<SECTION 4> needed only where N_continuous > 0

Order the number of variable.

Lower bound lower bound of the continuous variable.

Upper bound upper bound of the continuous variable.

Accuracy(I) precision level of the continuous variable in I-th stage; this
precision level is needed for every stage resulting in a
total number of STAGE entries.

reside in the current generation. Elitist strategy.

Ws Window size; The parameter WORST is selected from the largest
pseudo objective value occurred in previous "Ws" generations.

<SECTION 1B>

I_trace 1 for tracing the routines during the search; 0 for NOT.

Ip 1 for printing information in "detail.dat" on the monitor; 0 for
NOT.

Os initial seed for random number generator; an integer.

Nc number of clusters in which to place designs obtained in final
generation of the last stage of search into "clusters.dat"; Nc = 1
will turn off the clustering scheme.

DC number of the generation in which the directed crossover start to
be active; 0 for only regular crossover.

NDC number of previous generations on.which the crossover gain
curve is based.

CR revival rate; a directed mutation; the probability to revive each
lost bit in a design.

VG varying granularity approach; 0 for NOT and 1 for YES.

<SECTION 1C> needed only VG=1

STAGE number of stages in a complete genetic search

Nmd number of designs in the final population of a previous stage of
search, which will be used to generate the initial population for
the next stage of search using the melting strategy.

RELAX(I) constraint relaxation percentage for the I-th stage; need as many
as STAGE for this RELAX array.

10. CONTROL FILE INPUT DESCRIPTION

The control file is set up such that all variables are read in free format.

<SECTION 0> optional

Title: Fill in title of the optimization problem.

<SECTION 1A>

Pc Probability of crossover; if Pc is 0.8, 80% of designs will form
pairs to undergo the crossover operation.

Pm Probability of mutation; if Pm is 0.01, one of every 100 bits in the
binary string chain (contained in a series of strings of all designs)
will have a chance to switch from 0 to 1, or vice versa.

Ps Population size in a generation.

Em Maximum allowed function evaluations.

Ss Number of best designs to be saved in "bestfile.dat"

Sd Number of seeded designs to be included in the initial population.
Seeded designs are stored in "seed.dat". If 0 is chosen, all initial
population will be randomly generated.

Sl String length for each design; 0 for automatic creation of binary
representations, 1 for the option that the user can provided string
length for each variable. In the latter case, users have to provide
lengths for every design variable.

Gy Gray code binary implementation; 0 for fixed point binary
representation and 1 for gray code binary representation.

PRc Printing frequency control in "history.dat".

Sh Sharing function implementation; 0 for NOT,and 1 for YES.

Et Number of best designs in previous generation guaranteed to

A run of the EVOLVE code will create the following output files.

1) "history.dat"

contains basic statistics of the genetic search, which includes the average
fitness of a population, the objective value of the best design in the
population, its penalties due to constraint violations, percentage of
feasible designs in the population, number of bits which are identically
zeros or ones (lost), number of bits which are 95% zero or ones (conv),
the degree of bias for zero bits or one bits (bias) which is the average
of percentages for each bit.

2) "detail.dat"

contains detailed information for the best design in each generation.That
includes the design variables, objective value and constraint values.

3) "bestfile.dat"

contains a number of best designs explored during the genetic search.
users can decide the number of best design to be stored.

4) "restart.dat"

contains design variables of ranked designs in the last generation; this
can be used later as the initial population for a new genetic search.

5) "clusters.dat"

contains designs obtained at the end of the last generation of the final
stage of genetic search in a form of clusters. Each cluster can contain
designs with its metric distance close to some leading design. User can
select the number of clusters.

7. RUNNING THE PROGRAM

Before the user can run the program, the file "obj.f" needs to be completed.
All genetic algorithm parameters and information of design variable space is defined
in "ga_control.dat". All information is input by answering a number of structured
questions. The user is suggested to keep a copy of "ga_control.dat" in case that
some format is accidentally altered. After generating these two files, the user can
type "make" command to create an executable file "ga". Type "ga" and hit return to
initiate the genetic search.

8. TERMINATION OF SEARCH

The genetic search will be terminated either when the maximum permissible
function evaluations are reached, or when a convergence criterion is satisfied. Users
can choose the maximum number of function evaluations allowed for a genetic
search. A convergence criterion is currently set as a point when 90% of bits in binary
strings are identically zeros or ones for all designs. Users can change the percentage
in "done.f".

9. INPUT AND OUTPUT FILES

Three input files for EVOLVE are defined as follows:

1) "ga_control.dat"

a required control file to run EVOLVE; user provides all necessary
search parameters and chooses desired options.

2) "obj.f"

a fortran routine where user defines the objective function and
constraints.

3) "seed.dat"

User can seed the initial population by providing seeded designs in this
file.

Re_initialize This routine creates initial population for different stage of search,
except the first stage, in a genetic search with varying granularity

Savebest This routines saves [Bestsize] best designs.

Select This routine performs the selection of parents for next generation;
The chance for each design to be selected as one parent depends
on the ratio between its fitness and the average fitness of the
population.

Share This function computes the sharing penalty for a design. The
magnitude of penalty is related to the presence of designs in its
neighborhood.

Unpack This routine unpacks a binary string [where one integer stores 15
bits] into a loose binary string [where one integer stores only one
bit]

minimization, also constraints to form a pseudo-objective
function.

Evolve The main program of EVOLVE which is a genetic search
optimization program capable of solving minimization problems
with any combination of discrete, integer and continuous design
variables.

Generate This routine entails (1) forming a new generation, (2) evaluating
the population, and (3) gathering performance statistics, for each
generation.

Get_dv This routine computes actual design variable values from a
representative binary string of this design.

Gray This routine transforms floating-point binary segment into gray-
coded binary segment.

History This routine obtains the statistics of each generation and make a
number of reports on that information; this includes (1) history.dat
(2) detail.dat (3) restart.dat.

Init_data This routine restores initial parameters and computes length of
binary string for the design in the upcoming stage of search with
a new granularity.

Initialize This routine sets up the initial population.

Itob This routine determines the binary string for a design from its
decimal representation.

Measure This routine computes the performance statistics of the genetic
search in the current generation.

Melt This routine distributes a design randomly in a region which
covered by a design located in a previous stage of search. Used
only in a multistage search scheme.MutateThis routine performs
random bitwise mutation in the current population according to
the probability of mutation.

Newworst number between two given integer lower and upper bounds.

6. DESCRIPTION OF ROUTINES

routine Purpose

Actual_value This function converts the decimal representation of a binary
string into the actual design variable value.

Binary_value This function determines the decimal representation of a binary
string.

Clusters This routine determines and prints designs of final generation of
a last stage search in the form of clusters.

Converge This routine computes the convergence status of the genetic
search after each generation.

Convert This routine converts design variables of a seeded design to a
corresponding binary string.

Cross This routine performs two-point crossover on paired designs in
the population with assigned probability of crossover.

Degray This routine transforms a gray-coded binary segment into a float-
point binary segment.

Directed_cross This routine performs two-point crossovers where crossover sites
partially depend on the bitwise crossover gain in previous
generations. Used only in directed crossover strategy.

Done This routine checks the termination criteria of genetic search. A
stage of a genetic search would be stopped if the maximum
number of function evaluations is reached OR convergence
criterion is satisfied.

Elitist This routine serves to keep a selected number of best designs of
previous generation in the current generation.

Error This routine prints the error message and stops the program.

Evaluate This routine computes the objective function, and in constrained

GENERATE

GEN=1 FIRST
STAGE INITIALIZE

CONVERT

ITOB

GET_DV

PACK

RANINT

RE_INITIALIZE MELT

CONVERT

PACK

ITOB

PACK

RANINT

SELECT

REVIVE

SHARE

UNPACK

PACK

MUTATE UNPACK

DIRECTED_CROSSDIRECTED
CROSSOVER

NEXT_CHANCE

CROSS

ELITIST

EVALUATE

CROSS_CURVE

CONVERGENCE

DONE

OBJECTIVE

UNPACK

SAVEBEST

YES

NO

YES

NO

YES

NO

Fig. 1 Flow chart of the EVOLVE (continued)

EVOLVE

INPUT

INIT_DATA

GENERATE

MEASURE NEWWORST

HISTORY

GET_DV

STOP

END OF
ALL STAGE

UNPACK

GET_DV

UNPACK

PRINTBEST

GET_DV

CLUSTERS

END
OF STAGE

DEGRAY

ACTUAL_VALUE

BINARY_VALUE

Fig. 1 Flow chart of the EVOLVE

YES

NO

YES

NO

5. DESCRIPTION OF MODULES

A flow chart of the entire code is given in Figure 1

4) CROSSOVER

In the crossover process, two new designs may be created by
swapping a section of the binary string from two parent designs.
As an example, once the underlined section (crossover site) is
defined, two offspring designs are obtained from the parent
designs, by exchanging the underlined binary bits as follows:

dad 101010101
mom 010101010

kid1 101101101
kid2 010010010

The sites of crossover are randomly generated.

5) MUTATION

To minimize the possibility of the loss of a design trait
characterized by the presence of all 0's or all 1's at a particular site
in a given population, the process of mutation is introduced in
genetic search. The mutation operator locates a bit site at random,
and switches the bit from 0 to 1 or vice versa, with some low
prescribed probability.

6) EVALUATION

This process consists of evaluating the objective function and
constraints. A user friendly subroutine "obj.f" is the place a user defines
the objective function and constraints. Objective function value is
returned as OBJ, and m constraint values are returned as
PENALTY(1), PENALTY(2), ..., PENALTY(m). If an external
code such as a finite element analysis package is needed for objective
function value and/or constraint values, the user can exit from
"obj.f", and come back to the same point in "obj.f" after information
is obtained.

The integer variable space is [1, 2, 3, 4] and the continuous variable space is [0.10,
0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17]. One approach is to use binary substrings
00, 01, 10 and 11 to represent 1, 2, 3 and 4 for the integer variable, and 000, 001, 010,
011, 100, 101, 110, and 111 to represent 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, and
0.17 for the continuous variable. Then, a design such as (2, 0.13) would be mapped
into a binary string of the form 01011, where the first two digits represent the first
variable, and the last three digits represent the second variable.

EVOLVE provides an option (users are encouraged to use this option) with
which an appropriate binary substring for each design variable of any type would be
automatically generated.

4. MAJOR PROCEDURES

1) INITIALIZATION

Once the size of population is specified, the "initialize.f" will set up
an initial population via a random number generator. If users
choose to seed some initial designs, they can be stored in "seed.dat".
The rest of designs needed to fill the initial population will be
created randomly. EVOLVE can also initiate a new genetic search
with a starting population that was obtained in the final generation
of a previous genetic search. In this case, only thing that the
user needs to do, is to choose the RESTART option. With this
option, the code will automatically retrieve the final population from
"restart.dat" which is a default product of the genetic search.

2) GENERATION

A genetic search generation consists of selection (reproduction),
crossover, mutation, and evaluation.

3) SELECTION

The selection process is to choose designs from the current
generation and form parent designs of the next generation, which
may subsequently create offspring designs via genetic exchange
processes referred to as crossover and mutation. The probability for
a design to be chosen as a parent design is roughly proportional to
the ratio between its fitness and average population fitness.

the reproduction plan. A scaled increase in this penalty term over several generalities
of genetic search, ie. implemented in the present version of EVOLVE.

2. DESIGN SPACE

The design variables of an optimization problem can have continuously
varying values, integer values, discrete values, or any combination of the three. For
example, a composite laminate consists of an integer number of layers. If the number
of layers is chosen as one design variable, it will be an integer design variable. A
possible element set for a design variable representing the area of a truss member is
usually defined by available cross section areas provided by manufacturer. This
design variable is a discrete variable. The method of defining the design variable
space is as follows:

1) Continuous variable,

define its lower bound, upper bound and step size. If -5.12 and 5.11 are
selected as lower and upper bounds, respectively, and a step size is set
as 0.01, then the design space for the continuous variable would be [-
5.12, -5.11, -5.10, .., 5.10, 5.11]. In general, however, the step size of
a continuous variable is determined by the precision of numerical
computation on a specific machine.

2) Integer variable,

define its lower bound and upper bound. An integer variable is treated
as a continuous variable with a stepsize of 1. If 1 and 20 are selected as
lower and upper bound, the variable space is then [1, 2, 3,, 19, 20]

3) Discrete variable,

define the number of elements in the set, and list all elements in an
ascending order as follows: [0.25, 0.47, 1.10,, 18.35, 20.84]

3. BINARY REPRESENTATION

Each design variable is coded into a binary substring. A design consisting of
N design variables would be coded into a binary string which is a simple head-to-tail
connection of N substrings, each of which represents one design variable. Consider
a very simple design problem, with one integer variable and one continuous variable.

1. INTRODUCTION

EVOLVE genetic search code is written in Fortran, and run under the UNIX
operating system. Very few amendments would be needed to run EVOLVE code in
VMS or other operating systems. This code can be used to solve a function
minimization (direct) or maximization (indirect) problem. A typical optimization
problem that can be solved through the use of the EVOLVE code can be stated as
follows:

Min or Max F(X)
Subject to g(X) ≤ 0

Xi
l≤ Xi ≤ Xi

u

F(X) is the objective function, g(X) are inequality constraint functions, and X
is the vector of design variables where each element is bounded by a lower and an
upper bound. If there are no constraints involved in the optimization, it is an
unconstrained optimization problem.

In the present implementation, EVOLVE solves minimization problems more
directly than maximization problems. With minimization problems, the objective
function can be written directly in its original form. However, for maximization
problems, the objective function needs to be redefined so that the goal to maximize
the original objective function is transformed into minimizing an adjusted objective
function. A simple approach to define the new objective function is to subtract the
original objective function from a large number, so that a maximum value of the
objective function will become the minimum value of the new function.

The constrained optimization problem is transformed into unconstrained
optimization problem with the use of the exterior penalty function approach. In a
minimization problem, an infeasible design will have the following objective function
value:

F"(X) = F(X) + p * Σ g(X)

where F"(X): a pseudo-objective function
F(X): original objective function
p: penalty coefficient
g(X): constraint values, g(X)=0 if g(X)<0

The magnitude of the penalty term cannot be arbitrarily large, as it would bias

EVOLVE
A GENETIC SEARCH OPTIMIZATION CODE

USER'S MANUAL

C.-Y. LIN AND P. HAJELA

DEPARTMENT OF MECHANICAL ENGINEERING, AEROSPACE
ENGINEERING AND MECHANICS

RENSSELAER POLYTECHNIC INSTITUTE

JANUARY 17, 1993

ABSTRACT

This document describes the EVOLVE system for function optimization based
on genetic search techniques. This system can be used on optimization problems
with a mix of continuous, integer and discrete design variables. The binary
representation for each design variable may be automatically determined or defined
by users as an option. Sharing function implementation is supported and may be
chosen to enhance the ability of locating global optimum. Automatic execution of
consecutive genetic search with decreasing granularity in design space is also
implemented.

