
USERS MANUAL
Version 6

© Copyright, 2011

All Rights Reserved Worldwide

Vanderplaats Research & Development, Inc.

1767 S. 8th Street, Suite 200
Colorado Springs, CO 80905

http://www.vrand.com

Phone (719) 473-4611 FAX (719) 473-4638

DOT
DESIGN

OPTIMIZATION
TOOLS

2 Version 6 DOT

OTHER VR&D SOFTWARE PRODUCTS

VisualDOC is a main Design Optimization Control program which replaces the DOT
user's main program to greatly simplify coupling your analysis with optimization. The
design problem is defined in the windows environment for convenient pre- and post-
processing. VisualDOC provides additional features such as multi-objective and
discrete variable optimization, approximations based on curve fits (response surface
approximations), and much more.

GENESIS is a fully integrated finite element analysis and optimization program.
Analysis capabilities include statics, normal modes, heat transfer, dynamic response
and system buckling. Optimization capabilities include topology, member sizing and
shape optimization. GENESIS uses the latest approximation techniques to gain
exceptional efficiency in structural optimization. Typically, an optimum design is
achieved using about ten detailed finite element analyses, even for design problems
with thousands of variables and millions of constraints.

CONSTRAINED OPTIMIZATION

DOT Version 6 3

COPYRIGHT NOTICE

© Copyright, 1987-2011 by Vanderplaats Research & Development, Inc. (VR&D). All
Rights Reserved, Worldwide. No part of this manual may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any human or computer
language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without the express written permission of VR&D,
1767 S. 8th Street, Suite 200, Colorado Springs, CO 80905.

WARNING

This software and manual are both protected by U.S. copyright law (Title 17 United
States Code). Unauthorized reproduction and/or sales may result in imprisonment of up
to one year and fines of up to $10,000 (17 USC 506). Copyright infringers may also be
subject to civil liability.

DISCLAIMER

VR&D makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Further, VR&D reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of VR&D to
notify any person or organization of such revision or change.

TRADEMARKS MENTIONED IN THIS MANUAL

VisualDOC, DOT and GENESIS are registered trademarks of Vanderplaats Research
& Development, Inc. All other trademarks are the property of their respective
corporations.

Contents

WHAT’S NEW DOT Version 6

CHAPTER 1 Introduction

1.1 Introduction - 9

1.2 What You Will Find in this Manual- 9

1.3 DOT System Requirements- 10

1.4 Installing DOT on Your Computer - - - - - - - - - - - - - - - - - - - 10

1.5 Getting Started - 10

1.6 Getting Familiar with DOT - 13

1.7 What DOT Does - 19

1.8 The General Optimization Problem- - - - - - - - - - - - - - - - - - - 20

1.9 Equality Constraints - 21

1.10 Special Notes - 22

CHAPTER 2 DOT with Application Programs

2.1 Introduction - 24

2.2 Methods Used by DOT - 24

2.3 Calling Statement - 25

2.4 Parameters in the Calling Statement - - - - - - - - - - - - - - - - - - 25

2.5 Compiling and Linking - 28

2.6 A Simple Example - 29

CHAPTER 3 Advanced Use of DOT

3.1 Introduction - 52

3.2 Over-Riding DOT Default Parameters - - - - - - - - - - - - - - - - 52

3.3 Directly Supplying Gradients - 60

3.4 Interrupting and Restarting DOT - 65

3.5 Output to a Postprocessing Data File - - - - - - - - - - - - - - - - - - 67

DOT Version 6 5

CHAPTER 4 Examples

4.1 Introduction - 70

4.2 Box Design - 70

4.3 Three-Bar Truss - 73

4.4 Cantilevered Beam- 76

4.5 Equilibrium of a Spring System - 81

4.6 Construction Management - 83

4.7 Piston Design - 86

4.8 Portfolio Selection - 90

4.9 Equality Constraints - 93

CHAPTER 5 References

5.1 Introduction - 96

5.2 References- 96

APPENDIX A Structure of Program
Calling DOT

A.1 Introduction - 99

A.2 Basic Program Organization- 99

A.3 Structure of Program Interfacing with DOT - - - - - - - - - - - 100

A.4 Box Design Program in C Language Interfacing DOT Object
Code Compiled in FORTRAN 77 - - - - - - - - - - - - - - - - 101

APPENDIX B Calculating DOT Array Sizes

B.1 Introduction - 105

B.2 Unconstrained Problems (NCON=0) - - - - - - - - - - - - - - - - - 105

B.3 Constrained Problems (NCON > 0) - - - - - - - - - - - - - - - - - - 105

B.4 DOT510 Storage Calculations - 108

6 Version 6 DOT

APPENDIX C In Case of Difficulty

C.1 Introduction - 110

C.2 Debugging Procedure - 110

APPENDIX D Internal Parameters in DOT

D.1 Introduction - 113

D.2 Parameters Contained in RPRM- 113

D.3 Parameters Contained in IPRM - 117

INDEX -120

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)
P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

WHAT’S NEW

DOT Version 6

DOT Version 6 represents a major rewrite and enhancement of Version 5. Following is
a partial list of enhancements contained in version 6:

• A few minor bugs have been corrected to make the basic optimization capability
more robust. Most of these fixes are transparent to the average user, but are
important to the overall reliability of the program. We have solved thousands of
optimization problems in our quest to make DOT as robust as possible.

• The Golden Section Method is now available for use in the one-dimensional
search. After the bounds have been reduced to the desired tolerance, polynomial
interpolation is applied for a final refinement. If function evaluations are cheap,
tightening the Golden Section tolerance will usually provide a better optimum.

• Major changes were made in the Modified Method of Feasible Directions
(METHOD=1) to better follow curved constraints.

• Major changes were made in the Sequential Quadratic Programming Method,
including addition of the Golden Section Method in the one-dimensional search.

• A SIMPLEX algorithm with built in upper bounds has been added to the
Sequential Linear Programming Method (METHOD=2). In the past, the Modified
Method of Feasible Directions was used to solve the linear sub-problem.

• Significant enhancements have been made to the Sequential Quadratic
Programming algorithm (METHOD=3) to improve efficiency and robustness.

• Memory allocation has been greatly simplified.

• Subroutine DOT510, which estimates memory requirements, is still available to
provide desired and maximum memory requirements. DOT510 no longer
provides a minimum memory value since this unnecessarily restricted memory.

• Print levels have been modified to reduce the amount of output for lower IPRINT
values.

P3⁄STRUCTURAL OPTIMIZATION (Vol. II)

CHAPTER 1
Introduction

o Introduction

o What You Will Find in this Manual

o DOT System Requirements

o Installing DOT on Your Computer

o Getting Started

o Getting Familiar with DOT

o What DOT Does

o The General Optimization Problem

o Equality Constraints

o Special Notes

Introduction

DOT Version 6 9

1.1 Introduction

Welcome to VR&D's Design Optimization Tools, DOT. The DOT program is intended
to help you solve a wide variety of nonlinear constrained or unconstrained optimization
problems.

Optimization concepts and methods are not new. Indeed, optimization is fundamental
to most of what we do. Whether we are engineers, athletes, or businessmen, our goal is
to be best in some way. Numerical optimization, which is the basis for the DOT
program, helps us for those cases where we are able to define the optimization problem
in a consistent mathematical or numerical way.

The DOT manual is intended for the new user of optimization, as well as the
experienced user. In this first chapter, we start by defining the computer requirements
and identifying the files that you have received. In Chapter 2, we discuss the use of
DOT with your own application programs. This is the real power of DOT, and you are
shown how to couple it with your own “analysis” programs to solve sophisticated
design tasks. Chapter 3 describes a variety of options available to help you “tune” DOT
to work efficiently for your particular application. Finally, Chapter 4 offers examples
to help you gain familiarity with DOT and to insure that it is working properly. Chapter
5 lists several references for further study.

Appendices are provided to assist you with specific questions and capabilities provided.

1.2 What You Will Find in this Manual

This manual has been written with the first time user in mind. As such, the first two
chapters are intended to assist in using the program right away.

This chapter first defines system requirements and lists the distribution files that you
have received. The remainder of this chapter is an introduction to optimization itself.
Chapter 2 is all about interfacing DOT with user-supplied application programs for
powerful optimization capabilities. Chapter 3 discusses advanced uses of DOT such as
over-riding internal parameters, directly supplying gradients of the objective function
and constraints, interrupting and restarting DOT, and writing output to a special file for
later use. Chapter 4 presents examples of optimization problems taken from a variety
of disciplines. Chapter 5 is a list of references which may be useful to those seeking a
better understanding of numerical optimization.

Appendix A gives a main calling program that may be used as a prototype for using
DOT. Appendix B defines storage requirements and Subroutine DOT510, which
calculates the required working storage values of NRWK and NRIWK.

For detailed study of optimization methods and applications, the textbook,
“Multidiscipline Design Optimization” by Dr. Vanderplaats is available directly from
VR&D. Please contact VR&D for details and pricing or access VR&D on the web at
www.vrand.com.

10 Version 6 DOT

Introduction

1.3 DOT System Requirements

Versions of DOT are available for all levels of computers. DOT is provided as Object
code.

1.4 Installing DOT on Your Computer

The CD-ROM or DVD you have received contains both DOT and VisualDOC. If you
have received the software on a DVD, the GENESIS (and Design Studio) structural
optimization software is also available. Alternatively, you may have downloaded the
software from the VR&D web site. You are welcome to install VisualDOC and
GENESIS also. This software will operate in a restricted mode immediately. On
request, we can provide you with full capabilities of all VR&D software for a short term
evaluation.

See the readme.txt file on the CD-ROM or DVD for the latest installation information.

1.5 Getting Started

DOT is a computer program for optimization. Specifically, it is used to automatically
adjust parameters to maximize or minimize a calculated quantity while satisfying a
multiple number of constraints. Functions considered by DOT may be linear or
nonlinear and may be very complicated implicit functions of the design variables. That
is, you do not need to provide explicit equations to define the responses in terms of the
design variables.

DOT is coupled with your application program by writing a small interface. DOT is a
tool to solve system optimization problems in engineering, business, social science and
any other applications where system responses are analyzed and evaluated numerically.

For example, suppose you received a large quantity order to produce cardboard boxes.
The order specifies that the volume of the boxes must be greater or equal to 2 cubic feet,
and both top and bottom surfaces have double flaps, as shown in the figure below.

D

W

H

Introduction

DOT Version 6 11

Since one of the large cost items is the amount of cardboard, we need to decide the box
dimensions to minimize the amount of cardboard used to make each box. A minimum
material box will also be the lightest weight design, thus helping to reduce shipping
costs.

This problem can be expressed in the following form.

Find the dimensions W, D, and H which will

Minimize the surface area, S, where

S = 2(HW + HD + 2WD) Objective Function (1-1)

Subject to:

Volume, WHD > 2.0 Inequality Constraint (1-2)

 W, H, D > 0.0 Side Constraints (1-3)

In this problem, the surface area is the “objective function”. The condition that the
volume must be greater than or equal to 2.0 is called a “constraint”. The requirements
that W, H, and D be greater than 0.0 are called “side constraints”. This description of
an objective function and constraints constitutes the formal optimization problem.

At this point you may realize that to find the optimum design you have to adjust three
parameters simultaneously, which is rather difficult to visualize. With DOT, you can
solve this problem almost instantly.

Now let's make the problem a bit more realistic. The boxes will be cut from a sheet of
cardboard, then folded and glued along one vertical corner. To do this requires an extra
1.25 inch of material of height H. Now the problem becomes

Find the dimensions W, D and H to

Minimize

(1-4)

Subject to:

Volume, HWD > 2.0 (1-5)

W, H, D > 0.0 (1-6)

Note that we have just added 1.25H/12.0 to the objective function where we divide by
12 to convert inches to feet. By doing so the problem has been made more difficult to
solve by hand, although DOT solves it just as easily as before.

The method for solving general problems is to write a FORTRAN (or C/C++) program
that calls DOT. The form of this program is defined in this manual and any experienced
programmer will be able to quickly write such a program for most problems. Appendix
A provides a simple program that can be used as a ‘template’ for using DOT.

S 2 HW HD 2WD+ + 1.25H
12.0

---------------+=

12 Version 6 DOT

Introduction

The methods implemented in DOT are numerical search techniques known as
mathematical programming. DOT represents the culmination of many years of research
in system optimization by theoretical and applied mathematicians. Basic theories of
mathematical programming are well known and many textbooks have been published.
However, implementation of theoretical methods into reliable software has required a
great deal of research and development. The author of DOT has been actively involved
in software development as well as applications of system optimization methods since
1969.

Numerical optimization offers a number of improvements over the traditional approach
to decision process and engineering design. Among the advantages of numerical
optimization methods are:

• Perform system parameter adjustment far beyond human perception.

• Reduce the time required to make decisions.

• Provide a logical, systematic decision-making procedure.

• Virtually always improve system response, even if not arriving at the absolute
optimal state.

• Not biased by intuition or experience. Hence it may produce new, non-traditional
results.

The following is a brief list of engineering design projects to which serious application
efforts have been made.

• Structural design for minimum weight. The GENESIS program from VR&D is a
fully integrated finite element analysis and optimization program. GENESIS uses
advanced approximation techniques to solve the optimization task (performed by
DOT or BIGDOT) using only about ten detailed finite element analyses, even for
very large optimization tasks.

• Aerodynamic design for maximum performance.

• Injection molding for uniform fill times.

• Maximum combustion efficiency of an internal combustion engine.

• Mechanical parts design for minimum material or for maximum performance.

• Conceptual aircraft, spacecraft and ship design.

Of course, applications are not limited to engineering design. Any system design or
management problem involving numerical decisions may be cast in a form where
numerical optimization is useful. Applications are limited only by the creativity of the
user.

CAUTION

DOT solves the nonlinear optimization problem iteratively. It is designed to get a “near
optimum” solution quickly, since in most practical problems a precise optimum (which
takes much more computational effort) is not that meaningful. Therefore, you should
not expect precise mathematical solutions. Chapter 4 gives examples of the differences
between the theoretical optimum and that calculated by DOT for several cases. Usually,
the difference is minor.

Introduction

DOT Version 6 13

1.6 Getting Familiar with DOT

Now let's solve the simple box design of Section 1.5 using DOT. For convenience, the
basic problem is restated here;

Minimize the surface area, S, where

S = 2(HW + HD + 2WD) Objective Function (1-7)

Subject to:

Volume, WHD > 2.0 Inequality Constraint (1-8)

W, H, D > 0.0 Side Constraints (1-9)

The design variables, H, W and D are stored in the “Vector of Design Variables,” X, so;

(1-10)

We have three design variables, so NDV=3.

The objective function is, OBJ=S, so;

OBJ = 2(HW + HD + 2WD)

The inequality constraint is stored in the “Constraint Vector” G so;

G(1) = 1.0 - 0.5*X(1)*X(2)*X(3)

Note that the constraint G(1) is normalized by dividing by the bound (2.0) and
converting to a non-positive inequality.

For this example, there is only one constraint, so NCON=1.

The side constraints are stored in the “Lower Bound Vector,” XL, so;

Because no upper bounds are prescribed, we will simply set the upper bounds on the
design variables as 100.0 so the “Upper Bound Vector,” XU, becomes;

X

H

W

D

=

XL

0.0

0.0

0.0

=

XU

100.0

100.0

100.0

=

14 Version 6 DOT

Introduction

It is necessary to provide DOT with an initial design, so we will initially set the entries
of vector X to unity for this example;

Note that this gives an initial volume of 1.0 ft.3, which violates the minimum volume
constraint of 2.0. This is acceptable in DOT and DOT will proceed to find a “feasible”
optimum.

The vectors X, G, XL and XU are the basic arrays used by DOT to contain the user
design information.

In this example, we could dimension X, XL and XU to 3 and G to 1, but will dimension
each of them to 5. This is just to demonstrate that the required dimensions given in this
manual are minimum dimensions. You may dimension arrays larger than the required
value to allow for increasing the problem size in the future.

Additionally, the arrays RPRM(20) and IPRM(20) contain various control parameters.
By initializing the contents to these arrays to zero, DOT will use all default parameters
(defined in Chapter 3).

Also, arrays WK and IWK are used to store internal real and integer tables. These
arrays are normally dimensioned rather large to insure sufficient memory is allocated.
The user can call SUBROUTINE DOT510 to calculate the needed dimensions of the
arrays WK and IWK.

Finally, we must tell DOT the number of design variables (NDV), the number of
constraints (NCON), a print control parameter (IPRINT), whether to minimize or
maximize (MINMAX=0 or -1 to minimize; +1 to maximize), the dimension of array
WK (NRWK) and IWK (NRIWK) and an information parameter INFO. Initially,
INFO=0. On return from DOT, if INFO=0, optimization is complete. X and G contain
the optimum values of the design variables and constraints and OBJ is the optimum
value of the objective function. If INFO=1, we calculate the value of the objective, OBJ,
and constraints, G(I), I=1,NCON and call DOT again. In special cases, if we are
providing gradient information to DOT, INFO=2 will be returned (if we use all default
parameters, INFO will never equal 2, and DOT will calculate the gradients by finite
difference methods). The parameter, METHOD, defines the optimization method to be
used in DOT. Presently three methods are available for constrained optimization;
METHOD=0 or 1 says use the Modified Method of Feasible Directions (MMFD),
METHOD=2 says use the Sequential Linear Programming (SLP) method and
METHOD=3 says use the Sequential Quadratic Programming (SQP) method. Two
methods are available for unconstrained optimization (NCON=0). METHOD=0 or 1
says use the BFGS (Broydon-Fletcher-Goldfarb-Shanno) method and METHOD=2
says use the Fletcher-Reeves method.

X

1.0

1.0

1.0

=

Introduction

DOT Version 6 15

It is required that we provide a main program to define the various information and call
DOT, as well as a subroutine to calculate the objective and constraint functions in terms
of X. The overall process is defined by the following 7 steps.

1. Dimension the required arrays and define the dimensions of WK and IWK.

2. Initialize the control parameters contained in RPRM and IPRM (normally set these
to zero to use the default values; see Chapter 3).

3. Define the number of design variables and constraints, print control, method to be
used, and whether to minimize or maximize.

4. Set the initial values of the design variables in X, the lower bounds, XL, and the
upper bounds, XU.

5. Initialize the information parameter, INFO=0.

6. Call DOT to proceed with optimization.

7. On return from DOT, if INFO=0, terminate; the optimization process is complete.
Otherwise, evaluate the objective and constraint functions and call DOT again.
Eventually, DOT will return a value of INFO=0 to indicate that optimization is
complete.

The FORTRAN listing for the box design problem is given below, along with a
subroutine called EVAL which evaluates the functions (the function values could be
calculated in the main program if you prefer). Note that arrays X, XL, XU and G are
dimensioned larger than needed. It is only necessary to dimension these arrays large
enough for the problem, but we can make them larger to allow for future expansion.

In this example, we used METHOD=1 (the MMFD method), and print control,
IPRINT=1. The resulting output from DOT is also presented below.

From this simple example, we see that it is extremely easy to use DOT for optimization.
Of course, the number of design variables and constraints, as well as the routine for
evaluating the functions, may be quite large. If you simply couple DOT with your
analysis, we suggest limiting the number of design variables to about 1000, although
much larger problems have been solved. The number of constraints may be quite large
(especially with METHOD=1 for constrained problems). Problems with over a million
constraints have been solved with DOT. For optimization tasks in excess of about 2000
design variables, it is recommended that the BIGDOT optimizer be used [18].

16 Version 6 DOT

Introduction

BOX DESIGN FORTRAN PROGRAM

C
C SAMPLE PROGRAM. BOX DESIGN.
C
 DOUBLE PRECISION X(5),XL(5),XU(5),G(5),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),I,METHOD,NDV,NCON,IPRINT,MINMAX,INFO,
 *NRWK,NRIWK
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
C THREE DESIGN VARIABLES.
 NDV=3
C ONE CONSTRAINT
 NCON=1
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
C INITIAL VALUES.
 X(I)=1.0
C LOWER BOUNDS.
 XL(I)=0.01
C UPPER BOUNDS
20 XU(I)=100.
C DEFINE IPRINT, MINMAX, INFO.
C PRINT CONTROL.
 IPRINT=1
C MINIMIZE
 MINMAX=-1
C INITIALIZE INFO TO ZERO.
 INFO=0
C OPTIMIZE.
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
C FINISHED?
 IF(INFO.EQ.0) STOP
C EVALUATE OBJECTIVE AND CONSTRAINT.
 CALL EVAL(OBJ,X,G)
C GO CONTINUE WITH OPTIMIZATION.
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE BOX DESIGN PROBLEM.
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=2.0*X(2)*X(1)+2.0*X(3)*X(1)+4.0*X(2)*X(3)
 G(1)=1.0-0.5*X(1)*X(2)*X(3)
 RETURN

 END

Introduction

DOT Version 6 17

DOT OUTPUT

 DDDDD OOOOO TTTTTTT
 D D O O T
 D D == O * O == T
 D D O O T
 DDDDD OOOOO T

 DESIGN OPTIMIZATION TOOLS

 (C) COPYRIGHT, 2010

 VANDERPLAATS R&D

 ALL RIGHTS RESERVED, WORLDWIDE

 VERSION 6.0

 CONTROL PARAMETERS

 OPTIMIZATION METHOD, METHOD = 1
 NUMBER OF DECISION VARIABLES, NDV = 3
 NUMBER OF CONSTRAINTS, NCON = 1
 PRINT CONTROL PARAMETER, IPRINT = 1
 GRADIENT PARAMETER, IGRAD = 0
 FORWARD DIFFERENCE GRADIENTS ARE CALCULATED BY DOT
 THE OBJECTIVE FUNCTION WILL BE MINIMIZED

 -- SCALAR PROGRAM PARAMETERS

 REAL PARAMETERS
 1) CT = -3.00000E-02 9) FDCH = 1.00000E-03
 2) CTMIN = 3.00000E-03 10) FDCHM = 1.00000E-04
 3) DABOBJ = 8.00000E-04 11) RMVLMZ = 5.00000E-01
 4) DELOBJ = 1.00000E-03 12) DABSTR = 8.00000E-04
 5) DOBJ1 = 1.00000E-01 13) DELSTR = 1.00000E-03
 6) DOBJ2 = 1.60000E+00 14) GSTOL = 2.50000E-01
 7) DX1 = 1.00000E-02 15) GSTOLM = 1.00000E-04
 8) DX2 = 2.00000E-01

 INTEGER PARAMETERS
 1) IGRAD = 0 6) NGMAX = 1 11) NONE = 0
 2) ISCAL = 3 7) IGMAX = 1 12) NONE = 0
 3) ITMAX = 250 8) JTMAX = 100 13) JWRITE = 0
 4) ITRMOP = 2 9) ITRMST = 2 14) NONE = 0
 5) IWRITE = 6 10) JPRINT = 0 15) NSTORE = 694

18 Version 6 DOT

Introduction

STORAGE REQUIREMENTS
 ARRAY DIMENSION MINIMUM MAXIMUM USED
 WK 800 144 144 800
 IWK 200 102

 -- INITIAL VARIABLES AND BOUNDS

 LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
 1) 1.00000E-02 1.00000E-02 1.00000E-02

 DECISION VARIABLES (X-VECTOR)
 1) 1.00000E+00 1.00000E+00 1.00000E+00

 UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
 1) 1.00000E+02 1.00000E+02 1.00000E+02

 -- INITIAL FUNCTION VALUES

 OBJ = 8.0000

 CONSTRAINT VALUES (G-VECTOR)
 1) 5.00000E-01

 GMAX = 5.0000E-01 JGMAX = 1

 -- OPTIMIZATION IS COMPLETE

 NUMBER OF ITERATIONS = 5

 CONSTRAINT TOLERANCE, CT = -3.00000E-03

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
 1

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 TERMINATION CRITERIA

 RELATIVE CONVERGENCE CRITERION WAS MET FOR 2 CONSECUTIVE ITERATIONS

Introduction

DOT Version 6 19

 -- OPTIMIZATION RESULTS

 OBJECTIVE, F(X) = 1.19930E+01

 DECISION VARIABLES, X

 ID XL X XU
 1 1.00000E-02 2.01661E+00 1.00000E+02
 2 1.00000E-02 9.95420E-01 1.00000E+02
 3 1.00000E-02 9.95420E-01 1.00000E+02

 CONSTRAINTS, G(X)

 1) 9.08397E-04

 GMAX = 9.0840E-04 JGMAX = 1

 FUNCTION CALLS = 63

1.7 What DOT Does

The DOT program uses numerical search methods to seek a minimum or maximum
value of one function subject to limits on others. Numerical optimization methods such
as this are formally known as Mathematical Programming Techniques. The functions
involved must be calculated as functions of the “design variables.” If you wish to
maximize a function, DOT internally does this by minimizing the negative of that
function, but this will not be apparent from the printed output.

The user must specify an initial set of design variables (also called decision variables),
and must provide the necessary code(s) to evaluate the objective and constraint
functions each time the design variables are changed by DOT. Section 1.8 gives the
general form of the optimization problem and Chapters 2 and 3 provide the detailed
information needed to use DOT to solve a particular optimization problem.

The search algorithms used by DOT are described in detail in Reference 1 in Chapter
5. The basic concept is to solve the problem in two steps. The first is to determine a
“Search Direction” which defines how the design variables will be changed. The key
idea is that all variables will be changed simultaneously in a fashion that will improve
the design. The second part is to determine how far to move in this direction, and this
is called a “One-Dimensional Search.” This process of finding a search direction and
then searching is called an “iteration” and is repeated until it converges to the optimum.
This is the basic approach used by the Modified Method of Feasible Directions
contained in DOT for constrained minimization (see reference 2 of Chapter 5). If no
constraints are imposed, the minimization is called Unconstrained and DOT uses the
Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm if METHOD=0 or 1 and the
Fletcher-Reeves (F.R.) algorithm if METHOD=2. These algorithms also proceed in the
two step process of finding a search direction and performing a one-dimensional search.

20 Version 6 DOT

Introduction

When using the Sequential Linear Programming (SLP) or the Sequential Quadratic
Programming (SQP) method contained in DOT, the process is modified somewhat, but
the basic concept of moving from one design to an improved design is the same.

Chapter 5 provides a list of references for further study.

1.8 The General Optimization Problem

The optimization problem is formally stated as follows [1]:

Minimize or Maximize

F(X) Objective Function (1-11)

Subject to;

j = 1,NCON Inequality Constraints (1-12)

i = 1,NDV Side Constraints (1-13)

NDV is the number of design (decision) variables. DOT is designed to be a robust
numerical optimizer for problems of (typically) up to 2000 design variables. However,
there is nothing magic about this number. Problems in excess of two thousand design
variables have been solved. Just be aware that larger optimization problems may be
more difficult to solve, not to mention more time consuming. The BIGDOT
optimization program is capable of solving problems with hundreds of thousands of
design variables [18].

It should be noted that structural optimization applications, which use DOT as a
subroutine in conjunction with a structural analysis code, often involve hundreds of
design variables and thousands of nonlinear inequality constraints. Special methods
exist for solving large structural optimization problems [3]. The GENESIS program
combines the most advanced methods for structural optimization for design of
structures [17].

NCON is the number of constraints in a particular problem. The number of constraints
tends to get high for many problems. For example, consider a truss design problem
(such as an electrical transmission tower) where each member has stress and buckling
constraints, and displacement constraints are imposed at each joint. Also, the truss must
support many independent load cases. For a large truss, there would be a great many
constraints. Nevertheless, there is no maximum number of constraints to keep in mind.

 and are called side constraints. These are lower and upper bounds on the design

variables. A common use of lower bounds is to prevent the design variables from going
below zero. For example, it would make no sense to design a mechanical part that has
a negative thickness. Side constraints are allowed when solving unconstrained
problems (NCON=0).

gj X 0

Xi
L

Xi Xi
U

Xi
L

Xi
U

Introduction

DOT Version 6 21

It is necessary to formulate optimization problems in this standard form. In Chapter 4,
several examples from engineering and management are presented. These examples
may be used as a guide to properly formulating optimization problems.

1.9 Equality Constraints

The formal problem statement of Section 1.8 includes only inequality constraints,
which require a set of functions gj(X) to be less than or equal to zero. Suppose you want
to specify that a function (or functions) must be equal to zero at the optimum. This is
done by defining two separate inequality constraints for each function. One constraint
requires the function to be less than or equal to zero and the other constraint requires
the function to be greater than or equal to zero (in standard form, the negative of the
function be less than or equal to zero). The only function value that satisfies both
constraints is zero, which is just what an equality constraint requires. A simple example
will demonstrate this.

Suppose you want the following relation to be true

or, in the form that an optimizer understands,

This requirement can be satisfied by imposing two equal and opposite inequality
constraints as

That is;

At the optimum, g1 and g2 should both equal zero within a small tolerance.

NOTE: In this case, an alternative would be to treat X3 as a dependent variable and
reduce the total number of independent design variables by one. Thus

Now, only X1 and X2 are the design variables. Whenever the optimizer requests
function values, you would first calculate X3 and then evaluate the functions in the
usual way. This would reduce the number of design variables by one as well as
eliminating both of the constraints. However, this is only possible when we have an
explicit relationship such as this. In the general case, we just provide two equal and
opposite constraints as we did above.

X1
3

– X2
2

– X3+ 2.0=

X1
3

– X2
2

– X3 2.0–+ 0.0=

g1 X– 1
3

X2
2

– X3 2.0–+ 0.0=

g2 X– 1
3

X2
2

– X3 2.0–+ – 0.0=

g2 g1 0.0–=

X3 2.0 X1
3

X2
2

+ +=

22 Version 6 DOT

Introduction

1.10 Special Notes

• Remember that optimization is iterative and usually nonlinear. You should try to
formulate the problem so that the variables and functions are of the same general
order of magnitude.

• Always normalize the constraints. For example,

Q < 20000.0

should be normalized as

Q/20000.0 -1.0 < 0.0

• DOT scales the design variables, X in an effort to improve the numerical
conditioning of the optimization task. While there is no good theory for scaling,
it usually works well. If DOT seems not to be working, try turning the scaling off
by setting ISCAL = -1. [ISCAL is the internal parameter IPRM(2); see
Chapter 3].

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

CHAPTER 2
DOT with Application
Programs

o Introduction

o Methods Used by DOT

o Calling Statement

o Parameters in the Calling Statement

o Compiling and Linking

o A Simple Example

24 Version 6 DOT

DOT with Application Programs

2.1 Introduction

Interfacing DOT with your program is simple, as explained in this chapter. A part of the
application program where all of the parameters and responses are available (usually in
the main program) is modified to call DOT in the manner described below.

A simple main program that calls DOT is provided in Appendix A. All that needs to be
provided are the parameters and functions. The parameters that must be provided are
defined in the following two sections. An example is presented in section 2.6.

2.2 Methods Used by DOT

The following table identifies the methods available. The choice of method is made
with the METHOD parameter in the DOT calling statement.

* Default Method.

Unconstrained Minimization (NCON = 0)

METHOD DESCRIPTION

0,1* Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric
method. This method is considered best on theoretical
grounds.

2 Fletcher-Reeves (F.R.) conjugate gradient method. This
method uses very little computer memory and has been
found to be reliable.

Constrained Minimization (NCON > 0)

METHOD DESCRIPTION

0,1* Modified Method of Feasible Directions (MMFD). This
method is reliable and uses the least computer memory.

2 Sequential Linear Programming (SLP). This method is often
most efficient for general applications in terms of the number
of function evaluations required, especially if there are as
many active constraints as there are design variables at the
optimum.

3 Sequential Quadratic Programming (SQP). This method is
considered theoretically best if the optimization problem is
“well conditioned.” This method should always be tried for
your problem. If it works successfully, it is almost always the
most efficient.

DOT with Application Programs

DOT Version 6 25

It is generally agreed that there is no “Best” method for all applications. The user is
encouraged to try all available methods on several applications. The method that
performs best will usually be good for many optimization problems in this class.

2.3 Calling Statement

DOT is invoked by the following FORTRAN calling statement in the user's program:

 CALL DOT (INFO, METHOD, IPRINT, NDV, NCON, X, XL, XU, OBJ,

 * MINMAX, G, RPRM, IPRM, WK, NRWK, IWK, NRIWK)

All information needed by DOT is passed via the parameter list. Also, when DOT
requires the values of the objective function and constraints, it returns to the calling
program instead of calling a user-supplied subroutine. This gives the user considerable
flexibility in using DOT, allowing for restarting the optimization process or for calling
DOT from the user’s analysis subroutine(s) to perform sub-optimization tasks.

If you wish to call DOT from a C/C++ program, see Appendix A for a sample program.

2.4 Parameters in the Calling Statement

Table 2-1 lists the parameters in the calling statement to DOT. Where arrays are
defined, the required dimension size is given as the array argument. These are minimum
dimensions. The arrays can be dimensioned larger than this to allow for program
expansion.

Table 2-1: Parameters in the DOT Argument List

PARAMETER DEFINITION

INFO Information parameter. Before calling DOT the first time, set
INFO=0.
When control returns from DOT to the calling program, INFO
will normally have a value of 0 or 1.
If INFO= 0, the optimization is complete (or terminated with
an error message).
If INFO= 1, the user must evaluate the objective, OBJ, and
constraint functions, G(j), j=1,NCON, and call DOT again.
A third possibility, INFO= 2, exists also. In this case, the user
must provide gradient information. This is an advanced
feature and is described in Chapter 3.
NOTE: If IPRM(18)>0 on return from DOT, a Fatal Error has
occurred (See Chapter 3).

26 Version 6 DOT

DOT with Application Programs

METHOD Optimization method to be used.
METHOD = 0 or 1 means use the modified method of
feasible directions.
METHOD = 2 means use the sequential linear programming
method.
METHOD = 3 means use the sequential quadratic
programming method.
If the problem in unconstrained (NCON=0), the BFGS
algorithm will be used if METHOD=0 or 1 and the Fletcher-
Reeves algorithm will be used if METHOD=2.

IPRINT Print control parameter.
IPRINT = 0 no output.
IPRINT = 1 internal parameters, initial information and
results.
IPRINT = 2 same plus objective function and maximum
constraint value (and constraint number) at each iteration as
well as the number of active (NAC) and violated (NVC)
constraints and the number of active side constraints
(NACS).
IPRINT = 3 same plus X-vector, G-vector and critical
constraint numbers.
IPRINT = 4 same plus gradients.
IPRINT = 5 same plus search direction.
IPRINT = 6 same plus set basic one-dimensional search
information.
IPRINT = 7 same plus detailed one-dimensional search
information.
NOTE: The IPRM Array contains additional print options.
See Chapter 3.

NDV Number of design (decision) variables contained in vector X.

NCON Number of constraint values contained in array G. NCON=0
is allowed.

X(NDV) Vector containing the design variables. On the first call to
DOT, this is the user's best guess for the design. On the final
return from DOT (INFO=0 is returned), the vector X contains
the optimum design and vector G contains the
corresponding constraint values. OBJ is the optimum
objective function value.

DOT with Application Programs

DOT Version 6 27

XL(NDV) Array containing lower bounds on the design variables, X. If
no lower bounds are imposed on one or more of the design
variables, the corresponding component(s) of XL must be
set to a large negative number, say -1.0E+15. Be sure it's
-1.0E+15 and not -1.0E-15 (+15, not -15 exponent). Lower
bounds may be used even for unconstrained (NCON=0)
problems.

XU(NDV) Array containing upper bounds on the design variables, X. If
no upper bounds are imposed on one or more of the design
variables, the corresponding component(s) of XU must be
set to a large positive number, say 1.0 E+15. Upper bounds
may be used even for unconstrained (NCON=0) problems.

OBJ Value of the objective function corresponding to the current
values of the design variables contained in X. On the first call
to DOT, OBJ need not be defined. DOT will return a value of
INFO=1 to indicate that the user must evaluate OBJ and call
DOT again. Subsequently, any time a value of INFO=1 is
returned from DOT, the objective, OBJ, must be evaluated
for the current design and DOT must be called again. OBJ
has the same meaning as F(X) in the mathematical problem
statement given in Chapter 1.

MINMAX Integer parameter specifying whether the minimum
(MINMAX=0,-1) or maximum (MINMAX=1) of the objective
function is to be found.

G(NCON) Array containing the NCON inequality constraint values
corresponding to the current design contained in X. On the
first call to DOT, the constraint values need not be defined.
On return from DOT, if INFO=1, the constraints must be
evaluated for the current X and DOT must be called again. If
NCON=0, array G must be dimensioned to 1 or larger, but no
constraint values need to be provided.

RPRM(20) Array containing the real (floating point numbers) control
parameters. Initialize the entire array to 0.0 to use all default
values. If you use other values than the defaults, set the
corresponding entries to the desired values. Chapter 3
describes how to change the value of these parameters.

IPRM(20) Array containing the integer control parameters. As with the
RPRM array, set the array to zero to use the default values,
or set the proper entries to the desired values. Chapter 3
describes how to change the value of these parameters.

28 Version 6 DOT

DOT with Application Programs

Note: The minimum required values of NRWK and NRIWK are defined in Appendix
B. Those values are only minimums. The actual dimensions may be larger than this.
DOT uses a large number of internal arrays. The arrays WK and IWK are used to store
these and the internal data management allocates the appropriate locations to store the
internal arrays.

SUBROUTINE DOT510 can be called to provide desired and maximum required
values of NRWK and NRIWK. See Appendix B for more information on this option.

2.5 Compiling and Linking

DOT is supplied as object code. When DOT is to be called by an application program,
this DOT object code must be linked to a main program like the ones in Chapter 1,
Chapter 4, or Appendix A.

You may use DOT in single precision (dot.a or dot*.lib files), or double precision
(dot2.a or dot2*.lib files). The only difference between the two versions is that the
double precision version contains DOUBLE PRECISION statements at the beginning
of each routine.

Directions given here assume that you are using the double precision version. If you use
the single precision version, the approach is the same.

Specific instructions for how to link DOT object code to the main program vary from
system to system. Consult the manual that accompanies your compiler for detailed
assistance.

WK(NRWK) User provided work array for real (floating point) variables.
Array WK is used to store internal scalar variables and
arrays used by DOT. If the user has not provided enough
storage, DOT will print the appropriate message and
terminate the optimization.

NRWK Dimensioned size of work array WK. NRWK should be set
quite large, starting at about 1000 for a small problem. If
NRWK has been given too small a value, an error message
will be printed and the optimization will be terminated.

IWK(NRIWK) User provided work array for integer (fixed point) variables.
Array IWK is used to store internal scalar variables and
arrays used by DOT. If the user has not provided enough
storage, DOT will print the appropriate message and
terminate the optimization.

NRIWK Dimensioned size of work array IWK. A good estimate is 300
for a small problem. Increase the size of NRIWK as the
problem grows larger. If NRIWK is too small, an error
message will be printed and the optimization will be
terminated.

DOT with Application Programs

DOT Version 6 29

An example of how some systems would compile and link a calling program
MAIN.FOR to the DOT object code is as follows:

UNIX Systems:

f77 -o MAIN MAIN.FOR dot2.a

An executable file called MAIN will be created. To run DOT, simply execute file
MAIN. This assumes that “f77” is the command to invoke FORTRAN 77 compiler on
your system

PC (windows 95/98/NT/VISTA,Windows 7) with Intel FORTRAN:

f77 /exe:MAIN.EXE MAIN.FOR dot_pc5.lib

An executable file called MAIN.EXE will be created. To run DOT, simply execute the
file MAIN.EXE.

Sections 1.6 and 2.6, as well as Chapter 4 present example MAIN programs that the
user can try immediately after receiving DOT. Appendix A provides a “generic” MAIN
program which you may use as a “template” for your own applications.

2.6 A Simple Example

This is the optimization of the 3-bar truss shown below, which is the classical example
in structural synthesis.

The objective is to minimize the total volume of the material of the members. The
decision variables X1 and X2 correspond to the areas of member 1 (and 3) and
member 2, respectively. The area of member 3 is “linked” to be the same as member 1
for symmetry. The constraints are tensile stress constraints in members 1 and 2 under

10"

10" 10"

1 2

4

P2=20,000

3

A1

A2
A3

Y

X

P1=20,000

30 Version 6 DOT

DOT with Application Programs

load P1. The loads, P1 and P2, are applied separately. This problem, in standard form
for optimization, is given below. The original problem actually consists of 12
constraints, being the stress limit in each of the three members under each of the 2
loading conditions. The problem has been abbreviated here for clarity.

Minimize (2-1)

Subject to:

(2-2)

(2-3)

(2-4)

The program used to solve this problem and the results are presented below. Please note
that, depending on your computer precision, the results may differ slightly from those
given here. This is to be expected since optimization is a nonlinear iterative process.
However, your results should be close to those given here. The following pages provide
results for METHOD = 1, METHOD = 2 and METHOD = 3. Note that the final values
of the design variables are significantly different, although the value of the objective
function is very nearly the same for each case. This is because the design space is quite
“flat” so that many nearby designs are equally acceptable.

OBJ 2 2X1 X2+=

g1

2X1 2X2+

2X1 X1 2X2+
-- 1.0–= 0.0

g2
1.0

X1 2X2+
--------------------------- 1.0–= 0.0

0.01 Xi 100.0 i = 1,2

DOT with Application Programs

DOT Version 6 31

LISTING 2-1: PROGRAM ILLUSTRATING HOW TO USE DOT
WITH A SIMPLE CALLING PROGRAM

C
C SAMPLE PROGRAM. THREE BAR TRUSS.
C
 DOUBLE PRECISION X(2),XL(2),XU(2),G(2),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
 NDV=2
 NCON=2
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
 X(I)=1.0
 XL(I)=0.1
20 XU(I)=100.
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=3
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE SPRING EQUILIBRIUM PROBLEM.
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=2.0*SQRT(2.)*X(1)+X(2)
 G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+
 *SQRT(2.0)*X(2)))-1.
 G(2)=1./(2.*(X(1)+SQRT(2.)*X(2)))-1.
 RETURN

 END

32 Version 6 DOT

DOT with Application Programs

DOT OUTPUT - METHOD=1

 DDDDD OOOOO TTTTTTT
 D D O O T
 D D == O * O == T
 D D O O T
 DDDDD OOOOO T

 DESIGN OPTIMIZATION TOOLS

 (C) COPYRIGHT, 2010

 VANDERPLAATS R&D

 ALL RIGHTS RESERVED, WORLDWIDE

 VERSION 6.0

 CONTROL PARAMETERS

 OPTIMIZATION METHOD, METHOD = 1
 NUMBER OF DECISION VARIABLES, NDV = 2
 NUMBER OF CONSTRAINTS, NCON = 2
 PRINT CONTROL PARAMETER, IPRINT = 3
 GRADIENT PARAMETER, IGRAD = 0
 FORWARD DIFFERENCE GRADIENTS ARE CALCULATED BY DOT
 THE OBJECTIVE FUNCTION WILL BE MINIMIZED

 -- SCALAR PROGRAM PARAMETERS

 REAL PARAMETERS
 1) CT = -3.00000E-02 9) FDCH = 1.00000E-03
 2) CTMIN = 3.00000E-03 10) FDCHM = 1.00000E-04
 3) DABOBJ = 3.82843E-04 11) RMVLMZ = 5.00000E-01
 4) DELOBJ = 1.00000E-03 12) DABSTR = 3.82843E-04
 5) DOBJ1 = 1.00000E-01 13) DELSTR = 1.00000E-03
 6) DOBJ2 = 7.65685E-01 14) GSTOL = 2.50000E-01
 7) DX1 = 1.00000E-02 15) GSTOLM = 1.00000E-04
 8) DX2 = 2.00000E-01

DOT with Application Programs

DOT Version 6 33

 INTEGER PARAMETERS
 1) IGRAD = 0 6) NGMAX = 2 11) NONE = 0
 2) ISCAL = 2 7) IGMAX = 1 12) NONE = 0
 3) ITMAX = 250 8) JTMAX = 100 13) JWRITE = 0
 4) ITRMOP = 2 9) ITRMST = 2 14) NONE = 0
 5) IWRITE = 6 10) JPRINT = 0 15) NSTORE = 702

 STORAGE REQUIREMENTS
 ARRAY DIMENSION MINIMUM MAXIMUM USED
 WK 800 137 137 800
 IWK 200 101

 -- INITIAL VARIABLES AND BOUNDS

 LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
 1) 1.00000E-01 1.00000E-01

 DECISION VARIABLES (X-VECTOR)
 1) 1.00000E+00 1.00000E+00

 UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
 1) 1.00000E+02 1.00000E+02

 -- INITIAL FUNCTION VALUES

 OBJ = 3.8284

 CONSTRAINT VALUES (G-VECTOR)
 1) -2.92893E-01 -7.92893E-01

 GMAX = -2.9289E-01 JGMAX = 1

 -- BEGIN CONSTRAINED OPTIMIZATION: MODIFIED METHOD OF FEASIBLE DIRECTIONS

34 Version 6 DOT

DOT with Application Programs

 -- ITERATION NUMBER 1

 THERE ARE 0 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 THERE ARE 2 RETAINED CONSTRAINTS
 CONSTRAINT NUMBERS
 1 2

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 OBJECTIVE = 2.79490E+00

 DECISION VARIABLES (X-VECTOR)
 1) 6.75194E-01 8.85164E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -2.47075E-06 -7.40530E-01

 NAC = 0 NVC = 0 NACS = 0

 GMAX = -2.4708E-06 JGMAX = 1

 -- ITERATION NUMBER 2

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 THERE ARE 2 RETAINED CONSTRAINTS
 CONSTRAINT NUMBERS
 1 2

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 OBJECTIVE = 2.64114E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.91044E-01 4.03728E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -8.17489E-04 -6.32893E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = -8.1749E-04 JGMAX = 1

 -- ITERATION NUMBER 3

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 THERE ARE 2 RETAINED CONSTRAINTS
 CONSTRAINT NUMBERS
 1 2

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

DOT with Application Programs

DOT Version 6 35

 -- OPTIMIZATION IS COMPLETE

 NUMBER OF ITERATIONS = 3

 CONSTRAINT TOLERANCE, CT = -3.00000E-02

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
 1

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 TERMINATION CRITERIA

 MAXIMUM K-T RESIDUAL = 0.00000E+00 IS LESS THAN 1.00000E-04

 MAXIMUM POSSIBLE MOVE = 9.85798E-06 IS LESS THAN 1.00000E-05

 -- OPTIMIZATION RESULTS

 OBJECTIVE, F(X) = 2.64114E+00

 DECISION VARIABLES, X

 ID XL X XU
 1 1.00000E-01 7.91044E-01 1.00000E+02
 2 1.00000E-01 4.03728E-01 1.00000E+02

 CONSTRAINTS, G(X)

 1) -8.17489E-04 -6.32893E-01

 GMAX = -8.1749E-04 JGMAX = 1

 LAGRANGE MULTIPLIERS

 1) 2.64646E+00 0.00000E+00

 FUNCTION CALLS = 32

36 Version 6 DOT

DOT with Application Programs

DOT OUTPUT - METHOD=2

 DDDDD OOOOO TTTTTTT
 D D O O T
 D D == O * O == T
 D D O O T
 DDDDD OOOOO T

 DESIGN OPTIMIZATION TOOLS

 (C) COPYRIGHT, 2010

 VANDERPLAATS R&D

 ALL RIGHTS RESERVED, WORLDWIDE

 VERSION 6.0

 CONTROL PARAMETERS

 OPTIMIZATION METHOD, METHOD = 2
 NUMBER OF DECISION VARIABLES, NDV = 2
 NUMBER OF CONSTRAINTS, NCON = 2
 PRINT CONTROL PARAMETER, IPRINT = 3
 GRADIENT PARAMETER, IGRAD = 0
 FORWARD DIFFERENCE GRADIENTS ARE CALCULATED BY DOT
 THE OBJECTIVE FUNCTION WILL BE MINIMIZED

 -- SCALAR PROGRAM PARAMETERS

 REAL PARAMETERS
 1) CT = -3.00000E-02 9) FDCH = 1.00000E-03
 2) CTMIN = 3.00000E-03 10) FDCHM = 1.00000E-04
 3) DABOBJ = 3.82843E-04 11) RMVLMZ = 5.00000E-01
 4) DELOBJ = 1.00000E-03 12) DABSTR = 3.82843E-04
 5) DOBJ1 = 1.00000E-01 13) DELSTR = 1.00000E-03
 6) DOBJ2 = 7.65685E-01 14) GSTOL = 1.00000E-02
 7) DX1 = 1.00000E-02 15) GSTOLM = 1.00000E-04
 8) DX2 = 2.00000E-01

DOT with Application Programs

DOT Version 6 37

 INTEGER PARAMETERS
 1) IGRAD = 0 6) NGMAX = 2 11) NONE = 0
 2) ISCAL = -1 7) IGMAX = 1 12) NONE = 0
 3) ITMAX = 250 8) JTMAX = 100 13) JWRITE = 0
 4) ITRMOP = 2 9) ITRMST = 2 14) NONE = 0
 5) IWRITE = 6 10) JPRINT = 0 15) NSTORE = 670

 STORAGE REQUIREMENTS
 ARRAY DIMENSION MINIMUM MAXIMUM USED
 WK 800 169 169 800
 IWK 200 129

 -- INITIAL VARIABLES AND BOUNDS

 LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
 1) 1.00000E-01 1.00000E-01

 DECISION VARIABLES (X-VECTOR)
 1) 1.00000E+00 1.00000E+00

 UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
 1) 1.00000E+02 1.00000E+02

 -- INITIAL FUNCTION VALUES

 OBJ = 3.8284

 CONSTRAINT VALUES (G-VECTOR)
 1) -2.92893E-01 -7.92893E-01

 GMAX = -2.9289E-01 JGMAX = 1

38 Version 6 DOT

DOT with Application Programs

 -- BEGIN CONSTRAINED OPTIMIZATION: SEQUENTIAL LINEAR PROGRAMMING METHOD

 -- BEGIN SLP CYCLE 1 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.20591E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) 6.93889E-18 -6.98237E-01

 GMAX = 6.9389E-18 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.20591E+00

 DECISION VARIABLES (X-VECTOR)
 1) 6.03130E-01 5.00000E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.10619E-01 -6.18390E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 2.1062E-01 JGMAX = 1

 -- BEGIN SLP CYCLE 2 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.45123E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.38778E-16 -5.27859E-01

 GMAX = 1.3878E-16 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.45123E+00

 DECISION VARIABLES (X-VECTOR)
 1) 8.22445E-01 1.25000E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.08333E-01 -4.99610E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 1.0833E-01 JGMAX = 1

DOT with Application Programs

DOT Version 6 39

 -- BEGIN SLP CYCLE 3 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.66003E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) -9.71445E-17 -5.69747E-01

 GMAX = -9.7145E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.66003E+00

 DECISION VARIABLES (X-VECTOR)
 1) 8.74170E-01 1.87500E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.08239E-02 -5.61147E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 1.0824E-02 JGMAX = 1

 -- BEGIN SLP CYCLE 4 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.57625E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) 8.32667E-17 -6.45496E-01

 GMAX = 8.3267E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.57625E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.61687E-01 4.21875E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.45430E-02 -6.31895E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 2.4543E-02 JGMAX = 1

40 Version 6 DOT

DOT with Application Programs

 -- BEGIN SLP CYCLE 5 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.62859E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.63678E-16 -5.76299E-01

 GMAX = 2.6368E-16 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.62859E+00

 DECISION VARIABLES (X-VECTOR)
 1) 8.54768E-01 2.10938E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.85759E-02 -5.66378E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 1.8576E-02 JGMAX = 1

 -- BEGIN SLP CYCLE 6 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.63394E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) 4.85723E-17 -6.09153E-01

 GMAX = 4.8572E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.63394E+00

 DECISION VARIABLES (X-VECTOR)
 1) 8.19371E-01 3.16406E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 4.90750E-03 -6.05316E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 4.9075E-03 JGMAX = 1

DOT with Application Programs

DOT Version 6 41

 -- BEGIN SLP CYCLE 7 RELATIVE MOVE LIMIT = 0.50000

 APPROXIMATE FUNCTIONS

 OBJ = 2.61855E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) -2.77556E-17 -6.55887E-01

 GMAX = -2.7756E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.61855E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.57997E-01 4.74609E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 9.48069E-03 -6.50153E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 9.4807E-03 JGMAX = 1

 CONSTRAINT VIOLATION IS INCREASED. MOVE HALF WAY

 CALCULATED FUNCTIONS

 OBJ = 2.62624E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.88684E-01 3.95508E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 4.88278E-03 -6.29085E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 4.8828E-03 JGMAX = 1

42 Version 6 DOT

DOT with Application Programs

 -- BEGIN SLP CYCLE 8 RELATIVE MOVE LIMIT = 0.25000

 APPROXIMATE FUNCTIONS

 OBJ = 2.63601E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) 9.02056E-17 -6.73304E-01

 GMAX = 9.0206E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.63601E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.39699E-01 5.43823E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 7.34427E-03 -6.68607E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 7.3443E-03 JGMAX = 1

 CONSTRAINT VIOLATION IS INCREASED. MOVE HALF WAY

 CALCULATED FUNCTIONS

 OBJ = 2.63113E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.64191E-01 4.69666E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 4.32869E-03 -6.49958E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 4.3287E-03 JGMAX = 1

DOT with Application Programs

DOT Version 6 43

 -- BEGIN SLP CYCLE 9 RELATIVE MOVE LIMIT = 0.12500

 APPROXIMATE FUNCTIONS

 OBJ = 2.63582E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) -8.67362E-17 -6.35112E-01

 GMAX = -8.6736E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.63582E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.86609E-01 4.10957E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.19249E-03 -6.34447E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = 1.1925E-03 JGMAX = 1

 -- BEGIN SLP CYCLE 10 RELATIVE MOVE LIMIT = 0.12500

 APPROXIMATE FUNCTIONS

 OBJ = 2.63889E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) -1.71738E-16 -6.31098E-01

 GMAX = -1.7174E-16 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.63889E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.92235E-01 3.98115E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 5.99301E-05 -6.31066E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = 5.9930E-05 JGMAX = 1

44 Version 6 DOT

DOT with Application Programs

 -- BEGIN SLP CYCLE 11 RELATIVE MOVE LIMIT = 0.12500

 APPROXIMATE FUNCTIONS

 OBJ = 2.63810E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) -7.97973E-17 -6.45353E-01

 GMAX = -7.9797E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.63810E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.74359E-01 4.47879E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 8.70890E-04 -6.44825E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = 8.7089E-04 JGMAX = 1

 -- BEGIN SLP CYCLE 12 RELATIVE MOVE LIMIT = 0.06250

 APPROXIMATE FUNCTIONS

 OBJ = 2.63839E+00

 CONSTRAINT VALUES (G-VECTOR)
 1) -5.89806E-17 -6.37364E-01

 GMAX = -5.8981E-17 JGMAX = 1

 CALCULATED FUNCTIONS

 OBJ = 2.63839E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.84361E-01 4.19887E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.61365E-04 -6.37200E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = 2.6136E-04 JGMAX = 1

DOT with Application Programs

DOT Version 6 45

 -- OPTIMIZATION IS COMPLETE

 NUMBER OF CONSTRAINED MINIMIZATIONS = 12

 CONSTRAINT TOLERANCE, CT =-3.00000E-02

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
 1

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 TERMINATION CRITERIA

 RELATIVE CONVERGENCE CRITERION WAS MET FOR 2 CONSECUTIVE CYCLES

 -- OPTIMIZATION RESULTS

 OBJECTIVE, F(X) = 2.63839E+00

 DECISION VARIABLES, X

 ID XL X XU
 1 1.00000E-01 7.84361E-01 1.00000E+02
 2 1.00000E-01 4.19887E-01 1.00000E+02

 CONSTRAINTS, G(X)

 1) 2.61365E-04 -6.37200E-01

 GMAX = 2.6136E-04 JGMAX = 1

 LAGRANGE MULTIPLIERS

 1) 2.62421E+00 0.00000E+00

 FUNCTION CALLS = 39

46 Version 6 DOT

DOT with Application Programs

DOT OUTPUT - METHOD=3

 DDDDD OOOOO TTTTTTT
 D D O O T
 D D == O * O == T
 D D O O T
 DDDDD OOOOO T

 DESIGN OPTIMIZATION TOOLS

 (C) COPYRIGHT, 2010

 VANDERPLAATS R&D

 ALL RIGHTS RESERVED, WORLDWIDE

 VERSION 6.0

 CONTROL PARAMETERS

 OPTIMIZATION METHOD, METHOD = 3
 NUMBER OF DECISION VARIABLES, NDV = 2
 NUMBER OF CONSTRAINTS, NCON = 2
 PRINT CONTROL PARAMETER, IPRINT = 3
 GRADIENT PARAMETER, IGRAD = 0
 FORWARD DIFFERENCE GRADIENTS ARE CALCULATED BY DOT
 THE OBJECTIVE FUNCTION WILL BE MINIMIZED

 -- SCALAR PROGRAM PARAMETERS

 REAL PARAMETERS
 1) CT = -3.00000E-02 9) FDCH = 1.00000E-03
 2) CTMIN = 3.00000E-03 10) FDCHM = 1.00000E-04
 3) DABOBJ = 3.82843E-04 11) RMVLMZ = 5.00000E-01
 4) DELOBJ = 1.00000E-03 12) DABSTR = 3.82843E-04
 5) DOBJ1 = 1.00000E-01 13) DELSTR = 1.00000E-03
 6) DOBJ2 = 7.65685E-01 14) GSTOL = 1.00000E-02
 7) DX1 = 1.00000E-02 15) GSTOLM = 1.00000E-04
 8) DX2 = 2.00000E-01

DOT with Application Programs

DOT Version 6 47

 INTEGER PARAMETERS
 1) IGRAD = 0 6) NGMAX = 2 11) NONE = 0
 2) ISCAL = 1000 7) IGMAX = 1 12) NONE = 0
 3) ITMAX = 250 8) JTMAX = 100 13) JWRITE = 0
 4) ITRMOP = 2 9) ITRMST = 2 14) NONE = 0
 5) IWRITE = 6 10) JPRINT = 0 15) NSTORE = 687

 STORAGE REQUIREMENTS
 ARRAY DIMENSION MINIMUM MAXIMUM USED
 WK 800 152 152 800
 IWK 200 103

 -- INITIAL VARIABLES AND BOUNDS

 LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
 1) 1.00000E-01 1.00000E-01

 DECISION VARIABLES (X-VECTOR)
 1) 1.00000E+00 1.00000E+00

 UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
 1) 1.00000E+02 1.00000E+02

 -- INITIAL FUNCTION VALUES

 OBJ = 3.8284

 CONSTRAINT VALUES (G-VECTOR)
 1) -2.92893E-01 -7.92893E-01

 GMAX = -2.9289E-01 JGMAX = 1

 -- BEGIN CONSTRAINED OPTIMIZATION: SEQUENTIAL QUADRATIC PROGRAMMING METHOD

 -- BEGIN SQP CYCLE 1

 NAC = 0 NVC = 0 NGT = 2

 OBJ = 2.20808E+00

 DECISION VARIABLES (X-VECTOR)
 1) 6.02328E-01 5.04442E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.10133E-01 -6.19979E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 2.1013E-01 JGMAX = 1

48 Version 6 DOT

DOT with Application Programs

-- BEGIN SQP CYCLE 2

 NAC = 0 NVC = 1 NGT = 2

 OBJ = 2.45630E+00

 DECISION VARIABLES (X-VECTOR)
 1) 8.21018E-01 1.34107E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.03719E-01 -5.05281E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 1.0372E-01 JGMAX = 1

 -- BEGIN SQP CYCLE 3

 NAC = 0 NVC = 1 NGT = 2

 OBJ = 2.55979E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.73237E-01 3.72742E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 3.11368E-02 -6.15495E-01

 NAC = 0 NVC = 1 NACS = 0

 GMAX = 3.1137E-02 JGMAX = 1

 -- BEGIN SQP CYCLE 4

 NAC = 0 NVC = 1 NGT = 2

 OBJ = 2.63978E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.94259E-01 3.93277E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -2.31917E-04 -6.29749E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = -2.3192E-04 JGMAX = 1

DOT with Application Programs

DOT Version 6 49

 -- BEGIN SQP CYCLE 5

 NAC = 1 NVC = 0 NGT = 2

 OBJ = 2.63932E+00

 DECISION VARIABLES (X-VECTOR)
 1) 7.88444E-01 4.09267E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -1.38342E-04 -6.34299E-01

 NAC = 1 NVC = 0 NACS = 0

 GMAX = -1.3834E-04 JGMAX = 1

 -- BEGIN SQP CYCLE 6

 NAC = 1 NVC = 0 NGT = 2

 Q.P. SUB-PROBLEM GAVE NULL SEARCH DIRECTION. CONVERGENCE ASSUMED.

 -- OPTIMIZATION IS COMPLETE

 NUMBER OF CONSTRAINED MINIMIZATIONS = 6

 CONSTRAINT TOLERANCE, CT =-3.00000E-02

 THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
 1

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 TERMINATION CRITERIA

 MAXIMUM S-VECTOR COMPONENT = 0.00000E+00 IS LESS THAN 1.00000E-04

50 Version 6 DOT

DOT with Application Programs

 -- OPTIMIZATION RESULTS

 OBJECTIVE, F(X) = 2.63932E+00

 DECISION VARIABLES, X

 ID XL X XU
 1 1.00000E-01 7.88444E-01 1.00000E+02
 2 1.00000E-01 4.09267E-01 1.00000E+02

 CONSTRAINTS, G(X)

 1) -1.38342E-04 -6.34299E-01

 GMAX = -1.3834E-04 JGMAX = 1

 LAGRANGE MULTIPLIERS

 1) 2.64171E+00 0.00000E+00

 FUNCTION CALLS = 25

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

CHAPTER 3
Advanced Use of DOT

o Introduction

o Over-Riding DOT Default Parameters

o Directly Supplying Gradients

o Interrupting and Restarting DOT

o Output to a Postprocessing Data File

52 Version 6 DOT

Advanced Use of DOT

3.1 Introduction

This chapter discusses advanced uses of DOT. These include over-riding the internal
default parameters, directly supplying the function gradients, interrupting and restarting
the optimization, and output to a separate file. These features can be invoked by simple
modifications to the user-supplied main program.

3.2 Over-Riding DOT Default Parameters

DOT contains a variety of internal parameters that effect the efficiency and reliability
of the optimization process. Each of these is assigned a “default” value to be used unless
the user explicitly changes it. Occasionally, the user may wish to over-ride some of the
internal parameters of DOT. The default parameters include constraint tolerance, and
the maximum finite difference step for gradient calculations, among others. The default
parameters can be changed by simply setting the proper element of the RPRM or IPRM
array to the desired value before calling DOT the first time. A sample program is
included in this section. The figure below is a block diagram of the program to over-
ride DOT default parameters. Tables 3-1 through 3-4 identify and define the internal
parameters. Additional explanation of the parameters is given in Appendix D.
Listing 3-1 shows an example FORTRAN file where the constraint tolerances CT and
CTMIN, as well as the scaling parameter, ISCAL, are modified.

Advanced Use of DOT

DOT Version 6 53

Dimension Required Arrays
Define DOT Parameters and Initial Design

Define User Specified Values of Parameters
in the RPRM and IPRM Arrays

CALL DOT

Evaluate Objective and
Constraint Functions

INFO=0?

Print Output

Stop

NO

YES

54 Version 6 DOT

Advanced Use of DOT

Table 3-1: Scalar Parameters Stored in the RPRM Array

NOTE: F0 = The value of the objective function at the start of optimization (for the
initial values of X).

LOCATION NAME DEFAULT VALUE

RPRM(1) CT -0.03

RPRM(2) CTMIN 0.003

RPRM(3) DABOBJ MAX[0.0001*ABS(F0),1.0E-20]

RPRM(4) DELOBJ 0.001

RPRM(5) DOBJ1 0.1

RPRM(6) DOBJ2 0.2*ABS(F0)

RPRM(7) DX1 0.01

RPRM(8) DX2 MAX{0.2*ABS[X(I)]}, I=1,NDV

RPRM(9) FDCH 0.001

RPRM(10) FDCHM 0.0001

RPRM(11) RMVLMZ 0.5

RPRM(12) DABSTR MAX[0.0001*ABS(F0),1.0E-20]

RPRM(13) DELSTR 0.001

RPRM(14) GSTOL 0.25 For METHOD=1, Not used for METHOD=2, 0.01 for the
sub-optimization problem when METHOD=3.

RPRM(15) GSTOLM 0.0001

RPRM(16) GSTOLS 0.25

RPRM(17)-

RPRM(20)

RESERVED FOR INTERNAL USE

Advanced Use of DOT

DOT Version 6 55

Table 3-2: Definitions of Parameters Contained in the RPRM Array

LOCATION PARAMETER DEFINITION

1 CT A constraint is active if its numerical value is more positive
than CT. CT is a small negative number.

2 CTMIN A constraint is violated if its numerical value is more positive
than CTMIN.

3 DABOBJ Maximum absolute change in the objective for ITRMOP
consecutive iterations to indicate convergence in
optimization.

4 DELOBJ Maximum relative change in the objective for ITRMOP
consecutive iterations to indicate convergence in
optimization.

5 DOBJ1 Relative change in the objective function attempted on the
first optimization iteration. Used to estimate initial move in
the one-dimensional search. Updated as the optimization
progresses.

6 DOBJ2 Absolute change in the objective function attempted on the
first optimization iteration. Used to estimate initial move in
the one-dimensional search. Updated as the optimization
progresses.

7 DX1 Maximum relative change in a design variable attempted on
the first optimization iteration. Used to estimate the initial
move in the one-dimensional search. Updated as the
optimization progresses.

8 DX2 Maximum absolute change in a design variable attempted
on the first optimization iteration. Used to estimate the initial
move in the one-dimensional search. Updated as the
optimization progresses.

9 FDCH Relative finite difference step when calculating gradients.

10 FDCHM Minimum absolute value of the finite difference step when
calculating gradients. This prevents too small a step when
X(I) is near zero.

11 RMVLMZ Maximum relative change in design variables during the first
approximate subproblem in the Sequential Linear
Programming Method. That is, each design variable is

initially allowed to change by +50%. This move limit is
reduced as the optimization progresses.

12 DABSTR Maximum absolute change in the objective for ITRMST
consecutive iterations of the Sequential Linear Programming
and Sequential Quadratic Programming methods to indicate
convergence to the optimum.

13 DELSTR Maximum relative change in the objective for ITRMST
consecutive iterations of the Sequential Linear Programming
method to indicate convergence to the optimum.

56 Version 6 DOT

Advanced Use of DOT

Table 3-3: Parameters Stored in the IPRM Array

14 GSTOL Golden Section tolerance as a fraction of the initial bounds in
the one-dimensional search. The bounds will be reduced to
this fraction. If GSTOL > 1.0, DOT will not use the Golden
Section Method.

15 GSTOLM The minimum Golden Section tolerance to be used.

16 GSTOLS The value of GSTOL used in the one-dimensional search
when METHOD=3.The bounds will be reduced to this
fraction. If GSTOLS > 1.0, DOT will not use the Golden
Section Method.

LOCATION NAME DEFAULT VALUE

IPRM(1) IGRAD 0

IPRM(2) ISCAL NDV

IPRM(3) ITMAX 250

IPRM(4) ITRMOP 2

IPRM(5) IWRITE 6

IPRM(6) NGMAX NCON, but not more than 2*NDV

IPRM(7) IGMAX 0 if IGRAD > 0. 1 if IGRAD < 0. 1 for sub-optimization
problem when METHOD = 3.

IPRM(8) JTMAX 100

IPRM(9) ITRMST 2

IPRM(10) JPRINT 0

IPRM(11) Not used.

IPRM(12) Not used.

IPRM(13) JWRITE 0

IPRM(14)

IPRM(15) NSTORE Internally defined.

IPRM(16)-

IPRM(17)

Internally used by DOT.

IPRM(18) IERROR INTERNALLY DEFINED FATAL ERROR FLAG

IPRM(19) NEWITR INTERNALLY DEFINED ITERATION COUNTER

IPRM(20) NGT INTERNALLY DEFINED NUMBER OF NEEDED
CONSTRAINT GRADIENTS

Advanced Use of DOT

DOT Version 6 57

Table 3-4: Definitions of Parameters Contained in the IPRM Array

LOCATION PARAMETER DEFINITION

1 IGRAD Specifies whether the gradients are calculated by DOT
(IGRAD=-1 or 0) or by the user (IGRAD=1). If IGRAD=0,
gradients are calculated by first forward finite difference. If
IGRAD=-1, gradients are calculated by central finite
difference. Note: If IGRAD=-1, the gradients are more
accurate, but the number of function evaluations is almost
doubled.

2 ISCAL Design variables are rescaled every ISCAL iterations. Set
ISCAL = -1 to turn off scaling. ISCAL is not used if
METHOD=2.

3 ITMAX Maximum number of iterations allowed at the optimization
level.

4 ITRMOP The number of consecutive iterations for which the absolute
or relative convergence criteria must be met to indicate
convergence at the optimizer level.

5 IWRITE File number for printed output.

6 NGMAX Number of retained constraints used for METHOD=2 or 3.
Also, the maximum number of constraints retained for
gradient calculations when METHOD=1.

7 IGMAX If IGMAX=0, only gradients of active and violated constraints
are calculated for METHOD = 1. If IGMAX = 1, up to
NGMAX gradients are calculated, including active, violated,
and near active constraints. IGMAX = 2 will use IGMAX = 0
in sub-optimization problem when METHOD = 3.

8 JTMAX Maximum number of cycles allowed for the Sequential
Linear Programming and Sequential Quadratic
Programming methods. This is the number of linearized
subproblems solved.

9 ITRMST The number of consecutive cycles for which the absolute or
relative convergence criteria must be met to indicate
convergence in the Sequential Linear Programming and
Sequential Quadratic Programming methods.

10 JPRINT Sequential Linear Programming and Sequential Quadratic
Programming subproblem print. If JPRINT>0, IPRINT is
turned on during approximate subproblem. This is for
debugging only. The values assigned JPRINT have the
same meaning as IPRINT.

11 Not used.

12 Not used.

13 JWRITE File number to write iteration history information to. This is
useful for using postprocessing programs to plot the iteration
process. This is only used if JWRITE>0.

58 Version 6 DOT

Advanced Use of DOT

14 Not used.

15 NSTORE Storage allocated for constraint gradients and solution of the
direction finding sub-problem. NSTORE is internally
calculated by DOT.

16-17 Used internally by DOT.

18 IERROR Fatal error parameter returned by DOT. Normally = 0.
IERROR = 1 indicates WK or IWK dimension is too small.
IERROR = 2 indicates some XL(I) is greater than XU(I).
IERROR = 3 or 4 indicates that storage for constraint
gradients is too small.
IERROR = 5 indicates that a violated constraint has a zero
gradient. Therefore, no feasible design can be found.

19 NEWITR Normally = -1.
Set = n at the start of a new iteration, where n is the number
of the iteration just completed. At the beginning of
optimization, n=0 will be returned to indicate that the initial
analysis is being done.
If METHOD=0,1, for constrained problems, or if
METHOD=0,1,2 for unconstrained problems, this is after
each one-dimensional search.
If METHOD=2,3, for constrained problems, this is after each
approximate optimization.
If JWRITE>0, the optimization information will have just
been written to that file. If you wish to stop after each
iteration (or after a particular iteration) and then re-start later,
NEWITR is a flag to do this. NEWITR is defined internally by
DOT.

20 NGT The number of constraint gradients needed. If the user
supplies gradients to DOT, this will be needed. The
constraint numbers for which gradients are needed are
contained in position 1 through NGT of the IWK array. NGT
is defined internally by DOT.

Advanced Use of DOT

DOT Version 6 59

LISTING 3-1: OVER-RIDING DEFAULT PARAMETERS: THE 3-BAR TRUSS.

C
C SAMPLE PROGRAM. THREE BAR TRUSS.
C
 DOUBLE PRECISION X(2),XL(2),XU(2),G(2),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C * * OVER-RIDE THE DEFAULT FOR CT AND CTMIN.
C * * CT VALUE.
 RPRM(1)=-0.1
C * * CTMIN VALUE.
 RPRM(2)=0.002
C * * TURN OFF SCALING (ISCAL = -1).
 IPRM(2)=-1
C DEFINE METHOD,NDV,NCON.
 METHOD=3
 NDV=2
 NCON=2
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
 X(I)=1.0
 XL(I)=0.1
20 XU(I)=100.
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=3
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE SPRING EQUILIBRIUM PROBLEM.
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=2.0*SQRT(2.)*X(1)+X(2)
 G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+
 *SQRT(2.0)*X(2)))-1.
 G(2)=1./(2.*(X(1)+SQRT(2.)*X(2)))-1.
 RETURN

 END

60 Version 6 DOT

Advanced Use of DOT

3.3 Directly Supplying Gradients

The default option of DOT is to use first forward finite difference methods to calculate
the gradients of the objective function and constraints. This approach can become time
consuming for large problems. The user may wish to directly evaluate the gradients in
the FORTRAN or C/C++ program and send them to DOT. This is done by setting
IPRM(1) = 1 before calling DOT.

The gradients of the objective function are stored in the first NDV locations of the WK
array. DOT requires gradients of the active/violated and near active constraints only.
The active/violated and near active constraints are identified in the first NGT elements
of the IWK array, where NGT is given in IPRM(20) and is the number of
active/violated and near active constraints. The gradients of these constraints are stored
in the next NDV*NGT elements of the WK array (following the gradient of the
objective function).

The general outline of the code to provide gradients is shown in following figures. The
second figure is a block diagram of the standard calling program for DOT with user-
supplied gradients. The logic described there is used in the block where gradients are
calculated in the first figure. Listing 3-2 gives an example FORTRAN program for
supplying gradients while optimizing the three-bar truss problem of Section 2.6.

Advanced Use of DOT

DOT Version 6 61

OBJECTIVE GRADIENT

DO FOR I=1,NDV

WK(I)=OBJ/X(I)

NGT>0

CONSTRAINT GRADIENTS

DO FOR K=1,NGT

STARTING LOCATION - 1

NDX=K*NDV

CONSTRAINT NUMBER

J=IWK(K)

CONSTRAINT GRADIENT

DO FOR I=1,NDV

WK(NDX+I)=G(J)/X(J)

NO

YES

62 Version 6 DOT

Advanced Use of DOT

Dimension Required Arrays
Define DOT Parameters and Initial Design

CALL DOT

Print Output

STOP

Evaluate Objective and
Constraint Functions

Evaluate Gradients of
Objective and Specified

Constraints

INFO=0?

INFO=2?

YES

YESNO

NO

Advanced Use of DOT

DOT Version 6 63

LISTING 3-2: THREE-BAR TRUSS. USER-SUPPLIED GRADIENTS.

C USER-SUPPLIED GRADIENTS: THE THREE-BAR TRUSS.
C REQUIRED ARRAYS.
C
 DOUBLE PRECISION X(2),XL(2),XU(2),G(2),WK(1000),RPRM(20),AA(2,2),
 *BB(2,2),OBJ,D1
 INTEGER IWK(500),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO,NGT,K,J,N1
C
C DIMENSIONS OF WK AND IWK
 NRWK=1000
 NRIWK=500
C ZERO RPRM AND IPRM
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C SPECIFY THAT GRADIENTS ARE TO BE PROVIDED
 IPRM(1)=1
C DEFINE METHOD, NDV, NCON, IPRINT, MINMAX
 METHOD=3
 NDV=2
 NCON=2
 IPRINT=1
 MINMAX=-1
C DEFINE X,XL,XU
 X(1)=1.0
 X(2)=1.0
 XL(1)=0.1
 XL(2)=0.1
 XU(1)=1.0E+20
 XU(2)=1.0E+20
C READY TO OPTIMIZE
 INFO=0
20 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,OBJ,
 *MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
C PROVIDE GRADIENTS IF DOT IS REQUESTING THEM
 IF(INFO.EQ.2)GO TO 30
C EXIT IF CONVERGENCE IS OBTAINED
 IF(INFO.EQ.0)GO TO 70
 OBJ=2.*SQRT(2.)*X(1)+X(2)
 G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+
 *SQRT(2.)*X(2)))-1.
 G(2)=1./(X(1)+SQRT(2.)*X(2))-1.
 GO TO 20
C --

64 Version 6 DOT

Advanced Use of DOT

30 CONTINUE
C GRADIENT OF OBJECTIVE
 WK(1)=2.*SQRT(2.)
 WK(2)=1.0
 NGT=IPRM(20)
 IF(NGT.EQ.0)GO TO 20
C CONSTRAINT GRADIENTS. USE ARRAY BB FOR TEMPORY
C STORAGE
 D1=(X(1)+SQRT(2.)*X(2))**2
C GRADIENT OF G(1)
 BB(1,1)=-(2.*X(1)*X(1)+2.*SQRT(2.)*X(1)*X(2)+
 *SQRT(2.)*X(2)*X(2))/(2.*X(1)*X(1)*D1)
 BB(2,1)=-1./(SQRT(2.)*D1)
C GRADIENT OF G(2)
 BB(1,2)=-0.5/D1
 BB(2,2)=SQRT(2.)*BB(1,2)
C STORE APPROPRIATE GRADIENTS IN ARRAY AA
 DO 40 K=1,NGT
 J=IWK(K)
 AA(1,K)=BB(1,J)
40 AA(2,K)=BB(2,J)
 N1=NDV
 DO 60 K=1,NGT
 DO 50 I=1,NDV
50 WK(I+N1)=AA(I,K)
 N1=N1+NDV
60 CONTINUE
 GO TO 20
C --
C INFO = 0. OPTIMIZATION IS COMPLETE. TERMINATE.
C PRINT RESULTS
70 WRITE(6,80)OBJ,X(1),X(2),G(1),G(2)
 STOP
80 FORMAT(//5X,'OPTIMUM',5X,'OBJ =',E12.5//5X,'X(1) =',
 1E12.5,5X,'X(2) =',E12.5/5X,'G(1) =',E12.5,5X,'G(2) =',
 2E12.5)

 END

Advanced Use of DOT

DOT Version 6 65

3.4 Interrupting and Restarting DOT

It is a simple matter to stop the optimization when you wish and then restart from that
point at a later time. All that is required is that, on return from DOT, you write the entire
contents of the parameter list to a file and then exit. Upon restarting, you simply read
this information again and continue from the point where you exited. All internal
parameters of DOT will have the values that they had at the time you exited. This
provides you with the flexibility to review the optimization progress before continuing,
and is particularly useful if computer resources are limited or if you just want to insure
that the optimization is performing as expected.

The basic program flow is shown in the figure below. It is assumed here that you have
defined parameters called IFLAG and JFLAG to indicate what you wish to do. The
values of IFLAG and JFLAG are assumed to have the following meanings;

IFLAG = 1 - This is a restart. Read saved parameters and continue.

JFLAG = 1 - Save information and exit.

It is perhaps more common to interrupt the optimization process at the end of an
iteration. This is easily accomplished by checking the value of NEWITR which is
contained in IPRM(19). If NEWITR=n, iteration n+1 has begun. If you interrupt at this
point, you can review the progress of the optimization before proceeding. If
JWRITE>0, (JWRITE is stored in location 13 of IPRM), the current design will have
been written to file JWRITE just before this return to the calling program. The
modification to interrupt after each iteration is simply to check if JFLAG=1 and
NEWITR=n, where n is the iteration number after you wish to exit. If both are true,
write the information to a file and exit. Note that NEWITR will be set to 0 at the
beginning of the first iteration, after the analysis has been performed for the initial
design. Therefore, when NEWITR=0, you have only evaluated the functions for the
initial design, but have not changed the design.

66 Version 6 DOT

Advanced Use of DOT

PRELIMINARY
INFORMATION

READ CONTENTS OF
DOT PARAMETER LIST

CALL DOT

WRITE CONTENTS OF
DOT PARAMETER LIST

EXIT

CONTINUE

IFLAG=1?

JFLAG=1
NO

YES

NO

YES

Advanced Use of DOT

DOT Version 6 67

3.5 Output to a Postprocessing Data File

By opening a file and setting JWRITE [IPRM(13)] to the value of that file number, the
user can output useful design iteration history information. This can be used to make
decisions based on the progress of the optimization, as well as for plotting the iteration
history during or after the optimization process is complete.

If JWRITE is greater than zero, the following information is written to this file during
the optimization process. This information is written as an ASCII file using the
FORTRAN FORMATS shown;

Note that the X-Vector and G-Vector are written in groups of 5 entries.

If METHOD = 0 or 1, or if METHOD = 2 and NCON = 0, this information is written
after each one-dimensional search. If NCON > 0 and METHOD = 2 or 3, this
information is written after each approximation to the problem is solved.

In addition to the information written after each iteration, the initial optimization
information (ITER = 0) is also output.

It is the user's responsibility to position the file according to his/her needs. The usual
application here is to open the file before optimization begins and then access it after
the optimization process ends. This is shown in the figure below.

During the iteration loop of optimization, file JWRITE may be accessed. However, it
is important to keep track of the file position so that all desired information is saved.

INFORMATION FORMAT

ITER, NDV, NCON 1X,3I10

OBJ 1X,E15.8

X-VECTOR 1X,5E15.8

G-VECTOR (if NCON > 0) 1X,5E15.8

68 Version 6 DOT

Advanced Use of DOT

Initialize
Optimization
Parameters

Open File JWRITE

Perform Optimization

Open File JWRITE
Print Information or

Display Information Graphically

EXIT

Start New Application

Close File JWRITE

Iterate

CHAPTER 4
Examples

o Introduction

o Box Design

o Three-Bar Truss

o Cantilevered Beam

o Equilibrium of a Spring System

o Construction Management

o Piston Design

o Portfolio Selection

o Equality Constraints

70 Version 6 DOT

Examples

4.1 Introduction

This section presents examples of optimization problems taken from a variety of
disciplines. There is a FORTRAN calling program included at the end of each example.
You can begin using DOT immediately by solving these example problems. Refer to
Section 2.5 for instructions on compiling the programs and linking them with DOT. The
examples are as follows.

• Box Design (Material Minimization)

• Three-Bar Truss (Volume Minimization)

• Cantilevered Beam (Volume Minimization)

• Spring System Equilibrium (Nonlinear Structural Analysis Problem)

• Construction Management (Cost Minimization)

• Piston Oil Minimization (Volume Minimization)

• Portfolio Selection (Yield Maximization)

• Equality Constraint Example

4.2 Box Design

This is the very simple box design problem that described in Chapter 1. The goal is to
determine dimensions H, W, and D to minimize the carton surface area required to
enclose a volume of at least 2 cubic feet. The box is drawn as follows

D

W

H

Examples

DOT Version 6 71

The problem is presented in standard form as

Minimize Surface Area, S, where

S = 2.0*(W*H + D*H + 2.0*W*D) (4-1)

Subject to;

2.0 - H*D*W < 0.0 (4-2)

H, W, D > 0.0 (4-3)

The theoretical optimum design for this problem is

S = 12.00 ft2, V = 2.00 ft3, H = 2.00 ft, W = 1.00 ft, D = 1.00 ft

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

H 1.0 2.017 1.985 2.007

W 1.0 0.995 1.004 0.999

D 1.0 0.995 1.003 0.999

OBJECTIVE 8.0 11.993 11.999 12.016

MAX G 1.0 9.1e-4 1.2E-4 -2.1E-3

FUNCTIONS 63 63 39

72 Version 6 DOT

Examples

LISTING 4-1: BOX DESIGN FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. BOX DESIGN.
C
 DOUBLE PRECISION X(5),XL(5),XU(5),G(5),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),I,METHOD,NDV,NCON,IPRINT,MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
C THREE DESIGN VARIABLES.
 NDV=3
C ONE CONSTRAINT
 NCON=1
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
C INITIAL VALUES.
 X(I)=1.0
C LOWER BOUNDS.
 XL(I)=0.01
C UPPER BOUNDS
20 XU(I)=100.
C DEFINE IPRINT, MINMAX, INFO.
C PRINT CONTROL.
 IPRINT=1
C MINIMIZE
 MINMAX=-1
C INITIALIZE INFO TO ZERO.
 INFO=0
C OPTIMIZE.
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
C FINISHED?
 IF(INFO.EQ.0) STOP
C EVALUATE OBJECTIVE AND CONSTRAINT.
 CALL EVAL(OBJ,X,G)
C GO CONTINUE WITH OPTIMIZATION.
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE BOX DESIGN PROBLEM.
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=2.0*X(2)*X(1)+2.0*X(3)*X(1)+4.0*X(2)*X(3)
 G(1)=1.0-0.5*X(1)*X(2)*X(3)
 RETURN

 END

Examples

DOT Version 6 73

4.3 Three-Bar Truss

This is the optimization of the 3-bar truss solved in Chapter 2 and shown in the figure
below. This is a classical example in structural design. The objective function is the
total volume of the material of the members. The decision variables X1 and X2
correspond to the cross-sectional areas of member 1 (and 3) and member 2,
respectively. The area of member 3 is “linked” to be the same as member 1 for
symmetry. The constraints are tensile stress constraints in members 1 and 2 under load
P1. The loads, P1 and P2, are applied separately and the material specific weight is
0.1 lb. per cubic inch. The allowable stress in the members is 20,000 psi. This problem
is formulated into the form given below. The original problem actually consists of 12
constraints, being the stress limit in each member under each of the 2 loading
conditions. Here, the problem has been abbreviated for clarity.

The problem is formally stated as follows

Minimize (4-4)

Subject to:

(4-5)

(4-6)

(4-7)

10"

10" 10"

1 2

4

P2=20,000

3

A1

A2
A3

Y

X

P1=20,000

OBJ 2 2X1 X2+=

g1

2X1 2X2+

2X1 X1 2X2+
-- 1.0–= 0.0

g2
1.0

X1 2X2+
--------------------------- 1.0–= 0.0

0.01 Xi 100.0 i = 1,2

74 Version 6 DOT

Examples

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

A1 1.00 0.791 0.784 0.771

A2 1.00 0.404 0.420 0.442

A3 1.00 0.791 0.784 0.771

OBJECTIVE 3.828 2.641 2.638 2.640

MAX G -0.293 -8.17E-4 2.6E-4 5.5E-5

FUNCTIONS 32 39 48

Examples

DOT Version 6 75

LISTING 4-2: THREE BAR TRUSS FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. THREE BAR TRUSS.
C
 DOUBLE PRECISION X(2),XL(2),XU(2),G(2),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
 NDV=2
 NCON=2
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
 X(I)=1.0
 XL(I)=0.1
20 XU(I)=100.
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=3
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE SPRING EQUILIBRIUM PROBLEM.
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=2.0*SQRT(2.)*X(1)+X(2)
 G(1)=(2.*X(1)+SQRT(2.)*X(2))/(2.*X(1)*(X(1)+
 *SQRT(2.0)*X(2)))-1.
 G(2)=1./(2.*(X(1)+SQRT(2.)*X(2)))-1.
 RETURN

 END

76 Version 6 DOT

Examples

4.4 Cantilevered Beam

The cantilevered beam shown below is to be designed for minimum material volume.
The design variables are the width b and height h at each of N segments. We wish to
design the beam subject to limits on stress (calculated at the left end of each segment),
deflection under the load, and the geometric requirement that the height of any segment
does not exceed twenty times the width.

The deflection yi at the right end of segment i is calculated by the following recursion
formulas:

(4-8)

(4-9)

(4-10)

where the deflection y is defined as positive downward, is the derivative of y with

respect to x (the slope), and li is the length of segment i. Young's modulus E is the same
for all segments, and the moment of inertia for segment i is

l1 l2 l3 l4 l5

L

x

P

y

bi

hi

P
E
L

 = 50,000 N
 = 2.0x10
 = 500 cm
 = 14,000 N/cm
 = 2.5 cm

7

2

N/cm2

y

Cross section

1
2 3 4 5

y0 y0 0= =

yi
Pli

EIi
------- L

li

2
--- lj

j 1=

i

–+ yi 1–+=

yi

Pli
2

2EIi
---------- L lj

2li

3
------+

j 1=

i

– yi 1– li yi 1–++=

yi

Examples

DOT Version 6 77

(4-11)

The bending moment at the left end of segment i is calculated as

(4-12)

and the corresponding maximum bending stress is

(4-13)

The design task is now defined as

Minimize: (4-14)

Subject to:

(4-15)

(4-16)

(4-17)

(4-18)

(4-19)

Here is the allowable bending stress and is the allowable displacement. This is a
design problem in n = 2N variables. There are N + 1 nonlinear constraints defined by
Eqs. (4-15) and (4-17), N linear constraints defined by Eq. (4-16), and 2N side
constraints on the design variables defined by Eqs. (4-18) and (4-19). The side
constraints are treated here as general inequality constraints. Additionally, lower
bounds of 0.1 are imposed explicitly on bi and hi, i = 1, N within the optimization
program to ensure that the design remains physically meaningful.

This problem was solved using five segments (10 design variables).

Ii

bihi
3

12
----------=

Mi P L li lj

j 1=

i

–+=

i

Mihi

2Ii
-----------=

V bihili

i 1=

N

=

i

----- 1– 0 i 1 N=

hi 20bi– 0 i 1 N=

yN

y
------ 1– 0

bi 1.0 i 1 N=

hi 5.0 i 1 N=

 y

78 Version 6 DOT

Examples

The DOT solutions are

Note that at the beginning of the program listing a parameter called NSEG is defined.
In the above example, NSEG=5. You may change NSEG to increase or decrease the
problem size. The program is dimensioned to allow a value of NSEG up to 50, to yield
100 design variables. If you wish to solve even larger problems, be sure to increase the
array sizes.

This problem was solved again using fifty segments (100 design variables).

The DOT solutions are

Finally, this problem was solved without the displacement constraint. Note that, now
the optimum should be fully constrained so METHOD=2 works very well.

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

b1 5.00 3.12 3.10 3.12

b2 5.00 2.87 2.88 2.87

b3 5.00 2.56 2.58 2.57

b4 5.00 2.20 2.20 2.20

b5 5.00 1.75 1.75 1.75

h1 40.00 62.50 61.96 62.36

h2 40.00 57.37 57.54 57.38

h3 40.00 51.12 51.64 51.34

h4 40.00 44.10 44.09 44.11

h5 40.00 35.00 35.00 35.00

OBJECTIVE 100,000 64,908 64,927 64,934

MAX G 0.538 6.9E-4 3.7E-4 3.2E-4

FUNCTIONS 219 182 163

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

OBJECTIVE 100,000 63,202 63,207 63,196

MAX G 0.5625 7.2E-6 2.8E-4 3.3E-4

FUNCTIONS 2,367 2,027 1,501

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

OBJECTIVE 100,000 54,923 54,605 54,843

MAX G 0.5625 2.9E-3 1.0E-7 4.8E-4

FUNCTIONS 6,207 809 864

Examples

DOT Version 6 79

LISTING 4-3: CANTILEVER BEAM ANALYSIS FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. NSEG ELEMENT BEAM DESIGN.
C
 DOUBLE PRECISION X(1000),XL(1000),XU(1000),G(1001),WK(10000000),
 *RPRM(20),OBJ
 INTEGER IWK(10000),IPRM(20),NRWK,NRIWK,NSEG,I,METHOD,NDV,NCON,
 *IPRINT,MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=10000000
 NRIWK=10000
C
C NUMBER OF BEAM SEGMENTS
C
 NSEG=50
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
C NDV = TWO TIMES NSEG DESIGN VARIABLES.
 NDV=2*NSEG+1
C TWO TIMES NSEG + 1 CONSTRAINTS.
 NCON=2*NSEG
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NSEG
C INITIAL VALUES.
 X(I)=5.0
 X(I+NSEG)=40.0
C LOWER BOUNDS.
 XL(I)=1.0
 XL(I+NSEG)=5.0
C UPPER BOUNDS
 XU(I)=100.
 XU(I+NSEG)=100.
20 CONTINUE
C DEFINE IPRINT, MINMAX, INFO.
C PRINT CONTROL.
 IPRINT=2
C MINIMIZE
 MINMAX=-1
C INITIALIZE INFO TO ZERO.
 INFO=0
C OPTIMIZE.
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
C FINISHED?
 if(info.eq.0) write(*,*)' final obj =',obj
 IF(INFO.EQ.0) STOP
C EVALUATE OBJECTIVE AND CONSTRAINT.
 CALL EVAL(OBJ,X,G,NSEG)
C GO CONTINUE WITH OPTIMIZATION.
 GO TO 100
 END

80 Version 6 DOT

Examples

 SUBROUTINE EVAL (OBJ,X,G,NSEG)
 DOUBLE PRECISION X(*),G(*),P,E,AL,ALI,SIG,YMX,VOL,ALA,Y,YP,AI,AM,
 *SIGI,OBJ
 INTEGER NSEG,I
C NSEG-ELEMENT BEAM.
C NDV=10, NCON=11.
 P=50000.
 E=2.0E+7
 AL=500.
 ALI=AL/FLOAT(NSEG)
 SIG=14000.
 YMX=2.54
C VOLUME, STRESS CONSTRAINTS, H/B CONSTRAINTS, DISPL. CONSTRAINT.
 VOL=0.
 ALA=0.
 Y=0.
 YP=0.
 DO 22 I=1,NSEG
 VOL=VOL+ALI*X(I)*X(I+NSEG)
 AI=X(I)*(X(I+NSEG)**3)/12.
 ALA=ALA+ALI
 AM=P*(AL+ALI-ALA)
 SIGI=.5*AM*X(I+NSEG)/AI
C STRESS CONSTRAINTS.
 G(I)=SIGI/SIG-1.
C H/B CONSTRAINTS.
 G(I+NSEG)=X(I+NSEG)-20.*X(I)
 G(I+NSEG)=.1*G(I+NSEG)
 Y=Y+.5*P*ALI*ALI*(AL-ALA+2.*ALI/3.)/(E*AI)+YP*ALI
 YP=YP+P*ALI*(AL+.5*ALI-ALA)/(E*AI)
22 CONTINUE
 G(2*NSEG+1)=Y/YMX-1.
 OBJ=VOL
 RETURN

 END

Examples

DOT Version 6 81

4.5 Equilibrium of a Spring System

The figure below shows a simple spring for which we wish to find the equilibrium
position under the applied loads [1]. This is a nonlinear analysis problem. Loads P1 and
P2 are applied to a two-spring system as shown. The equilibrium position is calculated
by minimizing the potential energy (PE).

The total potential energy of the system is defined as;

(4-20)

This equation is solved with unconstrained minimization (NCON = 0).

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

X1 0.00 8.581 8.508

X2 0.00 4.442 4.290

OBJECTIVE 0.00 -41.80 -41.76

FUNCTIONS 134 134

PE
1
2
---K1L1

2 1
2
---K2L2

2
P1X1– P2X2–+=

1
2
---K1 X1

2
L1 X2– 2+ L1–

2 1
2
---K2 X1

2
L2 X2+ 2+ L2–

2
+=

P1X1– P2X2 –

82 Version 6 DOT

Examples

LISTING 4-4: SPRING EQUILIBRIUM ANALYSIS FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. SPRING EQUILIBRIUM ANALYSIS.
C
 DOUBLE PRECISION X(2),XL(2),XU(2),G(1),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
 NDV=2
 NCON=0
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 30 I=1,NDV
 X(I)=0.0
 XL(I)=-100.0
30 XU(I)=100.0
C DEFINE IPRINT, MINMAX, INFO
 IPRINT=1
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,OBJ,MINMAX,G,RPRM,
 *IPRM,WK,NRWK,IWK,NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE SPRING EQUILIBRIUM PROBLEM.
C
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=4.*(SQRT(ABS(X(1))**2 + ABS(10. - X(2))**2) - 10.)**2
 +.5(SQRT(ABS(X(1))**2 + ABS(10. + X(2))**2) - 10.)**2
 *- 5.*X(1)- 5.*X(2)
 RETURN

 END

Examples

DOT Version 6 83

4.6 Construction Management

A contractor is considering two gravel pits from which he may purchase material to
supply a project [3]. The unit cost to load and deliver the material to the project site is

$5.00/yd.3 from pit 1 and $7.00/yd.3 from pit 2. He must deliver a minimum of

10,000 yd.3 to the site.

The mix that he delivers must consist of at least 50 percent sand, no more than 60
percent gravel, nor more than 8 percent silt. (Note that there is some redundancy in the
requirements.) The material at pit 1 consists of 30 percent sand and 70 percent gravel.
The material at pit 2 consists of 60 percent sand, 30 percent gravel, and 10 percent silt.
Determine how much material should be taken from each pit.

Since the gravel from pit 1 does not contain the minimum amount of sand to meet
project requirements, the contractor may not utilize the cheaper material exclusively.
He must mix the material from pits 1 and 2 to produce the required proportions.

We define the decision variables to be

X1 = amount of material taken from pit 1 (in cubic yards)

X2 = amount of material taken from pit 2 (in cubic yards)

The objective function is

Minimize C = 5X1 + 7X2

Let X1 + X2 equal the total amount of standard mix delivered to the project site. The
contractor must deliver at least 10,000 cubic yards, thus the delivery constraint is

X1 + X2 > 10,000

The mixture must contain at least 50 percent sand. The contractor may obtain the
desired amount of sand by combining the materials from each pit.

0.3X1 + 0.6X2 > 0.5(X1 + X2)

The products 0.3X1 and 0.6X2 are the amounts of sand taken from pits 1 and 2,
respectively. The term 0.5(X1 + X2) is the amount of sand in the mix. Similarly, the
constraint on the amount of gravel to be delivered is

0.7X1 + 0.3X2 < 0.6(X1 + X2)

Finally, the constraint equation for silt is

0.1X2 < 0.08(X1 + X2)

84 Version 6 DOT

Examples

The minimum cost model may be written as

Minimize C = 5X1 + 7X2

Subject to:

X1 + X2 > 10,000 (delivery)

0.3X1 + 0.6X2 > 0.5(X1 + X2) (sand)

0.7X1 + 0.3X2 < 0.6(X1 + X2) (gravel)

0.1X2 < 0.08(X1 + X2) (silt)

X1, X2 > 0

or in standard form,

Minimize F(X1, X2) = 5X1 + 7X2 (4-21)

Subject to:

10,000 - X1 - X2 < 0 (4-22)

2X1 - X2 < 0 (4-23)

X1 - 3X2 < 0 (4-24)

X2 - 4X1 < 0 (4-25)

X1, X2 > 0 (4-26)

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

X1 3,000.0 3,333 3,333 3,332

X2 3,000.0 6,667 6,667 6,664

OBJECTIVE 36,000.0 6,333 6,333 6,330

MAX G 0.40 0.0 0.000 4.7E-4

FUNCTIONS 32 9 13

Examples

DOT Version 6 85

LISTING 4-5: CONSTRUCTION MANAGEMENT FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. CONSTRUCTION MANAGEMENT.
C
 DOUBLE PRECISION X(2),XL(2),XU(3),G(4),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
 NDV=2
 NCON=4
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
 X(I)=3000.
 XL(I)=0.0
20 XU(I)=10000.
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=1
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE CONSTRUCTION MANAGEMENT PROBLEM.
C
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=5.*X(1)+7.*X(2)
 G(1)=(-X(1)-X(2)+10000.)/10000.
 G(2)=(2.*X(1)-X(2))/10000.
 G(3)=(X(1)-3.*X(2))/10000.
 G(4)=(-4.*X(1)+X(2))/10000.
 RETURN

 END

86 Version 6 DOT

Examples

4.7 Piston Design

A piston lifts a load Q, as depicted below.

The specifications for the problem are

Payload (Q)= 10,000 lbs.

Beam Length (L)= 120 in.

Oil Pressure (P)= 1,500 psi

Maximum Allowable Bending Moment of the Beam = 1.8 x 106 lbs-in.

The objective is to minimize the volume of oil required to lift the load from 0 to 45
degrees. There are constraints on force equilibrium, maximum bending moment of the
beam, and minimum piston stroke. The pivot position, X3, must not exceed L/2 and the
support position must be at least half the piston diameter. The design variables are the
distances X1, X2, X3, and D. The problem is formulated as

Minimize Volume of Oil, (4-27)

Subject to;

Equilibrium at (4-28)

Bending Moment (4-29)

Piston Stroke (4-30)

V

4
---D

2
b a– =

 45
o

= QL cos R F– 0

Q L X3– 1.8x10
6

– 0

1.2 b a– a– 0

Examples

DOT Version 6 87

Support Location (4-31)

where

Volume of Oil,

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

X1 84.0 50.78 50.86 69.27

X2 60.0 3.26 3.26 2.51

X3 84.0 120.00 120.0 111.1

D 6.0 6.52 6.52 5.41

OBJECTIVE 1584.4 1034.8 1035.3 1073.7

MAX G -0.133 -3.0e-5 0.0 -1.2E-6

FUNCTIONS 94 41 79

D
2
---- X2– 0

R
X2 X3 sin X1+ – X1 X2 X3 cos– +

X3 sin X1+ 2 X2 X3 cos– 2+
---=

F

4
---PD

2
=

a X3 X2– 2 X1
2

+=

b X3 45
o

sin X1+
2

X1
2

X3 45
o

cos–
2

+=

V

4
---D

2
b a– =

88 Version 6 DOT

Examples

LISTING 4-6: PISTON DESIGN FORTRAN PROGRAM.

C SAMPLE PROGRAM. PISTON DESIGN.
C
 DOUBLE PRECISION X(4),XL(4),XU(4),G(5),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE METHOD,NDV,NCON.
 METHOD=1
 NDV=4
 NCON=5
C DEFINE BOUNDS AND INTIAL DESIGN.
 DO 20 I=1,NDV
 XL(I)=.05
20 XU(I)=1000.
 XU(3)=120.
 X(1)=84.0
 X(2)=60.0
 X(3)=84.0
 X(4)=6.0
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=1
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,
 *NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END

Examples

DOT Version 6 89

 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE PISTON DESIGN PROBLEM.
 DOUBLE PRECISION X(*),G(*),Q,AL,P,BNDMAX,PIO4,BO,B45,RNO,RDO,RO,
 *RN45,RD45,R45,OBJ,F
C DEFINE LOAD, LENGTH, PRESSURE, AND ALLOWABLE BENDING MOMENT.
 Q=10000.
 AL=240.
 P=1500.
 BNDMAX=1.8E+6
C CALCULATE THE OBJECTIVE FUNCTION AND CONSTRAINTS.
 PIO4=3.1415927/4.0
 BO=SQRT(ABS(X(3)-X(2))**2+X(1)*X(1))
 B45=SQRT(ABS(X(3)*SIN(PIO4)+X(1))**2+ABS(X(3)*COS(PIO4)-X(2))**2)
 RNO=-X(2)*X(1)+X(1)*(X(2)-X(3))
 RDO=SQRT(X(1)**2+(X(2)-X(3))**2)
 RO=ABS(RNO/RDO)
 RN45=-X(2)*(X(3)*SIN(PIO4)+X(1))+X(1)*(X(2)-X(3)*COS(PIO4))
 RD45=SQRT((X(3)*SIN(PIO4)+X(1))**2+(X(2)-X(3)*COS(PIO4)**2))
 R45=ABS(RN45/RD45)
 OBJ=((PIO4)*X(4)*X(4))*(B45-BO)
 F=PIO4*P*X(4)*X(4)
 G(1)=(Q*AL/(RO*F)-1.0)
 G(2)=(Q*AL*COS(PIO4)/(R45*F)-1.0)
 G(3)=Q*(AL-X(3))/BNDMAX-1.
 G(4)=1.2*(B45-BO)/BO-1.
 G(5)=.5*X(4)-X(2)
 RETURN

 END

90 Version 6 DOT

Examples

4.8 Portfolio Selection

A bank has $10 million to invest. Securities available for purchase are [4].

Restrictions on the investments are:

1. Government and agency bonds must total at least $4 million.

2. Average quality must be 1.4 or less.

3. Average years to maturity must be 5 years or less.

The bank wants to maximize after tax earnings.

Decision variables can be defined as follows:

Xa = Amount invested in A (in $millions)

Xb = Amount invested in B (in $millions)

Xc = Amount invested in C (in $millions)

Xd = Amount invested in D (in $millions)

Xe = Amount invested in E (in $millions)

The after tax earnings can be expressed as follows:

Objective = 0.043Xa + 0.027Xb + 0.025Xc + 0.022Xd + 0.045Xe

The constraints are expressed as follows:

Total investments should not exceed $10 million

Xa + Xb + Xc + Xd + Xe < 10.0

At least $4 million must be invested in government and agency bonds

Xb + Xc + Xd > 4.0

Average quality (total quality / total volume) must not exceed 1.4

0.6Xa + 0.6Xb - 0.4Xc - 0.9Cd + 3.6Xe < 0

Bond Name Bond Type Quality
Years To
Mature Yield

After Tax
Yield

A Municipal 2 9 4.3% 4.3%

B Agency 2 15 5.4% 2.7%

C Government 1 4 5.0% 2.5%

D Government 1 3 4.4% 2.2%

E Municipal 5 2 4.5% 4.5%

2Xa 2Xb Xc Xd 5Xe+ + + +

Xa Xb Xc Xd Xe+ + + +
-- 1.4

Examples

DOT Version 6 91

Average maturity must not exceed 5 yrs.

4Xa + 10Xb - Xc - 2Xd - 3Xe < 0.0

The problem can now be formally stated as

Maximize 0.043Xa + 0.027Xb + 0.025Xc + 0.022Xd + 0.045Xe (4-32)

Subject to

Xa + Xb + Xc + Xd + Xe -10.0 < 0.0 (4-33)

4.0 - (Xb + Xc + Xd) < 0.0 (4-34)

0.6Xa + 0.6Xb - 0.4Xc - 0.4Xd - 3.6Xe < 0.0 (4-35)

4Xa + 10Xb - Xc - 2Xd - 3Xe < 0.0 (4-36)

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

Xa 5.0 2.29 2.18 2.28

Xb 5.0 0.00 0.00 0.27

Xc 5.0 7.43 7.36 3.52

Xd 5.0 0.01 0.00 3.57

Xe 5.0 0.51 0.45 0.36

OBJECTIVE 0.810 0.308 0.298 0.288

MAX G 0.40 2.6E-3 0.0 1.5E-6

FUNCTIONS 183 30 38

9Xa 15Xb 4Xc 3Xd 2Xe+ + + +

Xa Xb Xc Xd Xe+ + + +
-- 5.0

92 Version 6 DOT

Examples

LISTING 4-7: PORTFOLIO SELECTION FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. PORTFOLIO SELECTION.
C
 DOUBLE PRECISION X(5),XL(5),XU(5),G(4),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,NDV,NCON,METHOD,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C DEFINE NDV, NCON, METHOD.
 NDV=5
 NCON=4
 METHOD=1
C DEFINE BOUNDS AND INITIAL DESIGN.
 DO 20 I=1,NDV
 X(I)=5.0
 XL(I)=0.0
20 XU(I)=10.
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=1
 MINMAX=1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,
 *NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE PORTFOLIO SELECTION PROBLEM.
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=0.043*X(1)+0.027*X(2)+0.025*X(3)+0.022*X(4)+0.045*X(5)
 G(1)=(X(1)+X(2)+X(3)+X(4)+X(5)-10.)/100.
 G(2)=(4.-X(2)-X(3)-X(4))/100.
 G(3)=(0.6*X(1)+0.6*X(2)-0.4*X(3)-0.4*X(4)+3.6*X(5))/100.
 G(4)=(4.*X(1)+10.*X(2)-X(3)-2.*X(4)-3.*X(5))/100.
 RETURN

 END

Examples

DOT Version 6 93

4.9 Equality Constraints

This is an example of how equality constraints are formulated. Consider the following
mathematical programming problem

Minimize

Subject to: h1 = X1 + 2X2 + 3X3 - 1.0 = 0.0

Note that the constraint in this case is an equality constraint. The constraint function
must equal zero. This problem is set up for DOT as follows

Minimize (4-37)

Subject to;

g1 = X1 + 2X2 + 3X3 - 1.0 < 0.0 (4-38)

g2 = - (X1 + 2X2 + 3X3 - 1.0) < 0.0 (4-39)

or

g1 = - g2 < 0

The DOT solutions are

PARAMETER
INITIAL
VALUE

OPTIMUM
Method=1

OPTIMUM
Method=2

OPTIMUM
Method=3

X1 -4.00 0.488 0.332 0.500

X2 1.00 -0.488 -0.305 -0.501

X3 2.00 0.496 0.426 0.500

OBJECTIVE 18.00 6.7E-5 0.015 1.1E-7

MAX G 3.00 0.0 0.0 4.8E-4

FUNCTIONS 97 445 68

OBJ X1 X2+ 2 X2 X3+ 2+=

OBJ X1 X2+ 2 X2 X3+ 2+=

94 Version 6 DOT

Examples

LISTING 4-8: EQUALITY CONSTRAINTS FORTRAN PROGRAM.

C
C SAMPLE PROGRAM. EQUALITY CONSTRAINTS.
C
 DOUBLE PRECISION X(3),XL(3),XU(3),G(2),WK(800),RPRM(20),OBJ
 INTEGER IWK(200),IPRM(20),NRWK,NRIWK,I,METHOD,NDV,NCON,IPRINT,
 *MINMAX,INFO
C DEFINE NRWK, NRIWK.
 NRWK=800
 NRIWK=200
C ZERO RPRM AND IPRM.
 DO 10 I=1,20
 RPRM(I)=0.0
 IPRM(I)=0
10 CONTINUE
C DEFINE METHOD,NDV,NCON.
 METHOD=1
 NDV=3
 NCON=2
C DEFINE BOUNDS AND INTIAL DESIGN.
 DO 20 I=1,NDV
 XL(I)=-100.
 XU(I)=100.
20 CONTINUE
 X(1)=-4.
 X(2)=1.
 X(3)=2.
C DEFINE IPRINT, MINMAX, INFO.
 IPRINT=2
 MINMAX=-1
 INFO=0
100 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
 IF(INFO.EQ.0)STOP
 CALL EVAL(OBJ,X,G)
 GO TO 100
 END
 SUBROUTINE EVAL (OBJ,X,G)
C
C SUBROUTINE TO EVALUATE THE OBJECTIVE FUNCTION AND CONSTRAINTS
C FOR THE EQUALITY CONSTRAINT PROBLEM.
C
 DOUBLE PRECISION X(*),G(*),OBJ
 OBJ=(X(1)+X(2))**2 + (X(2)+X(3))**2
 G(1)=X(1)+2.*X(2)+3.*X(3)-1.
 G(2)=-G(1)
 RETURN

 END

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

CHAPTER 5
References

o Introduction

o References

96 Version 6 DOT

References

5.1 Introduction

There is much to be gained from a review of some of the basic optimization literature.
While DOT can often be satisfactorily used by the optimization novice, a better
understanding of the theory of optimization can lead to more effective use of the
program. The following is a list of publications which may be useful to those seeking a
better understanding of numerical optimization.

5.2 References

1. Vanderplaats, G. N., Mulfidiscipline Design Optimization, Vanderplaats Re-
search & Development, Inc., Colorado Springs, CO, 2007.

2. Vanderplaats, G. N., “An Efficient Feasible Direction Algorithm for Design Syn-
thesis,” AIAA Journal, Vol. 22, No. 11, Nov. 1984.

3. Haftka, R. T., and Kamat, M. P., Elements of Structural Optimization, Nijhoff
Publishers, Netherlands, 1985.

4. Ossenbruggen, P. J., Systems Analysis for Civil Engineers, John Wiley and Sons,
N. Y., 1984.

5. Bradley, S. P., Hax, A. C. and Magnanti, T. L., Applied Mathematical Program-
ming, Addison-Wesley, Mass. 1977.

6. Zangwill, W. I., Nonlinear Programming: A Unified Approach, Prentice-Hall,
Englewood Cliffs, N.J., 1969.

7. Fletcher, R. and Reeves, C. M., “Function Minimization by Conjugate Gradients,”
Br. Computer J., Vol. 7, No. 2, pp. 149-154, 1964.

8. Broyden, C. G., “The Convergence of a Class of Double Rank Minimization Algo-
rithms, Parts I and II,” J. Inst. Math. Appl., Vol. 6, pp. 76-90, 222-231, 1970.

9. Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer J., Vol.
13, pp. 317-322, 1970.

10. Goldfarb, D., “A Family of Variable Metric Methods Derived by Variational
Means,” Math. Comput., Vol. 24, pp. 23-26, 1970.

11. Shanno, D. F., “Conditioning of Quasi-Newton Methods for Function Minimiza-
tion,” Math. Comput., Vol. 24, pp. 647-656, 1970.

12. Kelly, J. E., “The Cutting Plane Method for Solving Convex Programs,” J. SIAM,
Vol. 8, pp. 702-712, 1960.

13. Dantzig, G. B., Linear Programming and Extensions, Princeton University
Press, Princeton, N.J., 1963.

14. Dantzig, G. B. and Thapa, M. N., Linear Programming 1: Introduction, Spring-
er, 1997.

15. Powell, M. J. D., “Algorithms for Nonlinear Constraints that use Lagrangian Func-
tions,” Math. Prog., Vol. 14, No. 2, pp. 224-248, 1978.

16. Vanderplaats, G. N. and Sugimoto, H., “Application of Variable Metric Methods to
Structural Synthesis,” Engineering Computations, Vol. 2, No. 2, June, 1985.

References

DOT Version 6 97

17. GENESIS User's Manuals, VMA Engineering, Colorado Springs, CO, 1999.

18. BIGDOT User’s Manual, Vanderplaats Research & Development, Inc., 2002.

19. Thomas, H., Vanderplaats, G. and Shyy, Y-K, “A Study of Move Limit Adjustment
Strategies in the Approximation Concepts Approach to Structural Synthesis,” Proc.
4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Opti-
mization, Holiday Inn, Cleveland, OH, Sept. 21-23, 1992, AIAA-92-4839.

20. Zoutendijk, K. G., Methods of Feasible Directions, Elsevier Publishing Co., Am-
sterdam, Netherlands, 1960.

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

APPENDIX A
Structure of Program
Calling DOT

o Introduction

o Basic Program Organization

o Structure of Program Interfacing with DOT

o Box Design Program in C Language Interfacing DOT Object Code
Compiled in FORTRAN 77

Structure of Program Calling DOT

DOT Version 6 99

A.1 Introduction

The program given here may be used as a prototype as a main calling program for using
DOT. All default parameters are defined prior to calling DOT. The defaults are
contained in the RPRM and IPRM arrays. These are normally initialized to zero. Then,
any over-ride values are set in the proper locations. For detailed information about
using DOT with application programs, see Chapters 2 and 3 of this manual.

A.2 Basic Program Organization

NOTE: In the following outline of the program, a question mark (?) means that a value
or values must be provided. Also, the parameters, such as NDV, given in the dimension
statement are required values and must be replaced by actual numbers. Each place
where a parameter must be supplied by the user is highlighted in italic. Remember that
the arrays can be dimensioned larger than the required values to allow for future
expansion. Thus, the parameter BIG for WK and IWK, means that these arrays must
be dimensioned at least large enough to solve the problem, but may be dimensioned
larger. It is good practice to dimension these arrays as large as possible to allow for
future expansion of the number of design variables and constraints.

100 Version 6 DOT

Structure of Program Calling DOT

A.3 Structure of Program Interfacing with DOT

FORTRAN Example.

DOUBLE PRECISION X(NDV),XL(NDV),XU(NDV),G(NCON),WK(BIG),RPRM(30)
INTEGER IWK(BIG),IPRM(20),NRWK,NRIWK,I,NDV,NCON,IPRINT,MINMAX,

*METHOD,INFO
C DIMENSIONS OF WK AND IWK.
 NRWK=?
 NRIWK=?
C ZERO RPRM AND IPRM
 DO 10 I=1,20
 RPRM(I)=0.0
10 IPRM(I)=0
C AT THIS POINT SET ANY ENTRIES OF RPRM AND IPRM
C TO THEIR DESIRED VALUES IF THE DEFAULTS ARE
C TO BE OVER-RIDDEN.
C E.G.
C RPRM(1)=-0.01
C DEFINE NDV, NCON, IPRINT, MINMAX, METHOD
 NDV=?
 NCON=?
 IPRINT=?
 MINMAX=?
 METHOD=?
C DEFINE X, XL, XU
 X(I)=?, I=1,NDV
 XL(I)=?, I=1,NDV
 XU(I)=?, I=1,NDV
C READY TO OPTIMIZE
 INFO=0
20 CALL DOT (INFO,METHOD,IPRINT,NDV,NCON,X,XL,XU,
 *OBJ,MINMAX,G,RPRM,IPRM,WK,NRWK,IWK,NRIWK)
C EVALUATE OBJECTIVE AND CONSTRAINTS. YOU MAY CALL ONE
C OR MORE SUBROUTINES TO DO THIS.
 OBJ=?
 G(I)=?, I=1,NCON
 IF(INFO.GT.0) GO TO 20
C OPTIMIZATION IS COMPLETE. OUTPUT RESULTS.
 STOP
 END

Structure of Program Calling DOT

DOT Version 6 101

A.4 Box Design Program in C Language Interfacing DOT
Object Code Compiled in FORTRAN 77

/* BOX DESIGN C MAIN PROGRAM */
/* MACHINE DEPENDENT DECLARATIONS */
/* PC */
#if defined (PC)
#define DOT DOT
extern void __stdcall DOT(int *INFO, int *METHOD, int *IPRINT,

int *NDV, int *NCON, double *X, double *XL, double *XU,
double *OBJ, int *MINMAX, double *G, double *RPRM, int *IPRM,
double *WK, int *NRWK, int *IWK, int *NRIWK);

#endif
/* SUN and SGI Unix machines */
#if defined (SUN) || defined (SGI)
#define DOT dot_
extern void DOT(int *INFO, int *METHOD, int *IPRINT,

int *NDV, int *NCON, double *X, double *XL, double *XU,
double *OBJ, int *MINMAX, double *G, double *RPRM, int *IPRM,
double *WK, int *NRWK, int *IWK, int *NRIWK);

#endif
/* IBM and HP Unix machines */
#if defined (IBM) || defined (HP)
#define DOT dot
extern void DOT(int *INFO, int *METHOD, int *IPRINT,

int *NDV, int *NCON, double *X, double *XL, double *XU,
double *OBJ, int *MINMAX, double *G, double *RPRM, int *IPRM,
double *WK, int *NRWK, int *IWK, int *NRIWK);

#endif
int main()
{

int info, method, iprint, ndv, ncon, minmax, iprm[20], nrwk, iwk[200], nriwk;
 float x[5], xl[5], xu[5], obj, g[5],rprm[20],wk[800];
 int i;

/* define nrwk, nriwk */
nrwk = 800;
nriwk = 200;

/* zero rprm and iprm arrays */
for (i = 1; i <= 20; ++i) {

rprm[i - 1] = 0.0;
iprm[i - 1] = 0;

 }
/* modified method of feasible directions */

method = 1;
/* three design variables */

ndv = 3;
/* one constraint */

102 Version 6 DOT

Structure of Program Calling DOT

 ncon = 1;
/* define bounds and initial design */

for (i = 1; i <= ndv; ++i) {
x [i-1] = 1.0;
xl[i-1] = 0.01;
xu[i-1] = 100.0;

 }
/* print control */

iprint = 1;
/* minimize */

minmax =-1;
/* initialize infor to zero */

 info = 0;
/* call DOT optimizer */
do
{
 dot_(&info, &method, &iprint, &ndv, &ncon, x, xl, xu, &obj, &minmax, g,
 rprm, iprm, wk, &nrwk, iwk, &nriwk);
/* evaluate objective and constraint */

 eval(&obj, x, g);
 }while (info != 0);
return 0;
}
/* function to evaluate the objective function and constraints */

int eval(obj, x, g)
float *obj, *x, *g;
{
 --g;
 --x;

*obj = x[2] * 2. * x[1] + x[3] * 2. * x[1] + x[2] * 4. * x[3];
g[1] = 1. - x[1] * .5 * x[2] * x[3];
return 0;

} /* end of program */

Compiling and Linking:

The C main program must be compiled using your C/C++ compiler. You should
preferably link the object code of the C main program to DOT object code using a
FORTRAN 77 linker. If you want to link using C linker, you must also link the
FORTRAN 77 libraries, which means you must have FORTRAN 77 installed on your
computer.

Structure of Program Calling DOT

DOT Version 6 103

A Example of how to compile and link the box design program
(boxdot.c) on a SGI workstation:

> cc -DSGI -c boxdot.c
> f77 -o boxdot boxdot.o dot.a

This will create the executable file “boxdot” which you may execute to perform
optimization.

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

APPENDIX B
Calculating DOT Array Sizes

o Introduction

o Unconstrained Problems (NCON=0)

o Constrained Problems (NCON > 0)

o DOT510 Storage Calculations

Calculating DOT Array Sizes

DOT Version 6 105

B.1 Introduction

Arrays WK and IWK must be dimensioned in any program that calls DOT. The
minimum required dimensions, NRWK and NRIWK, can be calculated using the
formulas given here:

B.2 Unconstrained Problems (NCON=0)

METHOD = 1

NRWK = 16*NDV+NDV*(NDV+1)/2+50

NRIWK = 3*NDV+91

METHOD = 2

NRWK = 16*NDV+50

NRIWK = 3*NDV+91

B.3 Constrained Problems (NCON > 0)

The parameters NCOLA and NRB are used to determine internal storage needs for
storing constraint gradients and solving the direction finding problem. In DOT, a single
block of storage called WK(NRWK) is used to provide the needed space for real arrays
and another single block of storage called IWK(NRIWK) is used to store integer arrays.
NRWK is the storage needed for WK and NRIWK is the storage needed for IWK. Two
estimates are made, desired and maximum.

The needed information is calculated using the following formulas.

Basic Real Storage:

NRWKMN = 16*NDV+8*NCON+50

NSIDE = NDV

For I = 1,NDV

DXI = (XU(I)-XL(I))/MAX(ABS(XL(I)),ABS(XU(I)),0.001)

If DXI < 0.01, NSIDE is increased by 1.

106 Version 6 DOT

Calculating DOT Array Sizes

NCOLA and NRB desired values.

NCOLAD=MIN(NCON,2*NDV)

If NGMAX > 0.0, NCOLAD = MIN(NGMAX,NCON)

If NGMAX < 0, NGMAX = NCOLAD

NRBD = NCOLAD+NSIDE+1

NCOLA and NRB maximum values.

NCOLMX = NCON

NRBMX = NCOLMX + NSIDE + 1

Desired Basic Storage:

NSTRD=NRBD*(NRBD+2)+NDV*NGMAX

Maximum Basic Storage:

NCOLMX=NCON

NRBMX=NCOLMX+NSIDE+1

NSTRMX=NRBMX*(NRBMX+2)+NDV*NCOLMX

If METHOD=2

NRWKMN=NRWKMN+(NDV+2*NGMAX+2)*(NGMAX+2)

If METHOD=3

NRWKMN=NRWKMN+NGMAX*NDV+3*NCON+MAX(NDV,NCON)

+NDV*(NDV+1)/2

Desired Real Storage:

NRWKD = NRWKMN + NSTRD

Maximum Real Storage:

NRWKMX=NRWKMN+NSTRMX

Calculating DOT Array Sizes

DOT Version 6 107

Basic Integer Storage:

NRIWK=3*NDV+2*NCON+91

If METHOD=2

NRIWK=NRIWK+4*NDV+7*NCON+6

If METHOD=3

NRIWK=NRIWK+NCON

If the value of NRWK provided to DOT is less than NSTRD, or if NRIWK is less than
NRIWK calculated here, the optimization will be terminated with an error message. If
sufficient storage is available, NRWK should be dimensioned to equal (or greater than)
NSTRMX.

108 Version 6 DOT

Calculating DOT Array Sizes

B.4 DOT510 Storage Calculations

Alternatively, NRWK and NRIWK can be calculated by calling Subroutine DOT510.

The parameter list of SUBROUTINE DOT510 is as follows

SUBROUTINE DOT510 (NDV,NCON,METHOD,NRWK,NRWKMN,NRWKD,

*NRWKMX,NRIWK,NSTORE,NGMAX,XL,XU,NTUSD1,NTUSD2)

The input parameters to DOT510 are;

NDV - The number of design variables.

NCON - The number of constraints.

METHOD -The optimization method to be used.

XL and XU - Arrays containing the lower and upper bounds on the design variables,
respectively.

NRWK -The dimensioned size of the WK array. NRWK may be input as zero. If
NRWK is non-zero, DOT510 will attempt to adjust memory requirements to
accommodate the dimensioned size of WK.

The output from DOT510 is;

NRWKMN - Same as NRWKD.

NRWKD - Desired dimension of the WK array. Normally, this is sufficient to achieve
an optimum.

NRWKMX - Maximum dimension that can be used for the WK array. This amount of
storage should be provided if storage is not an issue.

NRIWK- the required dimension of the IWK array.

NSTORE- The desired storage for gradients and arrays used in the direction finding
problem. Used internally by DOT.

NGMAX - The maximum number of gradients that DOT will calculate or request.

NTUSD1, NTUSD2 are place holders so users of earlier DOT versions do not have to
change the calling statement for DOT510.

Note that, if you are doing dynamic memory allocation in your program, you may call
DOT510 directly to calculate the needed memory for the WK and IWK arrays.

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

APPENDIX C
In Case of Difficulty

o Introduction

o Debugging Procedure

110 Version 6 DOT

In Case of Difficulty

C.1 Introduction

DOT is a robust numerical optimizer, and there should seldom be a case where no
progress is made during the optimization. Also, numerous internal checks are made to
avoid exponent overflows, divide by zero, and similar run-time errors.

Usually, when something seems wrong, it can be traced to the basic setup of the
optimization problem or (more often) simple programming errors. Thus, while it is
difficult to project all possible errors of this sort, some are common enough to be able
to offer a short list of items to check.

C.2 Debugging Procedure

It is suggested that the following steps be followed in order to try to isolate problems:

1. Check all array dimension statements. Be sure the values of NRWK and NRIWK
are correct. If your code is written in double precision, be sure you are using the
double precision version of DOT.

2. Check the parameter list for calling DOT. Be sure that all parameters are present
and in the proper order. A common error is to create a program with an editor that
allows 80 column lines, while using a compiler that ignores all characters after col-
umn 72.

3. Turn off the automatic scaling and try again. Sometimes the scaling actually makes
the conditioning of the problem worse. If the difficulties still exist, leave the scaling
turned off during further testing.

4. Set the print control, IPRINT, to 5. This will cause the gradient information to be
printed during the optimization. If the gradient of the objective or any constraint
function has all zeroes, this parameter is not a function of the design variables.
While it is theoretically possible to have a zero gradient, it is extremely rare on a
digital computer. Check the problem formulation.

5. Check the order of magnitude of the components of the gradients. A well condi-
tioned problem will have roughly the same order of magnitude values (within a fac-
tor of 100). If one term is several orders of magnitude greater that the others, it may
help to scale this design variable by dividing by a number of that order of magni-
tude. If the components of the gradient of a constraint are all very large it will prob-
ably help to divide that constraint by a large number. A common error in problem
formulation is to have a function, say Q, that must be less than QQ, where QQ is on
the order of 10,000. In creating the constraint (which is required to be less than or
equal to zero) we may write G(I) = Q - QQ. This will make the constraint very dif-
ficult to deal with by DOT, because Q must equal about 9,999.97 before the con-
straint is considered active. Therefore, it is important to normalize the constraint as
G(I) = Q/QQ - 1.0. Now a constraint value of -0.01 will identify the constraint as
being within one percent of being critical.

6. As a last resort, set IPRINT equal to 7 or IPRNT2 equal to 2. This will turn on print
in the one-dimensional search. Plot the objective and constraint functions versus the
move parameter, ALPHA. If one or more are extremely nonlinear, reformulation of

In Case of Difficulty

DOT Version 6 111

the problem by dividing that function by a large number is indicated. Another pos-
sibility here is that the finite difference gradient parameters, FDCH and FDCHM
are either too large or too small. If the analysis is iterative, it often helps to try
FDCH = 0.02 or larger and FDCHM = 0.01 or larger. This will mask the inaccura-
cies in the analysis. On the other hand, if the analysis is calculated very precisely as
functions of the design variables, an order of magnitude smaller than the default val-
ue is indicated.

7. If the last resort fails, please contact VR&D for assistance. If possible, provide some
printed output. Set IPRINT = 7 so all of the information will be there. We will do
our best to help.

P3⁄STRUCTURAL OPTIMIZATION (Vol. I)

APPENDIX D
Internal Parameters in DOT

o Introduction

o Parameters Contained in RPRM

o Parameters Contained in IPRM

Internal Parameters in DOT

DOT Version 6 113

D.1 Introduction

In this Appendix, a description of the DOT internal parameters is given. While this is
necessarily brief, it is somewhat more detailed than the cryptic information contained
in Chapter 3.

The parameters are listed in the order they appear in the RPRM and IPRM arrays. If it
is unlikely that the parameter should be changed from its default value, this is stated.
Reference 1 describes the algorithms contained in DOT, and may be referred to for a
more detailed description of how a parameter is used in a given algorithm.

D.2 Parameters Contained in RPRM

1. CT - This is the constraint tolerance. This parameter defines when a constraint is
considered active.

One of the key issues in constrained optimization is determining when a constraint
is numerically “critical”. If a constraint, G(I) is numerically greater than CT (CT is
a negative number), it is considered critical for purposes of finding a new search
direction or deciding if the optimum has been found. This is also why the constraint
should be normalized to order of magnitude unity. Thus if G(I) is numerically
greater than CT (say -0.03) then it is assumed to be within 3 percent of being critical.
Numerically, this is considered to be an “active” constraint.

For highly nonlinear problems, it is often helpful to make the value of CT more
negative, say -0.05 or -0.10. By this method, the constraint is “trapped” sooner and
the optimization process will direct the design away from this constraint. On the
other hand, if the constraints are nearly linear, it may help to make CT closer to zero,
say -0.01. Then, when interpolating for G(I) = 0.0, a more precise value of G(I) is
obtained. In either case, the value of CT is progressively reduced during optimiza-
tion to a value of -CTMIN, which is the value at which a constraint becomes
strongly critical. In fact, if G(I) exceeds CTMIN (a positive number), the constraint
is considered to be violated. (See the definition of CTMIN)

If one or more constraints repeatedly become active on one iteration and inactive on
the next, CT should be increased in magnitude (say try CT = -0.05 or -0.10), or the
offending constraint should be divided by a factor of ten to reduce its sensitivity.

2. CTMIN -This is a constraint tolerance for defining when inequality constraints are
violated. CTMIN is a small positive number. A constraint is considered inactive if
its value is more negative than CT. If the constraint value is more positive than CT-
MIN, it is considered violated.

Since, mathematically a constraint is violated any time its value is greater than zero,
there may be a temptation to set CTMIN=0. However, this should not be done
because the optimization algorithms interpolate on zero and some numerical band-
width should be provided to allow for inaccuracies. The default value allows for
about a half of a percent constraint violation for normalized constraints.

114 Version 6 DOT

Internal Parameters in DOT

The geometric relationship between a constraint G and the parameters CT and
CTMIN is shown in the following figure

3. DABOBJ - This is the absolute convergence criterion for optimization. If the objec-
tive function is changed by less than this value for ITRMOP consecutive iterations,
the optimization will terminate. If the objective function changes by more than one
order of magnitude during optimization, the default value for DABOBJ will proba-
bly cause premature convergence. In this case, it is usually desirable to set DA-
BOBJ to a small number, say 0.001, and let the optimization process converge
based on the relative change criterion defined by DELOBJ.

4. DELOBJ -This parameter is used in conjunction with DABOBJ. Here the conver-
gence is tested on the relative change in the objective function. The combination of
DABOBJ and DELOBJ work together to form the diminishing returns convergence
criteria in DOT. Here by relative change we mean the fractional change in the value
of the objective function between successive iterations.

If the objective function is quite small in magnitude, a relative change of, say, one
percent may not be meaningful. The absolute convergence criterion are relied on to
detect convergence. On the other hand, for large values of the objective function,
the absolute change is considered of lesser importance and the relative criterion
tends to control the optimization convergence.

5. DOBJ1 -This is used in the one-dimensional search. On the first search, it is difficult
to estimate a desirable move parameter, ALPHA, because the optimization process
has no history. DOBJ1 is used to estimate the ALPHA which will reduce the objec-
tive function by this fraction, based on a linear approximation to the problem. Thus,
for DOBJ1 = 0.1, the first step in the one-dimensional search will attempt to reduce
the objective by ten percent.

If the problem is highly nonlinear, so that the calculated ALPHA is consistently less
than the proposed ALPHA, efficiency will be improved by reducing DOBJ1.
Alternatively, if the calculated ALPHA is consistently greater than the proposed
ALPHA, it is desirable to increase DOBJ1.

Internal Parameters in DOT

DOT Version 6 115

6. DOBJ2 -If the objective function is quite large in magnitude, a move to reduce the
objective by the fraction DOBJ1 may be too large. In this case, DOBJ2 is used to
limit the change in the objective function to the magnitude of DOBJ2. In other
words, DOBJ1 is a fractional change and DOBJ2 is an absolute change. As with
DOBJ1, if the proposed moves are too large, DOBJ2 may be reduced. If the pro-
posed moves are too small, DOBJ2 may be increased.

Both DOBJ1 and DOBJ2 are updated during the optimization process by keeping
track of progress. Therefore, their initial values are usually not too critical except
for highly nonlinear problems where no progress can be made due to very large
estimates for ALPHA.

7. DX1, DX2 -These are used in the one-dimensional search. These parameters have
an equivalent meaning to DOBJ1 and DOBJ2, but here are applied to each compo-
nent of the X vector. The same general rules apply. The purpose of DX1 and DX2
is to prevent very large initial changes in the components of the X vector. DX1 and
DX2 are also updated during the optimization process.

8. FDCH -Used if IPRM(1) = 0 for internal gradient calculations by DOT. Gradients
are calculated by first forward finite difference unless a variable is at its upper
bound. In this case, a first backwards finite difference step is taken and no check is
made to insure that the resulting design variable is above its lower bound. FDCH is
the finite difference step size as a fraction of the design variable being perturbed.

If high precision is available and required in evaluating the objective and constraint
functions, FDCH should be reduced. If the analysis is iterative, with its own internal
convergence parameters, FDCH may have to be increased. For iterative analysis, a
value of FDCH up to 0.05 may be appropriate for constrained problems, but
FDCH = 0.02 is a more reasonable limit for unconstrained problems. The reason for
this is that DOT seeks the point where the gradient is zero for unconstrained
problems, and if FDCH is large, this is numerically difficult and will lead to false
gradient information. On the other hand, for constrained problems, the gradients of
the objective and critical constraints are usually non-zero at the optimum. Hence,
precision is less important for constrained problems.

9. FDCHM -This is used if IPRM(1) = 0 for internal gradient calculations by DOT.
This is the minimum absolute step size for gradient calculations. This is used if the
component of X is near zero since a fractional change may not be meaningful. The
same general rules apply as with FDCH.

116 Version 6 DOT

Internal Parameters in DOT

10. RMVLMZ - This is the relative change allowed in each design variable during the
first iteration of the Sequential Linear Programming and Sequential Quadratic Pro-
gramming Methods. Because the objective and constraint functions are approximat-
ed by a first order Taylor Series expansion, the information is only valid in the
region of the approximation. Thus, we do not allow the design variables to change
too much for each approximation. Depending on the progress of the optimization,
this parameter will be updated. If the approximate optimization does not lead to sig-
nificant constraint violations, this parameter is unchanged. However, if after an ap-
proximate optimization, one or more constraints are found to be violated more than
they were at the beginning of the approximate optimization, RMVLMZ is reduced
by 50% (this is only done after the second and subsequent iterations of the SLP
method since on the first iteration it is common to go into the infeasible region).

If the problem is known to be linear, RMVLMZ should be increased to a large value,
say 100. If the problem is found to be quite nonlinear (the more common case),
RMVLMZ should be reduced to 0.2 or even 0.1.

Move limits on the individual design variables are internally adjusted, based on
whether the design variable is consistently changing in one direction or if its value
is oscillating [19.].

11. DABSTR - This parameter has the same meaning as DABOBJ, but here it is applied
to convergence of the Sequential Linear Programming and Sequential Quadratic
Programming Methods. That is, if the absolute value of the objective does not
change by more than this amount between two consecutive solutions of the approx-
imate optimization problem, this criterion is considered satisfied. Normally this pa-
rameter does not need to be changed.

12. DELSTR - This parameter has the same meaning as DELOBJ, but here it is applied
to convergence of the Sequential Linear Programming and Sequential Quadratic
Programming Methods. That is, if the relative value of the objective does not
change by more than this amount between two consecutive solutions of the approx-
imate optimization problem, this criterion is considered satisfied. Normally this pa-
rameter does not need to be changed.

13. GSTOL - This is the Golden Section tolerance as a fraction of the initial bounds de-
termined in the one-dimensional search. This is used by the Modified Method of
Feasible directions. If METHOD=1, the default is to not use the Golden Section
method. If METHOD=3, the Golden Section Method will be used in the Sub-Prob-
lem because the function values are cheap. During the one-dimensional search,
DOT first finds bounds on the minimum. Then the bounds are refined if the Golden
Section Method is turned on (GSTOL<1.0). After the bounds are reduced to the GS-
TOL fraction of the initial bounds, polynomial interpolation is used to obtain the fi-
nal value of ALPHA.

14. GSTOLM - This is the minimum tolerance that will be allowed in the Golden Sec-
tion Method. As the optimization process proceeds, the proposed value of ALPHA
can become quite small. At this point, further refinement by the Golden Section
Method is not meaningful. Thus the Golden Section Method will be bypassed if
ALPHA is very small and polynomial interpolation will be used.

Internal Parameters in DOT

DOT Version 6 117

D.3 Parameters Contained in IPRM

1. IGRAD -Specifies whether the gradients of the objective function and the con-
straints are calculated by DOT using finite difference methods (IGRAD = 0) or are
supplied by the user (IGRAD = 1). If the gradients are readily available then directly
providing gradients can save much computer time.

2. ISCAL -Specifies whether the design variables, objective and constraint functions,
and gradients are to be scaled by DOT (ISCAL = 0 or greater) or if the problem is
to remain unscaled (ISCAL = -1). The problem is actually re-scaled every ISCAL
iterations where the default (if the user sets ISCAL = 0) is NDV. While there has
not been much research into the theory of scaling, practical experience shows that
scaling often serves to improve the conditioning of many problems. It should be
noted, however, that sometimes scaling actually makes a problem worse. In this
case the scaling should be turned off by setting ISCAL = -1 (ISCAL = 0 is the de-
fault).

3. ITMAX -Maximum number of iterations in the optimizer. If function evaluations
are extremely expensive, reduce ITMAX. In the extreme case ITMAX = 1 or 2 is
justified because the first few iterations are where most progress is made. If function
evaluations are not expensive and the optimization terminates by reaching ITMAX,
it should be increased.

4. ITRMOP -The number of consecutive iterations that must satisfy the absolute or
relative convergence criteria before optimization is terminated in the Modified
Method of Feasible Directions or the BFGS or Fletcher-Reeves Methods. Usually
ITRMOP should be at least 2 because it is common to make little progress on one
iteration, only to make major progress on the next. Therefore, the default of
ITRMOP = 2 will allow a second try before terminating. If progress toward the
optimum seems slow, but consistent, and function evaluations are not too
expensive, it may improve the solution to increase ITRMOP to a value of 3 to 5.

5. IWRITE - File number to which DOT output will be sent. The default value is 6.

6. NGMAX - This is the maximum number of columns in the A-Matrix. This matrix
is used to store the gradients of all active, violated, and near active constraints. The
A-Matrix is stored in the WK array and so storage must be allocated for it. Ideally,
NGMAX = NCON since it is conceivable that all constraints are active or violated.
On the other hand, theoretically there should never be more than NDV active or vi-
olated constraints since this would define a “fully constrained” problem. However,
this rule is often violated at the start because we do not have a good feasible starting
point.

The reason that the value of NGMAX is a concern is that we may have only a few
design variables but thousands of constraints. Therefore, if we set
NGMAX = NCON, this would require a large amount of storage. Normally, it is
best do dimension WK and IWK as large as possible and then let DOT use the
default value for NGMAX. If a storage error occurs, NGMAX (and if necessary, the
dimensions of WK and IWK) should be increased if possible. Otherwise, choose a
different starting design in an attempt to reduce the number of critical constraints.

7. IGMAX -

118 Version 6 DOT

Internal Parameters in DOT

8. JTMAX - This is the maximum number of iterations allowed in the Sequential Lin-
ear Programming and Sequential Quadratic Programming Methods. It is equivalent
to ITMAX for the Modified Method of Feasible Directions. This is only used if
METHOD=2 or 3 and NCON>0. When using these methods, ITMAX should be set
to it's default value since solution of the approximate sub-problem is not usually ex-
pensive. If function values are very expensive, it is suggested to set JTMAX to a
value of 1 or 2 to judge the progress of the optimization before continuing.

9. ITRMST - The number of consecutive iterations that must satisfy the absolute or
relative convergence criteria before optimization is terminated in the Sequential
Linear Programming and Sequential Quadratic Programming Methods. This is
equivalent to ITRMOP, but now defines the number of approximate problems that
will be solved before exiting. Usually ITRMST should be at least 2 because it is
common to make little progress on one iteration, only to make major progress on
the next. Therefore, the default of ITRMOP = 2 will allow a second try before ter-
minating. If progress toward the optimum seems slow, but consistent, and function
evaluations are not too expensive, it may improve the solution to set ITRMOP to a
value of 3 or 4.

10. JPRINT - This is a debugging print control with the Sequential Linear Program-
ming and Sequential Quadratic Programming Methods. Normally it should remain
at its default value of 0. If JPRINT>0, IPRINT will be turned on during the sub-op-
timization problem. This will generate a considerable amount of output and should
be used only for debugging purposes. Normally, this sub-problem is solved reliably
and so it is not desirable to monitor its progress.

11. JWRITE - This is a file number for outputting information about the optimization
history. If JWRITE=0, no output will be provided. IF JWRITE>0, it is assumed that
the user has opened the file before calling DOT. DOT will then output the iteration
history to this file. This is useful if you wish to create a graphics file showing the
optimization progress or if you wish to output a summary of the optimization pro-
cess in tabular form. In version 1.xx of DOT, this information was difficult to get
because when DOT returned to the calling program, at the beginning of a new iter-
ation, the values of X, G and OBJ were often different than they were on the last
return. This is because, during the one-dimensional search, the last design investi-
gated may be rejected in favor of an earlier design. The information on file JWRITE
is consistent and includes the initial design information as well as the results at the
end of each design iteration.

If the Modified Method of Feasible Directions, BFGS or Fletcher-Reeves method
is used, this information is written at the end of each one-dimensional search. If the
Sequential Linear Programming or Sequential Quadratic Programming Method is
used, this information is written at the end of each approximate optimization.

12. NSTORE - Storage available for solving the direction finding problem in the Mod-
ified Method of Feasible Directions or for Gradient storage in the sub-problem in
the Sequential Linear Programming or Sequential Quadratic Programming meth-
ods.

13. IERROR - Error flag. On return from DOT, if IERROR > 0, an error has occurred
and the optimization should be terminated.

14. NEWITR - This parameter is not input to DOT, but is calculated internally.
NEWITR will have a value of -1 or n. If it's value is n, optimization iteration number

Internal Parameters in DOT

DOT Version 6 119

‘n’ has just ended and a new iteration has begun (or if INFO=0, the optimization is
complete). The value of n = 0 is returned to indicate that the initial design has just
been evaluated (this is the result of iteration 0).

If finite difference methods are used to calculate gradients, the first term in the X
vector will already be changed when NEWITR = -1 (NEWITR = -1 will be returned
NDV times during gradient calculations). Therefore, it is difficult for the user to
interact to create graphics files or to monitor the optimization progress. NEWITR
provides a means of determining exactly what is happening and acting accordingly.

If JWRITE>0, the current optimization information has just been written to that file.
Therefore, this is a good place to either interrogate that file or to interrupt and later
restart the program.

15. NGT - This parameter is not input to DOT, but is calculated internally. NGT is the
number of constraints for which gradients are needed and it is only meaningful if
the user provides gradients. NGT will usually be much less than NCON since gra-
dients of all constraints are usually not needed. The first NGT locations of the IWK
array identify the constraint numbers for which gradients are required. The user
must, in turn, store these gradients in the WK array, following the gradient of the
objective function.

120 Version 6 DOT

Index

A
• A Simple Example 29
• Advanced Features 52

B
• BFGS Method 14, 19, 24
• Bounds on the Design Variables
. . . . Constraints, Side 20
• Box
. . . . Design Example 10, 11
• Bradley, S. P. 96

C
• Calling Statement
. . . . DOT Calling Statement 25
• Compiling 28
• Compiling and Linking 28
• Constraints 11
. . . . Equality 21
. . . . Side 11, 20

D
• Decision Variables
. . . . Design Variables 19
• Default Parameters
. . . . In IPRM Array, Definitions 57
. . . . In IPRM Array, Values 56
. . . . In RPRM Array, Definitions 55
. . . . In RPRM Array, Values 54
. . . . Over-Riding 52
. . . . Over-Riding, Example 59
• Dependent Variable
. . . . Design Variables, Dependent 21

DOT Version 6 121

• Design Variables 19
. . . . Dependent 21
. . . . Independent 21
• Difficulty
. . . . In Case of 109
• DOT
. . . . Calling Program 98
. . . . Internal Parameters 113
. . . . System Requirements 10
• DOT Argument List 25
. . . . G Array 27
. . . . INFO 25
. . . . IPRINT 26
. . . . IPRM Array 27
. . . . IWK Array 28, 105, 108
. . . . METHOD 26, 108
. . . . MINMAX 27
. . . . NCON 26, 108
. . . . NDV 26, 108
. . . . NRIWK 28
. . . . NRWK 28
. . . . OBJ 27
. . . . RPRM Array 27
. . . . WK Array 28, 105, 108
. . . . X Array 26
. . . . XL 108
. . . . XL Array 27
. . . . XU 108
. . . . XU Array 27
• DOT Calling Statement 25, 100
• DOT510 (Subroutine) 9, 108

E
• Examples
. . . . Box Design 70
. . . . Cantilevered Beam 70, 76
. . . . Construction Management 70, 83
. . . . Equality Constraint 70
. . . . Equality Constraints 70, 93
. . . . Piston Oil Minimization 70, 86
. . . . Portfolio Selection 70, 90
. . . . Spring System Equilibrium 70, 81
. . . . Three-Bar Truss 70, 73

122 Version 6 DOT

F
• Fletcher-Reeves Method 14, 19, 24

G
• General Optimization Problem 20
• GENESIS 20
• Gradients
. . . . User Supplied 60
. . . . User-Supplied, Example 63
• Graphics File
. . . . Output to 67

H
• Haftka, R. T. 96
• Hax, A. C. 96

I
• IFLAG 65
• INFO 14
• Interrupting DOT
. . . . Restarting 65
• IPRM Array 52, 113, 117
. . . . IERROR 58, 118
. . . . IGMAX 56, 57, 117
. . . . IGRAD 56, 57, 117
. . . . IPRNT1 118
. . . . ISCAL 22, 52, 56, 57, 117
. . . . ITMAX 56, 57, 117
. . . . ITRMOP 56, 57, 117
. . . . ITRMST 56, 57, 118
. . . . IWRITE 56, 57, 117
. . . . JPRINT 56, 57, 118
. . . . JTMAX 56, 57, 118
. . . . JWRITE 56, 57, 118
. . . . NEWITR 56, 58, 118
. . . . NGMAX 56, 57, 117
. . . . NGT 56, 58, 119
. . . . NSTORE 58, 118

DOT Version 6 123

J
• JFLAG 65
• JWRITE 65

K
• Kamat, M. P. 96

L
• Linking 28

M
• Magnanti, T. L. 96
• Main Program 29, 99
• Mathematical Programming 12, 19
• Methods used by DOT 24
. . . . METHOD 24
• Modified Method of Feasible Directions 14, 19, 24

N
• NEWITR 65
• NGMAX 108
• Normalization 22
• NRIWK 9, 28, 108
• NRWK 9, 28, 108
• NRWKD 108
• NRWKMN 108
• NRWKMX 108
• NSTORE 108
• Numerical Optimization 19
. . . . Advantages 12
. . . . General Problem Statement 20

O
• Objective Function 11
• One-Dimensional Search 19
• Optimization Problem 11
• Optimum 12
• Ossenbruggen, P. J. 96

124 Version 6 DOT

P
• Print Control 26

R
• References 95
• RPRM Array 52, 113
. . . . CT 52, 54, 55, 113
. . . . CTMIN 52, 54, 55, 113
. . . . DABOBJ 54, 55, 114
. . . . DABSTR 54, 55, 116
. . . . DELOBJ 54, 55, 114
. . . . DELSTR 54, 55, 116
. . . . DOBJ1 54, 55, 114
. . . . DOBJ2 54, 55, 115
. . . . DX1 54, 115
. . . . DX2 54, 55, 115
. . . . FDCH 54, 55, 115
. . . . FDCHM 54, 55, 115
. . . . GSTOL 54, 56, 116
. . . . GSTOLM 54, 56, 116
. . . . GSTOLS 54, 56
. . . . RMVLMZ 54, 55, 116

S
• Scaling 22, 57
• Search Direction 19
• Sequential Linear Programming 14, 20, 24
• Sequential Quadratic Programming 14, 20, 24
• Structural Optimization 20
• System Requirements 10

T
• Three-bar Truss 29

U
• Unconstrained Optimization 19

V
• Vanderplaats, G. N. 96

