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Introduction 
The relative position of an object B with respect to an object A can be computed in a 
variety of ways, depending on the model of signal transmission between the two objects.  
When light time delay is not considered, the speed of light is considered infinite and there 
is no time difference between the transmission event and the reception event.  Quantities 
that ignore light time delay are often termed ‘true’; e.g., the true relative position of B 
with respect to A, computed as: 

 ( ) ( ) ( )B At t t= −r R R  (1) 

The term ‘apparent’ is used when the relative position vector accounts in some way for 
light time delay. The apparent position models signal transmission occurring at the finite 
speed of light so that a signal transmitted at time t is not received until t+∆t, where ∆t is 
the light time delay (a positive number). 

Light propagation models have a rich history, but for our purposes we only need be 
concerned with three kinematics models: (i) Galilean Relativity, (ii) Special Relativity; 
and (iii) General Relativity.   

Galilean Relativity is by far the most widely known model, where space is completely 
separable from the concept of time. Space is modeled as a Euclidean space with the 
standard vector operations for a linear space; time is an absolute quantity known to all 
observers.  Special Relativity models light propagation in such a manner that all inertial 
observers will measure the speed of light (in vacuum) as the same constant value c. Space 
is no longer separable from time; space-time is not a Euclidean space but instead a 
Minkowski space.  Concepts that were once trivial now become more complicated: 
different inertial observers now disagree on simultaneity of events, on distances between 
objects, and even on how fast time evolves. However, light still propagates as a straight 
line in the spatial components.  General Relativity goes one step further, removing the 
special status of inertial observers and introducing mass as generating the curvature of 
space-time itself. The light path deflects (curves) in the spatial components near massive 
objects. 

Our goal in the modeling of light propagation is simply to include the first order 
corrections on Galilean Relativity caused by Special Relativity for signal transmission. 
Thus, we strive for accuracy to order β, where β = v/c, where v is the inertial velocity of a 
frame being considered. The light path then is a straight line in inertial space where the 
signal moves at constant speed c (i.e. gravitational deflection is ignored). 

 

Computing Light Time Delay 
 
We will first consider the light time delay for a signal transmitted from an object A to an 
object B. Later, we will consider the delay for a received signal at A. 
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Transmission from A to B 
 
Consider an inertial frame F. Let RA locate object A in F; let RB locate object B in F.  Let 
the relative position vector r be defined by 

  ( ) ( ) ( )t t t t= + ∆ −B Ar R R   (2) 

where t is the time of transmission from A and t+∆t is the time of reception at B. The 
light time delay is ∆t which will depend on t as well. Let r = r  be the range between the 
objects.  Then ∆t = r/c. 
One usually knows the locations for the objects A and B and computes the light time 
delay at time t through iteration. First, a value of ∆t is guessed (often taken to be 0.0 or 
the last value computed at a previous time) and r(t) is computed. A new value for ∆t is 
found from r/c and the procedure repeats.  The iteration stops whenever the improvement 
in the estimate to ∆t is less than the light time delay convergence tolerance. Typically, 
few iterations are required as the procedure converges very rapidly. 

 

Reception at A from signal sent from B 
 
 In this case, the relative position vector is 

 ( ) ( ) ( )t t t t= − ∆ −B Ar R R  (3) 

where the signal is received by A at time t.  The same procedure is used to find ∆t, using 
r(t) above. 
 

NOTE: The light time delay ∆t computed for the 
transmission from A and for reception at A are different, as 
is the relative position vector r. 

The Inertial Frame 
 
The choice of the inertial frame is important when computing light time delay, as it will 
affect the results. This is a consequence of Special Relativity.  Let F and F′ be two 
inertial frames with parallel axes. Let v be the velocity of F′ with respect to F.  In Special 
Relativity, time is not absolute but is instead associated with a frame:  let t denote time in 
F and t′ denote time in F′.  For simplicity, assume the frames are coincident at t=0.  Then 
the Lorentz transformation relating these two coordinate time values is 

 't t
c

γ  = − 
 

Rβi  (4) 
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where R is the position vector of a location in F (measured from the origin of F), and 

 2 1, , 1 , and
c

β δ β γ
δ

= = = − =
vβ β  (5) 

The value t′ is the value of time in F′ for an event at time t at position R in F.  Note that t′ 
depends on both t and R. 

Consider the case of transmission from object A, located at the origin of F at time t=0, to 
object B that receives the signal at time t=∆t.  The value of t′ at transmission is computed 
to be 0 (since both t and R are zero then). In F, the light time delay ∆t is computed by 
solving 

 ( )t c t∆ = ∆BR  (6) 

for ∆t.  Using the Lorentz transformation, the value of t′ at reception is 

 ( )ˆ ˆ' 1 , where t t t
c c t

γ γ = ∆ − = ∆ − =  ∆  B B

B B
R R

R Rβ e β ei i  (7) 

In F′, the light time delay is 

 ( )ˆ' 1t tγ∆ = ∆ −
BRe βi  (8) 

To order β, γ is 1.0, so the difference δt in the computed light time delays between the 
two frames is 

 ( )ˆ't t t tδ = ∆ − ∆ = ∆
BRe βi  (9) 

The case of reception at A at time t=0 is analogous, producing the same result. 
 

NOTE: The choice of inertial frame affects the computation 
of both the light time delay ∆t and the apparent relative 
position vector r. 

 

Choosing an Inertial Frame 
 
Most space applications involve objects located near one central body. It is natural to 
associate a central body with an object.  The natural inertial frame to use for modeling 
spacecraft motion near a central body is the inertial frame of the central body.  (We use 
the term CBI for Central Body Inertial.) The CBI frame is a natural choice for the inertial 
frame for computing light time delay.  

For objects that are far from their central body, however, the more appropriate inertial 
frame to model motion is a frame with origin at the solar system barycenter.  This frame 
is used to model the motion of the central bodies themselves. This provides another 
choice for the inertial frame.   
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We take the view that CBI is the preferable frame for computing light time delay, but we 
want to insure that its use appropriately models the physics of the situation at hand. Thus, 
at the start of the light time delay computation we compute the difference δt between the 
use of the CBI and solar system barycenter frames. If this difference is less than the light 
time delay convergence tolerance, then either frame may be used to obtain the same level 
of accuracy—we choose the CBI frame because it is less expensive computationally. If 
the difference is more than the tolerance, we use the solar system barycenter frame 
knowing that it is a better model of an inertial frame in general. 

 

Earth Operations 
 
For the light time delay convergence tolerance of 50.e-5 seconds (i.e., 50 micro-seconds), 
objects located from near the Earth’s surface to just outside the geosynchronous belt will 
use Earth’s inertial frame for performing light time delay computations.  Farther out than 
this, the solar system barycenter frame will be used.  In particular, computations 
involving objects at the Earth-Moon distance will use the solar system barycenter frame 
for computation of light time delay. 

 

Signal Path 
 
With ∆t and r determined from the light time delay computation performed in the inertial 
frame F, it is now possible to model the actual signal transmission (i.e., the path of the 
signal through F).  The signal path is given by 

 ˆTransmit from A at : ( ) ( )t t t cτ τ+ = +A rs R e  (10) 

 ( ) ˆReceive at A at : ( ) ( )t t t t c tτ τ+ − ∆ = + ∆ −A rs R e  (11) 

where 0 tτ≤ ≤ ∆ andτ=0 locates the transmission event and τ=∆t locates the reception 
event. The apparent direction is given by 

 ˆ , , ( ) ( )r t t t
r

σ= = = + ∆ −r B A
re r r R R  (12) 

where ∆t is the light time delay computed in F and σ=1 in the case of transmission and 
σ=-1 for reception. 
 

Aberration 
 
Aberration is the change in the perceived direction of motion caused by the observer’s 
own motion.  The classic example of aberration involves two men out in the rain.  One 
man is stationary and perceives the velocity of the rain as straight down from overhead at 
velocity u.  The other man is walking along the ground at velocity v.  In the moving 
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man’s frame, the velocity of the rain is u-v. (This is the value as computed using Galilean 
Relativity; the value according to Special Relativity is more complicated but the 
conclusions are the same). This relative velocity makes an angleϕ  with the vertical 
where 

 1tan v
u

ϕ −  =  
 

 (13) 

The faster the man walks, the larger his perceived deflection of the rain from the vertical. 

In technical sources, aberration is usually discussed in the context of either stellar or 
planetary aberration.  Stellar aberration was first considered when looking at stars 
through optical telescopes – it is the perceived change in direction of light. Planetary 
aberration usually refers to two effects combined, light time delay and the perceived 
change in the direction of light. In both cases, the observer’s velocity relative to the frame 
in which the light path was computed results in aberration. 

 

Stellar Aberration 
 
Typically, starlight is modeled as saturating the solar system with light.  The light is 
considered to move in a straight line through the solar system.  The actual transmission 
time at the star is unmodeled (being more uncertain than the direction to the star itself) so 
light time delay is not considered. However, aberration caused by an observer’s motion in 
the solar system as the observer receives the light can be computed, and is referred to as 
stellar aberration.  Let the direction to a star from an observer (accounting for proper 
motion of the star and parallax) be ˆre . Then the apparent direction of the star, accounting 
for stellar aberration, is: 

 
ˆˆ , where
ˆ c

+
= =

+
r

r

e β vp β
e β

 (14) 

and v is the velocity of the observer with respect to the solar system barycenter frame.  
The formula above is the Galilean formula, equation (3.252-1)1; the Special Relativity 
formula is given by (3.252-3)1 and is simply a use of the Lorentz transformation for 
velocities. The formula above is accurate to order β. 

NOTE: The stellar aberration formula above models the 
observer receiving a signal, not transmitting a signal. 

 

Annual and Diurnal Aberration 
 
While the concept of aberration is simple, its computation can be complicated, depending 
on which factors are considered for determining the observer’s velocity v with respect to 
F.  Astronomers have compartmentalized different aspects of the computation, coining 
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terms for each aspect’s contribution.  The term ‘annual aberration’ is meant to identify 
the contribution of the observer’s central body velocity in the solar system: 

 = +cb A/cbv v v  (15) 

where vcb is the velocity of the central body with respect to the solar system barycenter 
frame and vA/cb is the velocity of the observer A with respect to the central body. When 
vcb is used to compute aberration, rather than v, then only the effects of annual aberration 
have been considered in the proper apparent relative position.  

We term vA/cb the diurnal aberration (the contribution to v apart from the central body 
motion).  In some technical sources, the term diurnal aberration is reserved for the 
contribution to vA/cb made by the rotation of the central body itself, and other terms are 
used to describe the other contributions to the overall value of vA/cb.  

 

Planetary Aberration 
 
Usually, planetary aberration refers to two effects combined: light time delay and the 
stellar aberration (i.e., the change in the perceived direction of motion caused by an 
observer’s motion).  To order β, the results can be computed correctly using the simpler 
Galilean formulas. 

We have previously discussed light time delay and determined a method for computing 
the light time delay ∆t, the apparent relative position vector r, and the signal path s by 
identifying an inertial frame F to perform the computations.  We now consider the effect 
of aberration. 

Consider another inertial frame F′ coincident with the observer A at the event time t, 
whose constant velocity v is the value of the observer’s velocity at time t.  Because the 
observer’s velocity is not (usually) constant in time, we’ll associate a new inertial frame 
F′ for each time t, calling the collection of inertial frames the co-moving inertial frames at 
A.  The apparent position of B with respect to A as perceived by an observer at A at time 
t but moving with F′ (computed by modeling the signal motion in F and then 
transforming this motion to F′) is 

 ( )ˆ ( ) ( ) ( )t c t t t t t tσ σ σ σ= − ∆ = ∆ − = + ∆ − − ∆p r B A Ar r v e β R R R�  (16) 

where σ=1 when modeling a signal transmitted from A, and σ=-1 when modeling a 
signal received at A. Again, r is the apparent relative position of B with respect to A, so 
that the light path range r is c∆t and β=v/c. This formula generalizes equation (3.255-2)1 
to cases of transmission and reception. The vector rp is the proper apparent relative 
position of B with respect to A, where the term ‘proper’ indicates that this quantity is 
computed as perceived by A (really, by an observer at A moving in a co-moving inertial 
frame).  

When the light time delay ∆t is small, it is possible to construct alternate representations 
of planetary aberration that approximate the exact expression (16). Expanding RB in a 
Taylor series in time, we find: 
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 ( ) ( ) ( )t t t t tσ σ+ ∆ = + ∆ +B B BR R R� " (17) 

Using (17) in (16), we find: 

 { }( ) ( ) ( ) ( )t t t t tσ− + ∆ −p B A B Ar R R R R� ��  (18) 

which is equation (3.255-4)1 generalized to both transmit and receive cases. Similarly, 
expanding RA in a Taylor series in time, we find: 

 ( ) ( ) ( )t t t t t tσ σ σ= + ∆ − ∆ + ∆ +A A AR R R� " (19) 

Using (19) in (16), we find: 
 

 { }( ) ( ) ( ) ( )At t t t t t t tσ σ σ σ+ ∆ − + ∆ + ∆ + ∆ −p B A Ar R R R R� ��  (20) 

that can be simplified to 

 ( ) ( )t t t tσ σ+ ∆ − + ∆p B Ar R R�  (21) 

when the last expression in (20) is small. [This will be small for small ∆t and small 
acceleration of A.] This generalizes equation (3.255-3)1 for transmit and receive cases. 
 

The proper apparent direction is computed to be 

 
ˆˆ
ˆ

σ
σ

−
=

−
r

r

e βp
e β

 (22) 

that of course agrees with the value computed for stellar aberration in the case of 
reception. The proper apparent direction depends on ∆t only through r.  Also note that the 
proper apparent range rp is not the same as the light path range r, nor is the proper 
apparent range the same in the case of transmission and reception.  This is consistent with 
Special Relativity as distances in F and F′ differ.  
 
  

Optical Measurements 
 
Optical observations of satellite position are made by measuring the apparent satellite 
location against known stars in the telescope field of view.  Observations collected in this 
manner can be used in determining the orbit of the satellite. These observations are a 
function of the corrections which have been applied to the star positions. Typically these 
corrections include such effects as the proper motion and parallax of the stars. Star 
coordinate corrections may optionally include annual and diurnal aberration due to the 
motion of the observer. Effects not accounted for in the computation of the star 
coordinates must be accounted for separately in observation processing. For example, 
omission of diurnal aberration from the star positions requires a diurnal aberration 
correction in orbit determination. Regardless of the corrections made to the star catalog, 
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orbit determination must also account for the motion of the satellite during the time it 
takes for light to travel from the satellite to the observer. 
  
                                                 
1 Explanatory Supplement to the Astronomical Almanac, Ken Seidelmann, ed., 1992. 
 


