LambertOrbitSolverLambertHodograph Method |
This function accomplishes 180 deg transfer(and 360 deg) for the Lambert problem.
Namespace:
AGI.Foundation.Propagators
Assembly:
AGI.Foundation.Models (in AGI.Foundation.Models.dll) Version: 24.2.419.0 (24.2.419.0)
Syntax public Tuple<Cartesian, Cartesian> LambertHodograph(
Cartesian r1,
Cartesian r2,
Cartesian v1,
double semilatusRectum,
double eccentricity,
double changeInTrueAnomaly,
double timeOfFlight
)
Public Function LambertHodograph (
r1 As Cartesian,
r2 As Cartesian,
v1 As Cartesian,
semilatusRectum As Double,
eccentricity As Double,
changeInTrueAnomaly As Double,
timeOfFlight As Double
) As Tuple(Of Cartesian, Cartesian)
public:
Tuple<Cartesian, Cartesian>^ LambertHodograph(
Cartesian r1,
Cartesian r2,
Cartesian v1,
double semilatusRectum,
double eccentricity,
double changeInTrueAnomaly,
double timeOfFlight
)
member LambertHodograph :
r1 : Cartesian *
r2 : Cartesian *
v1 : Cartesian *
semilatusRectum : float *
eccentricity : float *
changeInTrueAnomaly : float *
timeOfFlight : float -> Tuple<Cartesian, Cartesian>
Parameters
- r1
- Type: AGI.Foundation.CoordinatesCartesian
The chase/initial position. - r2
- Type: AGI.Foundation.CoordinatesCartesian
The target/final position. - v1
- Type: AGI.Foundation.CoordinatesCartesian
The chase/input vector used to determine the orbital plane. - semilatusRectum
- Type: SystemDouble
An orbital parameter. - eccentricity
- Type: SystemDouble
The eccentricity. - changeInTrueAnomaly
- Type: SystemDouble
The change in true anomaly. - timeOfFlight
- Type: SystemDouble
The time of flight.
Return Value
Type:
TupleCartesian,
CartesianThe transfer velocities.
Remarks Thompson Journal of Guidance, Control, and Dynamics 2013 v34 n6 1925. Thompson AAS GNC 2018. D. Vallado.
See Also