Click or drag to resize

UnitRectangular Structure

A set of rectilinear 2-dimensional coordinates with unit magnitude.

Namespace:  AGI.Foundation.Coordinates
Assembly:  AGI.Foundation.Core (in AGI.Foundation.Core.dll) Version: 24.2.419.0 (24.2.419.0)
Syntax
public struct UnitRectangular : IEquatable<UnitRectangular>, 
	IEquatableEpsilon<UnitRectangular>

The UnitRectangular type exposes the following members.

Constructors
  NameDescription
Public methodUnitRectangular(Double)
Initializes a set of UnitRectangular coordinates from the provided polar coordinates.
Public methodUnitRectangular(Double)
Initializes a set of UnitRectangular coordinates from the first 2 consecutive elements in the provided array.
Public methodUnitRectangular(Rectangular)
Initializes a set of UnitRectangular coordinates from the provided set of Rectangular coordinates.
Public methodUnitRectangular(Double, Double)
Initializes a set of UnitRectangular coordinates from the provided values.
Public methodUnitRectangular(Double, Int32)
Initializes a set of UnitRectangular coordinates from 2 consecutive elements in the provided array.
Public methodUnitRectangular(Double, Double, Double)
Initializes a set of UnitRectangular coordinates from the provided values.
Top
Properties
  NameDescription
Public propertyIsUndefined
Gets a value indicating whether or not any of the coordinates for this instance have the value NaN.
Public propertyItem
Gets the value of the specified element with index of 0 and 1 corresponding to the coordinates X, and Y.
Public propertyLength
Gets the number of elements in this set of coordinates.
Public propertyMostOrthogonalAxis
Gets the axis which is most orthogonal to this instance.
Public propertyMostParallelAxis
Gets the axis which is most parallel to this instance.
Public propertyStatic memberUndefined
Gets a set of UnitRectangular coordinates with values of NaN.
Public propertyStatic memberUnitX
Gets a set of UnitRectangular coordinates representing the x-axis.
Public propertyStatic memberUnitY
Gets a set of UnitRectangular coordinates representing the y-axis.
Public propertyX
Gets the linear coordinate along the positive x-axis.
Public propertyY
Gets the linear coordinate along the positive y-axis.
Top
Methods
  NameDescription
Public methodAdd(Rectangular)
Adds the specified set of Rectangular coordinates to this instance.
Public methodAdd(UnitRectangular)
Adds the specified set of UnitRectangular coordinates to this instance.
Public methodAngleBetween
Determines the angle in radians between the specified set of UnitRectangular coordinates and this instance.
Public methodDivide
Divides this instance by a scalar.
Public methodDot(Rectangular)
Forms the dot product of the specified set of Rectangular coordinates with this instance.
Public methodDot(UnitRectangular)
Forms the dot product of the specified set of UnitRectangular coordinates with this instance.
Public methodEquals(Object)
Indicates whether another object is exactly equal to this instance.
(Overrides ValueTypeEquals(Object).)
Public methodEquals(UnitRectangular)
Indicates whether another instance of this type is exactly equal to this instance.
Public methodEqualsEpsilon
Indicates whether each coordinate value of another instance of this type is within the required tolerance of the corresponding coordinate value of this instance.
Public methodGetHashCode
Returns a hash code for this instance, which is suitable for use in hashing algorithms and data structures like a hash table.
(Overrides ValueTypeGetHashCode.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodInvert
Inverts this instance.
Public methodMultiply
Multiplies this instance by a scalar.
Public methodRotate
Produces a set of UnitRectangular coordinates representing this instance which results from rotating the original axes used to represent this instance by the provided angle.
Public methodSubtract(Rectangular)
Subtracts the specified set of Rectangular coordinates from this instance.
Public methodSubtract(UnitRectangular)
Subtracts the specified set of UnitRectangular coordinates from this instance.
Public methodToString
Returns the string representation of the value of this instance.
(Overrides ValueTypeToString.)
Top
Operators
  NameDescription
Public operatorStatic memberAddition(Rectangular, UnitRectangular)
Adds a specified set of UnitRectangular coordinates to a specified set of Rectangular coordinates.
Public operatorStatic memberAddition(UnitRectangular, Rectangular)
Adds a specified set of UnitRectangular coordinates to a specified set of Rectangular coordinates.
Public operatorStatic memberAddition(UnitRectangular, UnitRectangular)
Adds a specified set of UnitRectangular coordinates to another specified set of UnitRectangular coordinates.
Public operatorStatic memberDivision
Divides a specified set of UnitRectangular coordinates by a scalar.
Public operatorStatic memberEquality
Returns if the two instances are exactly equal.
Public operatorStatic memberInequality
Returns if the two instances are not exactly equal.
Public operatorStatic memberMultiply(Double, UnitRectangular)
Multiplies a scalar by a specified set of UnitRectangular coordinates.
Public operatorStatic memberMultiply(UnitRectangular, Double)
Multiplies a specified set of UnitRectangular coordinates by a scalar.
Public operatorStatic memberSubtraction(Rectangular, UnitRectangular)
Subtracts a specified set of UnitRectangular coordinates from a specified set of Rectangular coordinates.
Public operatorStatic memberSubtraction(UnitRectangular, Rectangular)
Subtracts a specified set of Rectangular coordinates from a specified set of UnitRectangular coordinates.
Public operatorStatic memberSubtraction(UnitRectangular, UnitRectangular)
Subtracts a specified set of UnitRectangular coordinates from another specified set of UnitRectangular coordinates.
Public operatorStatic memberUnaryNegation
Negates the specified UnitRectangular, yielding a new UnitRectangular.
Top
Remarks

The normalization of the rectilinear coordinate pair is accomplished in the usual way. It should be noted that this does not guarantee a result whose magnitude will be 1.0 in cases where an individual component underflows upon squaring.

The corresponding 3-dimensional coordinates are UnitCartesian coordinates.

See Also