public class ScalarVariableAreaJulianDate extends ScalarVariableArea
Scalar
that enables interpolation of spacecraft area data to use
as a reference area for AtmosphericDragForce
and SimpleSolarRadiationForce
.Modifier | Constructor and Description |
---|---|
|
ScalarVariableAreaJulianDate(int interpolationOrder,
Map<Double,Double> areaData,
JulianDate epoch,
boolean cycleRepeats)
Initializes a new instance.
|
|
ScalarVariableAreaJulianDate(int interpolationOrder,
Map<JulianDate,Double> areaData,
boolean cycleRepeats)
Initializes a new instance.
|
protected |
ScalarVariableAreaJulianDate(ScalarVariableAreaJulianDate existingInstance,
CopyContext context)
Initializes a new instance as a copy of an existing instance.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
checkForSameDefinition(ScalarVariableArea other)
Checks to determine if another instance has the same definition as this instance and
returns
true if it does. |
protected boolean |
checkForSameDefinition(ScalarVariableAreaJulianDate other)
Checks to determine if another instance has the same definition as this instance and
returns
true if it does. |
Object |
clone(CopyContext context)
Clones this object using the specified context.
|
protected int |
computeCurrentDefinitionHashCode()
Computes a hash code based on the current properties of this object.
|
Map<JulianDate,Double> |
getAreaData()
Gets a collection of key-value pairs with
JulianDate
as the key and area (in meters squared) as the value. |
boolean |
getCycleRepeats()
Gets a value indicating whether any time outside the time interval defined by the
AreaData (get )
will be wrapped by adding or subtracting an integer number of time intervals until the transformed time
is inside the time interval. |
ScalarEvaluator |
getEvaluator(EvaluatorGroup group)
Gets an evaluator that can be used to find the value of this scalar function at a given
JulianDate . |
void |
setCycleRepeats(boolean value)
Sets a value indicating whether any time outside the time interval defined by the
AreaData (get )
will be wrapped by adding or subtracting an integer number of time intervals until the transformed time
is inside the time interval. |
checkForSameDefinition, getInterpolationOrder, readFrom, readFrom, setInterpolationOrder
add, add, add, add, add, checkForSameDefinition, createScalarDerivative, divide, divide, divide, divide, divide, getEvaluator, multiply, multiply, multiply, multiply, multiply, power, subtract, subtract, subtract, subtract, subtract, toScalar
areSameDefinition, areSameDefinition, areSameDefinition, areSameDefinition, areSameDefinition, collectionItemsAreSameDefinition, collectionItemsAreSameDefinition, collectionItemsAreSameDefinition, dictionaryItemsAreSameDefinition, enumerateDependencies, freeze, freezeAggregatedObjects, getCollectionHashCode, getCollectionHashCode, getCollectionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDictionaryHashCode, getIsFrozen, isSameDefinition, throwIfFrozen
public ScalarVariableAreaJulianDate(int interpolationOrder, Map<JulianDate,Double> areaData, boolean cycleRepeats)
interpolationOrder
- The order of the interpolation that will be done to estimate the area.areaData
- Collection of key-value pairs with JulianDate
as the key and area (in meters squared) as the value.cycleRepeats
- If true, any time outside the time interval defined by the areaData
will be wrapped by adding or subtracting an integer number of time intervals until the transformed time
is inside the time interval. If false, any time that is before the time interval defined by the areaData
will be set to the minimum time within the interval. Similarly, any time after that time interval will be set to
the maximum time within the interval.public ScalarVariableAreaJulianDate(int interpolationOrder, Map<Double,Double> areaData, @Nonnull JulianDate epoch, boolean cycleRepeats)
interpolationOrder
- The order of the interpolation that will be done to estimate the area.areaData
- Collection of key-value pairs with seconds after epoch
as the key and area (in meters squared) as the value.epoch
- The reference epoch that is used to transform the epoch seconds keys in the areaData
into JulianDate
keys.cycleRepeats
- If true, any time outside the time interval defined by the areaData
will be wrapped by adding or subtracting an integer number of time intervals until the transformed time
is inside the time interval. If false, any time that is before the time interval defined by the areaData
will be set to the minimum time within the interval. Similarly, any time after that time interval will be set to
the maximum time within the interval.protected ScalarVariableAreaJulianDate(ScalarVariableAreaJulianDate existingInstance, CopyContext context)
See ICloneWithContext.clone(CopyContext)
for more information about how to implement this constructor
in a derived class.
existingInstance
- The existing instance to copy.context
- A CopyContext
that controls the depth of the copy.ArgumentNullException
- Thrown when existingInstance
or context
is null
.public Object clone(CopyContext context)
This method should be implemented to call a copy constructor on the class of the
object being cloned. The copy constructor should take the CopyContext
as a parameter
in addition to the existing instance to copy. The copy constructor should first call
CopyContext.addObjectMapping(T, T)
to identify the newly constructed instance
as a copy of the existing instance. It should then copy all fields, using
CopyContext.updateReference(T)
to copy any reference fields.
A typical implementation of ICloneWithContext
:
public static class MyClass implements ICloneWithContext {
public MyClass(MyClass existingInstance, CopyContext context) {
context.addObjectMapping(existingInstance, this);
someReference = context.updateReference(existingInstance.someReference);
}
@Override
public final Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
}
In general, all fields that are reference types should be copied with a call to
CopyContext.updateReference(T)
. There are a couple of exceptions:
If one of these exceptions applies, the CopyContext
should be given an opportunity
to update the reference before the reference is copied explicitly. Use
CopyContext.updateReference(T)
to update the reference. If CopyContext.updateReference(T)
returns
the original object, indicating that the context does not have a replacement registered,
then copy the object manually by invoking a Clone method, a copy constructor, or by manually
constructing a new instance and copying the values.
alwaysCopy = context.updateReference(existingInstance.alwaysCopy);
if (existingInstance.alwaysCopy != null && alwaysCopy == existingInstance.alwaysCopy) {
alwaysCopy = (AlwaysCopy) existingInstance.alwaysCopy.clone(context);
}
If you are implementing an evaluator (a class that implements IEvaluator
), the
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
method shares some responsibilities with the
copy context constructor. Code duplication can be avoided by doing the following:
CopyContext.updateReference(T)
. You should still call CopyContext.updateReference(T)
on any references to
non-evaluators.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as the last line in the constructor and pass it the
same CopyContext
passed to the constructor.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as normal. See the reference documentation for
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
for more information on implementing that method.
public MyClass(MyClass existingInstance, CopyContext context) {
super(existingInstance, context);
someReference = context.updateReference(existingInstance.someReference);
evaluatorReference = existingInstance.evaluatorReference;
updateEvaluatorReferences(context);
}
@Override
public void updateEvaluatorReferences(CopyContext context) {
evaluatorReference = context.updateReference(evaluatorReference);
}
@Override
public Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
private IEvaluator evaluatorReference;
clone
in interface ICloneWithContext
clone
in class DefinitionalObject
context
- The context to use to perform the copy.protected final boolean checkForSameDefinition(ScalarVariableArea other)
true
if it does. Derived classes MUST override this method and check
all new fields introduced by the derived class for definitional equivalence. It is NOT necessary
to check base class fields because the base class will already have done that. When overriding this method,
you should NOT call the base implementation because it will return false
for all derived-class instances.
Derived classes should check the type of other
to preserve the symmetric nature of IEquatableDefinition.isSameDefinition(java.lang.Object)
.checkForSameDefinition
in class ScalarVariableArea
other
- The other instance to compare to this one.true
if the two objects are defined equivalently; otherwise false
.protected boolean checkForSameDefinition(ScalarVariableAreaJulianDate other)
true
if it does. Derived classes MUST override this method and check
all new fields introduced by the derived class for definitional equivalence. It is NOT necessary
to check base class fields because the base class will already have done that. When overriding this method,
you should NOT call the base implementation because it will return false
for all derived-class instances.
Derived classes should check the type of other
to preserve the symmetric nature of IEquatableDefinition.isSameDefinition(java.lang.Object)
.other
- The other instance to compare to this one.true
if the two objects are defined equivalently; otherwise false
.protected int computeCurrentDefinitionHashCode()
ScalarVariableAreaJulianDate.checkForSameDefinition(agi.foundation.celestial.ScalarVariableArea)
method.computeCurrentDefinitionHashCode
in class ScalarVariableArea
public final Map<JulianDate,Double> getAreaData()
JulianDate
as the key and area (in meters squared) as the value.public final boolean getCycleRepeats()
AreaData
(get
)
will be wrapped by adding or subtracting an integer number of time intervals until the transformed time
is inside the time interval. If false, any time that is before the time interval defined by the AreaData
(get
)
will be set to the minimum time within the interval. Similarly, any time after that time interval will be set to
the maximum time within the interval.public final void setCycleRepeats(boolean value)
AreaData
(get
)
will be wrapped by adding or subtracting an integer number of time intervals until the transformed time
is inside the time interval. If false, any time that is before the time interval defined by the AreaData
(get
)
will be set to the minimum time within the interval. Similarly, any time after that time interval will be set to
the maximum time within the interval.public ScalarEvaluator getEvaluator(EvaluatorGroup group)
JulianDate
.
Adds the evaluator to the EvaluatorGroup
.getEvaluator
in class Scalar
group
- The group with which to associate the new evaluator. By grouping evaluators
that are often evaluated at the same Julian dates, common computations can be performed only once
for the entire group instead of multiple times for each evaluator.