public abstract class OptimizerMultivariableFunction extends Object implements IThreadAware, IDisposable
ParameterOptimizer
.Modifier | Constructor and Description |
---|---|
protected |
OptimizerMultivariableFunction()
Initializes a new instance.
|
protected |
OptimizerMultivariableFunction(OptimizerMultivariableFunction existingInstance,
CopyContext context)
Initializes a new instance as a copy of an existing instance.
|
Modifier and Type | Method and Description |
---|---|
void |
addDerivativeEvaluationEvent(EventHandler<OptimizerFunctionDerivativeEvaluatedEventArgs> value)
An event that gets raised when the derivative of the function is evaluated.
|
void |
addNormalFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
An event that gets raised when the nominal function is evaluated.
|
void |
addPerturbedFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
An event that gets raised when a perturbed function is computed as part of the derivation of the derivative of the function.
|
void |
applyResults(OptimizerMultivariableFunctionResults results)
For
OptimizerMultivariableFunctions that have
state, there may be times when that state should be manually set on a function (sometimes
for performance reasons, when the function will be called multiple times and it should
start from where it left off). |
protected void |
callDerivativeEvaluationEvent(OptimizerMultivariableFunctionDerivativeResults derivativeResults)
|
abstract Object |
clone(CopyContext context)
Clones this object using the specified context.
|
static NumericallyComputedOptimizerFunctionDerivativeResults |
computeGradientsNumerically(OptimizerMultivariableFunction function,
double[] variables,
double[] perturbationValues,
FiniteDifferenceMethod differenceMethod,
boolean multithreaded,
OptimizerMultivariableFunctionResults precomputedValueResults,
ITrackCalculationProgress progressTracker)
Computes the gradients of an
OptimizerMultivariableFunction numerically. |
void |
dispose()
Releases any resources associated with this instance.
|
protected void |
dispose(boolean disposing)
Releases any resources associated with this instance.
|
MultivariableFunctionEvaluationAndDerivativeResults<OptimizerMultivariableFunctionResults,OptimizerMultivariableFunctionDerivativeResults> |
evaluate(double[] variables,
int order,
boolean multithreaded,
ITrackCalculationProgress progressTracker)
Evaluates the function and the gradients.
|
abstract OptimizerMultivariableFunctionResults |
evaluate(double[] variables,
ITrackCalculationProgress progressTracker)
Evaluates the function.
|
OptimizerMultivariableFunctionDerivativeResults |
evaluateDerivative(double[] variables,
boolean multithreaded,
ITrackCalculationProgress progressTracker)
Evaluates the gradients of this function.
|
OptimizerMultivariableFunctionDerivativeResults |
evaluateDerivative(double[] variables,
boolean multithreaded,
OptimizerMultivariableFunctionResults valueResults,
ITrackCalculationProgress progressTracker)
Evaluates the gradients of this function.
|
FiniteDifferenceMethod |
getDifferenceMethod()
Gets how the default numerically computed derivatives of this function should be computed.
|
abstract boolean |
getIsThreadSafe()
Gets a value indicating whether the methods on this instance are safe to call from
multiple threads simultaneously.
|
double[] |
getPerturbationValues()
Gets the values to use to perturb the variables when the derivative is computed numerically.
|
void |
removeDerivativeEvaluationEvent(EventHandler<OptimizerFunctionDerivativeEvaluatedEventArgs> value)
An event that gets raised when the derivative of the function is evaluated.
|
void |
removeNormalFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
An event that gets raised when the nominal function is evaluated.
|
void |
removePerturbedFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
An event that gets raised when a perturbed function is computed as part of the derivation of the derivative of the function.
|
protected void |
setDifferenceMethod(FiniteDifferenceMethod value)
Sets how the default numerically computed derivatives of this function should be computed.
|
protected void |
setPerturbationValues(double[] value)
Sets the values to use to perturb the variables when the derivative is computed numerically.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
close
protected OptimizerMultivariableFunction()
protected OptimizerMultivariableFunction(@Nonnull OptimizerMultivariableFunction existingInstance, @Nonnull CopyContext context)
See ICloneWithContext.clone(CopyContext)
for more information about how to implement this constructor
in a derived class.
existingInstance
- The existing instance to copy.context
- A CopyContext
that controls the depth of the copy.ArgumentNullException
- Thrown when existingInstance
or context
is null
.public abstract Object clone(CopyContext context)
This method should be implemented to call a copy constructor on the class of the
object being cloned. The copy constructor should take the CopyContext
as a parameter
in addition to the existing instance to copy. The copy constructor should first call
CopyContext.addObjectMapping(T, T)
to identify the newly constructed instance
as a copy of the existing instance. It should then copy all fields, using
CopyContext.updateReference(T)
to copy any reference fields.
A typical implementation of ICloneWithContext
:
public static class MyClass implements ICloneWithContext {
public MyClass(MyClass existingInstance, CopyContext context) {
context.addObjectMapping(existingInstance, this);
someReference = context.updateReference(existingInstance.someReference);
}
@Override
public final Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
}
In general, all fields that are reference types should be copied with a call to
CopyContext.updateReference(T)
. There are a couple of exceptions:
If one of these exceptions applies, the CopyContext
should be given an opportunity
to update the reference before the reference is copied explicitly. Use
CopyContext.updateReference(T)
to update the reference. If CopyContext.updateReference(T)
returns
the original object, indicating that the context does not have a replacement registered,
then copy the object manually by invoking a Clone method, a copy constructor, or by manually
constructing a new instance and copying the values.
alwaysCopy = context.updateReference(existingInstance.alwaysCopy);
if (existingInstance.alwaysCopy != null && alwaysCopy == existingInstance.alwaysCopy) {
alwaysCopy = (AlwaysCopy) existingInstance.alwaysCopy.clone(context);
}
If you are implementing an evaluator (a class that implements IEvaluator
), the
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
method shares some responsibilities with the
copy context constructor. Code duplication can be avoided by doing the following:
CopyContext.updateReference(T)
. You should still call CopyContext.updateReference(T)
on any references to
non-evaluators.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as the last line in the constructor and pass it the
same CopyContext
passed to the constructor.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as normal. See the reference documentation for
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
for more information on implementing that method.
public MyClass(MyClass existingInstance, CopyContext context) {
super(existingInstance, context);
someReference = context.updateReference(existingInstance.someReference);
evaluatorReference = existingInstance.evaluatorReference;
updateEvaluatorReferences(context);
}
@Override
public void updateEvaluatorReferences(CopyContext context) {
evaluatorReference = context.updateReference(evaluatorReference);
}
@Override
public Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
private IEvaluator evaluatorReference;
clone
in interface ICloneWithContext
context
- The context to use to perform the copy.public final void dispose()
dispose
in interface IDisposable
protected void dispose(boolean disposing)
disposing
- true
to release both managed and unmanaged resources;
false
to release only unmanaged resources.public abstract boolean getIsThreadSafe()
If this property is true
, all methods and properties are guaranteed to be thread safe.
Conceptually, an object that returns true
for this method acts as if there is a lock
protecting each method and property such that only one thread at a time can be inside any method or
property in the class. In reality, such locks are generally not used and are in fact discouraged. However,
the user must not experience any exceptions or inconsistent behavior that would not be experienced if such
locks were used.
If this property is false
, the behavior when using this class from multiple threads
simultaneously is undefined and may include inconsistent results and exceptions. Clients wishing to use
multiple threads should call CopyForAnotherThread.copy(T)
to get a separate instance of the
object for each thread.
getIsThreadSafe
in interface IThreadAware
public abstract OptimizerMultivariableFunctionResults evaluate(double[] variables, @Nullable ITrackCalculationProgress progressTracker)
Evaluates the function. The OptimizerMultivariableFunctionResults
returned must include the computed
equality constraints in the order that they are in the Equalities
(get
) and the computed
inequality constraints in the order that they are in the Inequalities
(get
). If there
are no equality constraints, the function should return a zero-length array of doubles for the equality constraint values.
The same should be done for the inequality constraint values if there are no inequality constraint.
If the CostFunction
(get
/ set
) is null
, the results should include a
null cost function value. Otherwise, the results should return a double
as the cost function value.
variables
- The value of the variables that are used to evaluate the function.progressTracker
- An optional progress tracker.@Nonnull public OptimizerMultivariableFunctionDerivativeResults evaluateDerivative(@Nonnull double[] variables, boolean multithreaded, @Nullable ITrackCalculationProgress progressTracker)
value of the function
at the
variables
will be computed. When using the default implementation, the
PerturbationValues
(get
/ set
) must be set.variables
- The values to compute the gradients at.multithreaded
- Should the evaluation be done using as many cores as possible.progressTracker
- An optional progress tracker.@Nonnull public OptimizerMultivariableFunctionDerivativeResults evaluateDerivative(@Nonnull double[] variables, boolean multithreaded, OptimizerMultivariableFunctionResults valueResults, @Nullable ITrackCalculationProgress progressTracker)
value of the function
at the
variables
will be computed. When using the default implementation, the
PerturbationValues
(get
/ set
) must be set.variables
- The values to compute the gradients at.multithreaded
- Should the evaluation be done using as many cores as possible.valueResults
- The evaluated value of the function at the variables
.
If this is null
then this function will be evaluated at the variables
as part of the default evaluation of the gradients.progressTracker
- An optional progress tracker.@Nonnull public MultivariableFunctionEvaluationAndDerivativeResults<OptimizerMultivariableFunctionResults,OptimizerMultivariableFunctionDerivativeResults> evaluate(@Nonnull double[] variables, int order, boolean multithreaded, @Nullable ITrackCalculationProgress progressTracker)
DerivativeEvaluationEvent
(add
/ remove
) and the
NormalFunctionEvaluationEvent
(add
/ remove
) events.variables
- The values of the variables to evaluate at.order
- The highest order of the function that should be evaluated. By default, this can be 0 or 1.multithreaded
- Should the evaluation be done using as many cores as possible.progressTracker
- An optional progress tracker.public final double[] getPerturbationValues()
protected final void setPerturbationValues(double[] value)
public final void addPerturbedFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
public final void removePerturbedFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
public final void addNormalFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
OptimizerMultivariableFunction.evaluate(double[],ITrackCalculationProgress)
method.public final void removeNormalFunctionEvaluationEvent(EventHandler<OptimizerFunctionEvaluatedEventArgs> value)
OptimizerMultivariableFunction.evaluate(double[],ITrackCalculationProgress)
method.public final void addDerivativeEvaluationEvent(EventHandler<OptimizerFunctionDerivativeEvaluatedEventArgs> value)
OptimizerMultivariableFunction.evaluateDerivative(double[],boolean,OptimizerMultivariableFunctionResults,ITrackCalculationProgress)
method, you should call this event.public final void removeDerivativeEvaluationEvent(EventHandler<OptimizerFunctionDerivativeEvaluatedEventArgs> value)
OptimizerMultivariableFunction.evaluateDerivative(double[],boolean,OptimizerMultivariableFunctionResults,ITrackCalculationProgress)
method, you should call this event.protected final void callDerivativeEvaluationEvent(OptimizerMultivariableFunctionDerivativeResults derivativeResults)
derivativeResults
- The functions derivative results.@Nonnull public final FiniteDifferenceMethod getDifferenceMethod()
protected final void setDifferenceMethod(@Nonnull FiniteDifferenceMethod value)
public void applyResults(OptimizerMultivariableFunctionResults results)
OptimizerMultivariableFunctions
that have
state, there may be times when that state should be manually set on a function (sometimes
for performance reasons, when the function will be called multiple times and it should
start from where it left off). This method will manually set that state, if needed.results
- The results to apply.@Nonnull public static NumericallyComputedOptimizerFunctionDerivativeResults computeGradientsNumerically(@Nonnull OptimizerMultivariableFunction function, @Nonnull double[] variables, @Nonnull double[] perturbationValues, @Nonnull FiniteDifferenceMethod differenceMethod, boolean multithreaded, @Nullable OptimizerMultivariableFunctionResults precomputedValueResults, @Nullable ITrackCalculationProgress progressTracker)
OptimizerMultivariableFunction
numerically. This will call the
appropriate events on the functions as they are computed.function
- The OptimizerMultivariableFunction
to compute the gradients for.variables
- The independent variables that are used to compute the gradients.perturbationValues
- How much each of the variables
should be perturbed while computing
the gradients.differenceMethod
- The differencing method to use to numerically compute the derivatives.multithreaded
- Should this routine use a multithreaded algorithm. Usually
the multithreaded algorithm will be faster, however in cases where there are very few variables
and the function
evaluates very quickly, it may be faster to set this to
false.precomputedValueResults
- The function results at the variables
.
This is optional; if this is null
then the function will be evaluated
at the variables
.progressTracker
- An optional progress tracker.