public class TerrainLineOfSightConstraint extends AccessConstraint implements ILinkConstraint
ConstrainedLinkEnd
(get
/ set
) and
the object at the other end of the ConstrainedLink
(get
/ set
) not be obscured by terrain.
This constraint requires that both ends of the ConstrainedLink
(get
/ set
) provide
ILocationPointService
.
Once it has obtained the positions of the two objects in the terrain provider's reference frame, this constraint calls
TerrainAlongLine.computeElevationAngleAboveTerrain(Cartesian,Cartesian,agi.foundation.terrain.TerrainProvider,double,double)
to determine if terrain obstructs the line between the two objects.
Modifier | Constructor and Description |
---|---|
|
TerrainLineOfSightConstraint()
Initializes a new instance with default values.
|
|
TerrainLineOfSightConstraint(IServiceProvider constrainedLink,
LinkRole constrainedLinkEnd,
TerrainProvider terrainProvider)
Initializes a new instance with the specified constrained link, constrained link end, and terrain provider.
|
protected |
TerrainLineOfSightConstraint(TerrainLineOfSightConstraint existingInstance,
CopyContext context)
Initializes a new instance as a copy of an existing instance.
|
|
TerrainLineOfSightConstraint(TerrainProvider terrainProvider)
Initializes a new instance with the specified terrain provider.
|
Modifier and Type | Method and Description |
---|---|
void |
buildQueryEvaluator(ConstraintQueryBuilder builder,
EvaluatorGroup group)
Builds a query evaluator from this constraint.
|
protected boolean |
checkForSameDefinition(AccessConstraint other)
Checks to determine if another instance has the same definition as this instance and
returns
true if it does. |
protected boolean |
checkForSameDefinition(TerrainLineOfSightConstraint other)
Checks to determine if another instance has the same definition as this instance and
returns
true if it does. |
Object |
clone(CopyContext context)
Clones this object using the specified context.
|
protected int |
computeCurrentDefinitionHashCode()
Computes a hash code based on the current properties of this object.
|
void |
enumerateDependencies(DependencyEnumerator enumerator)
Enumerates the dependencies of this object by calling
DependencyEnumerator#enumerate(T) for each object that this object directly depends upon. |
IServiceProvider |
getConstrainedLink()
Gets the link to which this constraint applies.
|
LinkRole |
getConstrainedLinkEnd()
Gets the end of the link to which this constraint applies.
|
double |
getMaximumTerrainHeight()
Gets the maximum height in meters that can be returned by the
TerrainProvider (get / set ) TerrainProvider.getHeightRelativeToShape(double, double)
method. |
double |
getMinimumTerrainHeight()
Gets the minimum height in meters that can be returned by the
TerrainProvider (get / set ) TerrainProvider.getHeightRelativeToShape(double, double)
method. |
TerrainProvider |
getTerrainProvider()
Gets the terrain provider that provides the terrain to use in computing
the line of sight.
|
double |
getTolerance()
Gets the tolerance on the constraint value to use when computing the time when this constraint crosses its threshold.
|
void |
setConstrainedLink(IServiceProvider value)
Sets the link to which this constraint applies.
|
void |
setConstrainedLinkEnd(LinkRole value)
Sets the end of the link to which this constraint applies.
|
void |
setMaximumTerrainHeight(double value)
Sets the maximum height in meters that can be returned by the
TerrainProvider (get / set ) TerrainProvider.getHeightRelativeToShape(double, double)
method. |
void |
setMinimumTerrainHeight(double value)
Sets the minimum height in meters that can be returned by the
TerrainProvider (get / set ) TerrainProvider.getHeightRelativeToShape(double, double)
method. |
void |
setTerrainProvider(TerrainProvider value)
Sets the terrain provider that provides the terrain to use in computing
the line of sight.
|
void |
setTolerance(double value)
Sets the tolerance on the constraint value to use when computing the time when this constraint crosses its threshold.
|
String |
toString()
Returns a string representation of the object.
|
checkForSameDefinition, freezeAggregatedObjects, getApplicability, getEvaluationOrder, getEvaluator, getSampling, setApplicability, setEvaluationOrder, toDisjunctiveNormalForm
and, and, anyPath, anyPath, anyPath, anyPath, anyPath, anyPath, atLeastN, atMostN, checkForSameDefinition, exactlyN, fromObject, fromObjectAllowNoConstraints, getDebuggingLogger, getEvaluator, getEvaluator, not, or, or, setDebuggingLogger
areSameDefinition, areSameDefinition, areSameDefinition, areSameDefinition, areSameDefinition, collectionItemsAreSameDefinition, collectionItemsAreSameDefinition, collectionItemsAreSameDefinition, dictionaryItemsAreSameDefinition, freeze, getCollectionHashCode, getCollectionHashCode, getCollectionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDictionaryHashCode, getIsFrozen, isSameDefinition, throwIfFrozen
public TerrainLineOfSightConstraint()
Before evaluating this constraint using AccessComputation
, the user must set the
TerrainProvider
(get
/ set
) property. Before evaluating this constraint
as part of an AccessQuery
, it is also necessary to set the ConstrainedLink
(get
/ set
) and
ConstrainedLinkEnd
(get
/ set
) properties.
public TerrainLineOfSightConstraint(TerrainProvider terrainProvider)
This constraint is ready for use with AccessComputation
after being constructed using
this constructor. However, before evaluating this constraint
as part of an AccessQuery
, it is also necessary to set the ConstrainedLink
(get
/ set
) and
ConstrainedLinkEnd
(get
/ set
) properties.
terrainProvider
- The terrain provider to use.public TerrainLineOfSightConstraint(IServiceProvider constrainedLink, @Nonnull LinkRole constrainedLinkEnd, TerrainProvider terrainProvider)
This constraint is ready for use with both AccessComputation
and AccessQuery
after being constructed using this constructor.
constrainedLink
- The link to which this constraint is applied.constrainedLinkEnd
- The end of the link that is observing the other object.terrainProvider
- The terrain provider to use.protected TerrainLineOfSightConstraint(@Nonnull TerrainLineOfSightConstraint existingInstance, @Nonnull CopyContext context)
See ICloneWithContext.clone(CopyContext)
for more information about how to implement this constructor
in a derived class.
existingInstance
- The existing instance to copy.context
- A CopyContext
that controls the depth of the copy.ArgumentNullException
- Thrown when existingInstance
or context
is null
.public Object clone(CopyContext context)
This method should be implemented to call a copy constructor on the class of the
object being cloned. The copy constructor should take the CopyContext
as a parameter
in addition to the existing instance to copy. The copy constructor should first call
CopyContext.addObjectMapping(T, T)
to identify the newly constructed instance
as a copy of the existing instance. It should then copy all fields, using
CopyContext.updateReference(T)
to copy any reference fields.
A typical implementation of ICloneWithContext
:
public static class MyClass implements ICloneWithContext {
public MyClass(MyClass existingInstance, CopyContext context) {
context.addObjectMapping(existingInstance, this);
someReference = context.updateReference(existingInstance.someReference);
}
@Override
public final Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
}
In general, all fields that are reference types should be copied with a call to
CopyContext.updateReference(T)
. There are a couple of exceptions:
If one of these exceptions applies, the CopyContext
should be given an opportunity
to update the reference before the reference is copied explicitly. Use
CopyContext.updateReference(T)
to update the reference. If CopyContext.updateReference(T)
returns
the original object, indicating that the context does not have a replacement registered,
then copy the object manually by invoking a Clone method, a copy constructor, or by manually
constructing a new instance and copying the values.
alwaysCopy = context.updateReference(existingInstance.alwaysCopy);
if (existingInstance.alwaysCopy != null && alwaysCopy == existingInstance.alwaysCopy) {
alwaysCopy = (AlwaysCopy) existingInstance.alwaysCopy.clone(context);
}
If you are implementing an evaluator (a class that implements IEvaluator
), the
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
method shares some responsibilities with the
copy context constructor. Code duplication can be avoided by doing the following:
CopyContext.updateReference(T)
. You should still call CopyContext.updateReference(T)
on any references to
non-evaluators.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as the last line in the constructor and pass it the
same CopyContext
passed to the constructor.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as normal. See the reference documentation for
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
for more information on implementing that method.
public MyClass(MyClass existingInstance, CopyContext context) {
super(existingInstance, context);
someReference = context.updateReference(existingInstance.someReference);
evaluatorReference = existingInstance.evaluatorReference;
updateEvaluatorReferences(context);
}
@Override
public void updateEvaluatorReferences(CopyContext context) {
evaluatorReference = context.updateReference(evaluatorReference);
}
@Override
public Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
private IEvaluator evaluatorReference;
clone
in interface ICloneWithContext
clone
in class DefinitionalObject
context
- The context to use to perform the copy.protected final boolean checkForSameDefinition(AccessConstraint other)
true
if it does. Derived classes MUST override this method and check
all new fields introduced by the derived class for definitional equivalence. It is NOT necessary
to check base class fields because the base class will already have done that. When overriding this method,
you should NOT call the base implementation because it will return false
for all derived-class instances.
Derived classes should check the type of other
to preserve the symmetric nature of IEquatableDefinition.isSameDefinition(java.lang.Object)
.checkForSameDefinition
in class AccessConstraint
other
- The other instance to compare to this one.true
if the two objects are defined equivalently; otherwise false
.protected boolean checkForSameDefinition(TerrainLineOfSightConstraint other)
true
if it does. Derived classes MUST override this method and check
all new fields introduced by the derived class for definitional equivalence. It is NOT necessary
to check base class fields because the base class will already have done that. When overriding this method,
you should NOT call the base implementation because it will return false
for all derived-class instances.
Derived classes should check the type of other
to preserve the symmetric nature of IEquatableDefinition.isSameDefinition(java.lang.Object)
.other
- The other instance to compare to this one.true
if the two objects are defined equivalently; otherwise false
.protected int computeCurrentDefinitionHashCode()
TerrainLineOfSightConstraint.checkForSameDefinition(agi.foundation.access.AccessConstraint)
method.computeCurrentDefinitionHashCode
in class AccessConstraint
public void enumerateDependencies(DependencyEnumerator enumerator)
DependencyEnumerator#enumerate(T)
for each object that this object directly depends upon.
Derived classes which contain additional dependencies MUST override this method, call the base
implementation, and enumerate dependencies introduced by the derived class.enumerateDependencies
in interface IEnumerateDependencies
enumerateDependencies
in class AccessConstraint
enumerator
- The enumerator that is informed of the dependencies of this object.public final TerrainProvider getTerrainProvider()
public final void setTerrainProvider(TerrainProvider value)
public final double getMinimumTerrainHeight()
TerrainProvider
(get
/ set
) TerrainProvider.getHeightRelativeToShape(double, double)
method. Setting this value lower than necessary will not affect the results, but it will decrease
performance. Setting it too high can cause incorrect results.
By default, this is set to the approximate depth of the Marianas Trench.public final void setMinimumTerrainHeight(double value)
TerrainProvider
(get
/ set
) TerrainProvider.getHeightRelativeToShape(double, double)
method. Setting this value lower than necessary will not affect the results, but it will decrease
performance. Setting it too high can cause incorrect results.
By default, this is set to the approximate depth of the Marianas Trench.public final double getMaximumTerrainHeight()
TerrainProvider
(get
/ set
) TerrainProvider.getHeightRelativeToShape(double, double)
method. Setting this value higher than necessary will not affect the results, but it will decrease
performance. Setting it too low can cause incorrect results.
By default, this is set to the approximate height of Mount Everest.public final void setMaximumTerrainHeight(double value)
TerrainProvider
(get
/ set
) TerrainProvider.getHeightRelativeToShape(double, double)
method. Setting this value higher than necessary will not affect the results, but it will decrease
performance. Setting it too low can cause incorrect results.
By default, this is set to the approximate height of Mount Everest.public final double getTolerance()
public final void setTolerance(double value)
public final IServiceProvider getConstrainedLink()
AccessComputation
.getConstrainedLink
in interface ILinkConstraint
public final void setConstrainedLink(IServiceProvider value)
AccessComputation
.setConstrainedLink
in interface ILinkConstraint
@Nonnull public final LinkRole getConstrainedLinkEnd()
AccessComputation
.getConstrainedLinkEnd
in interface ILinkConstraint
public final void setConstrainedLinkEnd(@Nonnull LinkRole value)
AccessComputation
.setConstrainedLinkEnd
in interface ILinkConstraint
public String toString()
java.lang.Object
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
public void buildQueryEvaluator(ConstraintQueryBuilder builder, EvaluatorGroup group)
buildQueryEvaluator
in class AccessConstraint
builder
- The builder instance to use to build the evaluator.group
- The evaluator group in which to create individual constraint function evaluators.