public class ScalarDensityMsis86 extends ScalarAtmosphericDensity implements IPartialDifferentiable
Calculates atmospheric density according to the MSIS 1986 model.
The Mass-Spectrometer-Incoherent-Scatter-1986 (MSIS-86) neutral atmosphere model describes the neutral temperature and the densities of He, O, N2, O2, Ar, H, and N. The MSIS model is based on the extensive data compilation and analysis work of A. E. Hedin and his collaborators [A. E. Hedin et al., J. Geophys. Res. 82, 2139-2156, 1977; A. E. Hedin, J. Geophys. Res. 88, 10170- 10188, 1983; A. E. Hedin, J. Geophys. Res. 92, 4649, 1987]. MSIS-86 constitutes the upper part of the COSPAR International Reference Atmosphere (CIRA-86).
Unlike other density models, this type does not make use of the
VectorToSun
(get
/ set
) and instead determines
the shape of the atmosphere purely based on the time of day.
If available, the MSIS models will make use of the time varying daily averages
for the geomagnetic flux defined by the SolarGeophysicalData
(get
/ set
)
instance.
Modifier | Constructor and Description |
---|---|
|
ScalarDensityMsis86()
Initializes a
Scalar representing the MSIS 1986 model
of atmospheric density. |
|
ScalarDensityMsis86(Point targetPoint,
SolarGeophysicalData solarGeophysicalData)
Initializes a
Scalar representing the MSIS 1986 model
of atmospheric density using the target point and solar-geophysical data. |
protected |
ScalarDensityMsis86(ScalarDensityMsis86 existingInstance,
CopyContext context)
Initializes a new instance as a copy of an existing instance.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
checkForSameDefinition(ScalarAtmosphericDensity other)
Checks to determine if another instance has the same definition as this instance and
returns
true if it does. |
protected boolean |
checkForSameDefinition(ScalarDensityMsis86 other)
Checks to determine if another instance has the same definition as this instance and
returns
true if it does. |
Object |
clone(CopyContext context)
Clones this object using the specified context.
|
protected int |
computeCurrentDefinitionHashCode()
Computes a hash code based on the current properties of this object.
|
double |
getAverageSolarRadioFluxLagSeconds()
Gets the value for the time lag used when modeling when to apply the values of
AverageSolarRadioFlux to the atmosphere. |
int |
getDimension()
Gets the dimension of the values produced by the object.
|
ScalarEvaluator |
getEvaluator(EvaluatorGroup group)
Gets an evaluator that calculates Density according to the MSIS 1986 density model.
|
double |
getGeomagneticFluxLagSeconds()
Gets the value for the time lag used when modeling when to apply the values of
GeomagneticFlux to the atmosphere. |
double |
getLowerHeightLimit()
Gets the lower bound of the height (in meters above the ellipsoid)
for which this density model is valid.
|
PartialDerivativesEvaluator |
getPartialDerivativesEvaluator(List<IPartialDifferentiable> independentVariables,
EvaluatorGroup group)
Gets an evaluator that calculates the partial derivatives of the density
with respect to any of the
independentVariables parameters that apply, generally the position. |
double |
getSolarRadioFluxLagSeconds()
Gets the value for the time lag used when modeling when to apply the values of
SolarRadioFlux to the atmosphere. |
double |
getUpperHeightLimit()
Gets the upper bound of the height (in meters above the ellipsoid)
above which this density model will return a value of zero.
|
void |
setUpperHeightLimit(double value)
Sets the upper bound of the height (in meters above the ellipsoid)
above which this density model will return a value of zero.
|
checkForSameDefinition, enumerateDependencies, getCentralBody, getSolarGeophysicalData, getTargetPoint, getVectorToSun, setApparentSunPosition, setCentralBody, setSolarGeophysicalData, setTargetPoint, setTrueSunPosition, setVectorToSun
add, add, add, add, add, checkForSameDefinition, createScalarDerivative, divide, divide, divide, divide, divide, getEvaluator, multiply, multiply, multiply, multiply, multiply, power, subtract, subtract, subtract, subtract, subtract, toScalar
areSameDefinition, areSameDefinition, areSameDefinition, areSameDefinition, areSameDefinition, collectionItemsAreSameDefinition, collectionItemsAreSameDefinition, collectionItemsAreSameDefinition, dictionaryItemsAreSameDefinition, freeze, freezeAggregatedObjects, getCollectionHashCode, getCollectionHashCode, getCollectionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDefinitionHashCode, getDictionaryHashCode, getIsFrozen, isSameDefinition, throwIfFrozen
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getDefinitionHashCode, isSameDefinition
public ScalarDensityMsis86()
public ScalarDensityMsis86(Point targetPoint, SolarGeophysicalData solarGeophysicalData)
Scalar
representing the MSIS 1986 model
of atmospheric density using the target point and solar-geophysical data.targetPoint
- The target point of the density calculations.solarGeophysicalData
- Solar and magnetic flux information. If available,
this will use the time varying daily averages for the geomagnetic flux.protected ScalarDensityMsis86(@Nonnull ScalarDensityMsis86 existingInstance, @Nonnull CopyContext context)
See ICloneWithContext.clone(CopyContext)
for more information about how to implement this constructor
in a derived class.
existingInstance
- The existing instance to copy.context
- A CopyContext
that controls the depth of the copy.ArgumentNullException
- Thrown when existingInstance
or context
is null
.public Object clone(CopyContext context)
This method should be implemented to call a copy constructor on the class of the
object being cloned. The copy constructor should take the CopyContext
as a parameter
in addition to the existing instance to copy. The copy constructor should first call
CopyContext.addObjectMapping(T, T)
to identify the newly constructed instance
as a copy of the existing instance. It should then copy all fields, using
CopyContext.updateReference(T)
to copy any reference fields.
A typical implementation of ICloneWithContext
:
public static class MyClass implements ICloneWithContext {
public MyClass(MyClass existingInstance, CopyContext context) {
context.addObjectMapping(existingInstance, this);
someReference = context.updateReference(existingInstance.someReference);
}
@Override
public final Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
}
In general, all fields that are reference types should be copied with a call to
CopyContext.updateReference(T)
. There are a couple of exceptions:
If one of these exceptions applies, the CopyContext
should be given an opportunity
to update the reference before the reference is copied explicitly. Use
CopyContext.updateReference(T)
to update the reference. If CopyContext.updateReference(T)
returns
the original object, indicating that the context does not have a replacement registered,
then copy the object manually by invoking a Clone method, a copy constructor, or by manually
constructing a new instance and copying the values.
alwaysCopy = context.updateReference(existingInstance.alwaysCopy);
if (existingInstance.alwaysCopy != null && alwaysCopy == existingInstance.alwaysCopy) {
alwaysCopy = (AlwaysCopy) existingInstance.alwaysCopy.clone(context);
}
If you are implementing an evaluator (a class that implements IEvaluator
), the
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
method shares some responsibilities with the
copy context constructor. Code duplication can be avoided by doing the following:
CopyContext.updateReference(T)
. You should still call CopyContext.updateReference(T)
on any references to
non-evaluators.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as the last line in the constructor and pass it the
same CopyContext
passed to the constructor.
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
as normal. See the reference documentation for
IEvaluator.updateEvaluatorReferences(agi.foundation.infrastructure.CopyContext)
for more information on implementing that method.
public MyClass(MyClass existingInstance, CopyContext context) {
super(existingInstance, context);
someReference = context.updateReference(existingInstance.someReference);
evaluatorReference = existingInstance.evaluatorReference;
updateEvaluatorReferences(context);
}
@Override
public void updateEvaluatorReferences(CopyContext context) {
evaluatorReference = context.updateReference(evaluatorReference);
}
@Override
public Object clone(CopyContext context) {
return new MyClass(this, context);
}
private Object someReference;
private IEvaluator evaluatorReference;
clone
in interface ICloneWithContext
clone
in class DefinitionalObject
context
- The context to use to perform the copy.protected final boolean checkForSameDefinition(ScalarAtmosphericDensity other)
true
if it does. Derived classes MUST override this method and check
all new fields introduced by the derived class for definitional equivalence. It is NOT necessary
to check base class fields because the base class will already have done that. When overriding this method,
you should NOT call the base implementation because it will return false
for all derived-class instances.
Derived classes should check the type of other
to preserve the symmetric nature of IEquatableDefinition.isSameDefinition(java.lang.Object)
.checkForSameDefinition
in class ScalarAtmosphericDensity
other
- The other instance to compare to this one.true
if the two objects are defined equivalently; otherwise false
.protected boolean checkForSameDefinition(ScalarDensityMsis86 other)
true
if it does. Derived classes MUST override this method and check
all new fields introduced by the derived class for definitional equivalence. It is NOT necessary
to check base class fields because the base class will already have done that. When overriding this method,
you should NOT call the base implementation because it will return false
for all derived-class instances.
Derived classes should check the type of other
to preserve the symmetric nature of IEquatableDefinition.isSameDefinition(java.lang.Object)
.other
- The other instance to compare to this one.true
if the two objects are defined equivalently; otherwise false
.protected int computeCurrentDefinitionHashCode()
ScalarDensityMsis86.checkForSameDefinition(agi.foundation.celestial.ScalarAtmosphericDensity)
method.computeCurrentDefinitionHashCode
in class ScalarAtmosphericDensity
public ScalarEvaluator getEvaluator(EvaluatorGroup group)
getEvaluator
in class Scalar
group
- The group with which to associate the new evaluator. By grouping evaluators
that are often evaluated at the same Julian dates, common computations can be performed only once
for the entire group instead of multiple times for each evaluator.ArgumentNullException
- Thrown when group
is null
.PropertyInvalidException
- Thrown when the property TargetPoint
(get
/ set
),
CentralBody
(get
/ set
), or
SolarGeophysicalData
(get
/ set
) is null
.public final PartialDerivativesEvaluator getPartialDerivativesEvaluator(List<IPartialDifferentiable> independentVariables, EvaluatorGroup group)
independentVariables
parameters that apply, generally the position.getPartialDerivativesEvaluator
in interface IPartialDifferentiable
independentVariables
- The list of IPartialDifferentiable
representing the independent
variables that the created partial derivative evaluator calculates partials with respect to.group
- The evaluator group to contain the evaluator.PartialDerivativesEvaluator
.public final int getDimension()
Vectors
would have a dimension of three, and Scalars
of one. A PartialDerivativesEvaluator
created by this type will have a RowDimension
(get
) equal to this
property, and a ColumnDimension
(get
) equal to the summation
of the dimensions of the independent variables that this object is dependent on.getDimension
in interface IPartialDifferentiable
public double getLowerHeightLimit()
getLowerHeightLimit
in class ScalarAtmosphericDensity
public double getUpperHeightLimit()
getUpperHeightLimit
in class ScalarAtmosphericDensity
public void setUpperHeightLimit(double value)
setUpperHeightLimit
in class ScalarAtmosphericDensity
public final double getSolarRadioFluxLagSeconds()
SolarRadioFlux
to the atmosphere.
MSIS models use a time lag of one day.public final double getAverageSolarRadioFluxLagSeconds()
AverageSolarRadioFlux
to the atmosphere.
MSIS models use no time lag for average solar flux.public final double getGeomagneticFluxLagSeconds()
GeomagneticFlux
to the atmosphere.
MSIS models use no time lag for geomagnetic flux.